Better sound through research.

## 102 COMMERCIAL SOUND SYSTEM



## CONTENTS

Electrostatic Discharge Sensitive (ESDS) Device Handling ..... 3
Safety Information ..... 4
Specifications .....  5
Disassembly/Assembly Procedures ..... 6-9
$102{ }^{\circledR}$ Flush-Mount Loudspeaker ..... 6
Figure 1. 102 Flush-Mount Grille Removal. .....  6
Figure 2. 102 Flush-Mount Driver Replacement. .....  6
102 Surface-Mount Loudspeaker ..... 7
Figure 3. 102 Surface-Mount Driver Removal/Replacement ..... 7
Figure 4. 102 Surface-Mount Baffle Assembly. ..... 8
102 System Controller Procedures ..... 8-9
Figure 5. 102 System Controller Exploded View ..... 10
Figure 6. 102 System Controller Block Diagram ..... 11
Test Procedures ..... 12-15
Figure 7. Test Connections for 102F or 102S Loudspeaker ..... 12
102 Loudspeaker Test Signals ..... 12
102 System Controller Test Procedures ..... 13
102 System Controller Initial Switch Positions ..... 13
102 System Controller Frequency Response. ..... 14
102 System Controller Test Procedures ..... 14-15
102 System Controller Voice Channel Response ..... 15
102 Loudspeaker Driver Wiring ..... 16
Figure 8. 102 Loudspeaker Schematic Diagram (Passive Units) ..... 16
Figure 9. 102 Loudspeaker Schematic Diagram (Transformer Units) ..... 16
Figure 10. Tap Selection Switch Wiring (Transformer Units) ..... 16
Tap Selection Switch Wiring ..... 16
102 Flush-Mount Loudspeaker Parts List (Per Figure 10) ..... 17
102 Flush-Mount Loudspeaker Installation Hardware ..... 17
102 Loudspeaker Exploded Views ..... 18
Figure 11a. 102 Flush-Mount Non-RoHS Loudspeaker Exploded View ..... 18
Figure 11b. 102 Flush-Mount RoHS Loudspeaker Exploded View. ..... 18
102 Surface-Mount Loudspeaker Parts List (Per Figures 11 \& 12) ..... 19
102 Surface-Mount Loudspeaker Installation Hardware ..... 19
Figure 12. 102 Surface-Mount Loudspeaker Exploded View. ..... 20
Figure 13. 102 Surface-Mount Loudspeaker ..... 21
102 System Controller Parts Lists ..... 22-25
102 System Controller Packing List ..... 25
102 Loudspeaker Packing Diagrams ..... 26-27
Figure 14. 102 Flush-Mount Loudspeaker Packing Diagram ..... 26
Figure 15. 102 Surface-Mount Loudspeaker Packing Diagram ..... 27
Service Manual Revision History ..... 28

## ELECTROSTATIC DISCHARGE SENSITIVE (ESDS) DEVICE HANDLING

This unit contains ESDS devices. We recommend the following precautions when repairing, replacing, or transporting ESDS devices:

- Perform work at an electrically grounded work station.
- Wear wrist straps that connect to the station or heel straps that connect to conductive floor mats.
- Avoid touching the leads or contacts of ESDS devices or PC boards even if properly grounded. Handle boards by the edges only.
- Transport or store ESDS devices in ESD protective bags, bins, or totes. Do not insert unprotected devices into materials such as plastic, polystyrene foam, clear plastic bags, bubble wrap, or plastic trays.

CAUTION: THE $102{ }^{\circledR}$ SYSTEM CONTROLLER CONTAINS
NO USER-SERVICEABLE PARTS. TO PREVENT
WARRANTY INFRACTIONS, REFER SERVICING TO WARRANTY SERVICE STATIONS OR FACTORY SERVICE.

## PROPRIETARY INFORMATION

THIS DOCUMENT CONTAINS PROPRIETARY INFORMATION OF BOSE ${ }^{\circledR}$ CORPORATION WHICH IS BEING FURNISHED ONLY FOR THE PURPOSE OF SERVICING THE IDENTIFIED BOSE PRODUCT BY AN AUTHORIZED BOSE SERVICE CENTER OR OWNER OF THE BOSE PRODUCT, AND SHALL NOT BE REPRODUCED OR USED FOR ANY OTHER PURPOSE.

## SAFETY INFORMATION

1. Parts that have special safety characteristics are identified by the $\Lambda$ symbol on schematics or by special notes on the parts list. Use only replacement parts that have critical characteristics recommended by the manufacturer.
2. Make leakage current or resistance measurements to determine that exposed parts are acceptably insulated from the supply circuit before returning the unit to the customer. Use the following checks to perform these measurements:

## A. Leakage Current Hot Check

(1) With the unit completely reassembled, plug the AC line cord directly into a 120 V AC outlet. Do not use an isolation transformer during this test. Use a leakage current tester or a metering system that complies with American National Standards Institute (ANSI) C101.1 "Leakage Current for Appliances" and Underwriters Laboratories (UL) 1492 (71).
(2) With the unit AC switch first in the ON position and then in the OFF position, measure from a known earth ground (metal water pipe, conduit, etc.) to all exposed metal parts of the unit (antennas, handle bracket, metal cabinet, screwheads, metallic overlays, control shafts, etc.), especially any exposed metal parts that offer an electrical return path to the chassis.
(3) Any current measured must not exceed 0.5 milliamp.
(4) Reverse the unit power cord plug in the outlet and repeat test.

ANY MEASUREMENTS NOT WITHIN THE LIMITS SPECIFIED HEREIN INDICATE A POTENTIAL SHOCK HAZARD THAT MUST BE ELIMINATED BEFORE RETURNING THE UNIT TO THE CUSTOMER.

## B. Insulation Resistance Test Cold Check

(1) Unplug the power supply and connect a jumper wire between the two prongs of the plug.
(2) Turn on the power switch of the unit.
(3) Measure the resistance with an ohmmeter between the jumpered AC plug and each exposed metallic cabinet part on the unit. When the exposed metallic part has a return path to the chassis, the reading should be between 1 and 5.2 megohms. When there is no return path to the chassis, the reading must be "infinite". If it is not within the limits specified, there is the possibility of a shock hazard, and the unit must be repaired and rechecked before it is returned to the customer.

## SPECIFICATIONS

## $102{ }^{\circledR}$ System Controller:

| Input Level: | Music -100 mV or 1V selectable <br> Voice - Mic or line, selectable, variable <br>  <br>  <br> (AGC calibration) |
| :--- | :--- |
| Output Level: | 1V nominal |
| Input Impedance: | Music -2 k ohms, balanced, differential |
|  | Voice -600 ohms, balanced, differential |
| Bass Cut Switch: | 6 dB |
| Distortion: | Less than $0.1 \% \mathrm{THD}$ |
| CMRR: | Greater than 40 dB , all inputs |
| AGC: | Attack level - variable |
|  | Attack time $-<5 \mathrm{~ms}$ |
|  | Release time -200 ms |
| Mute: | Mute level $-30 \mathrm{~dB}($ with defeat switch on ch. B) |
|  | Attack time $-<5 \mathrm{~ms}$ |
|  | Release time -2 seconds |
| Accessories: | 4 rack-mount screws, supplied |
| Dimensions: | $13 / 4 \mathrm{H} \times 1831 / 32 \mathrm{~W} \times 41 / 4 \mathrm{D}$ |
|  | $(44 \mathrm{~mm} \times 482 \mathrm{~mm} \times 107 \mathrm{~mm})$ |

## 102 Flush-Mount and 102 Surface-Mount Loudspeakers:

Frequency Response:
Distortion:
Driver:
Enclosure:
Volume:
Port Resonance:
Sensitivity:
Weight:
Temperature:
Humidity:
$80 \mathrm{~Hz}-18 \mathrm{kHz}, \pm 3 \mathrm{~dB}$ $<1 \%$ @ 10\% rated power input Single, 4 1/2" Helical Voice Coil
Dual port, bass reflex type
200 cubic inches
80 Hz
95 dB SPL, 1W, 1m@ 1 kHz
$5 \mathrm{lbs} .(2.3 \mathrm{~kg})$
Minimum - $0^{\circ} \mathrm{C}$
Maximum $-60^{\circ} \mathrm{C}$
Minimum - 0 \%
Maximum-98 \%

## DISASSEMBLY/ASSEMBLY PROCEDURES

## $102{ }^{\circledR}$ Flush-Mount Loudspeaker

## 1. Grille Removal

1.1 The optional Bose ${ }^{\circledR}$ grille is held in place via a tooth/groove-type design. To remove the grille, grasp the edges of the grille with your fingers and place your thumbs toward the center of the grille.
1.2 As you press inward with your thumbs, pull outward with your fingers. This will release the teeth from the grooves, allowing the grille to be removed from the loudspeaker enclosure. (See Figure 1)


Figure 1. 102 Flush-Mount Grille Removal

## 2. Grille Replacement

2.1 Align the legs on the grille with the openings in the speaker enclosure.
2.2 Press the grille upward so that the teeth on the grille legs engage the teeth in the speaker enclosure.
2.3 Push the grille upward until the grille is flush with the mounting surface.

## 3. Driver Removal

3.1 Using a flat-blade screwdriver or a $1 / 4 "$ socket, remove the three screws holding the driver in place.
3.2 Carefully lift the driver out of the enclosure and cut the wires as close to the driver terminals as possible.

## 4. Driver Replacement

4.1 Strip the wires and connect them to the replacement driver. Make sure that the red wire is connected to the positive (+) terminal and the black wire is connected to the negative (-) terminal of the driver.
4.2 Align the driver and gasket to the enclosure. Make certain the gasket is correctly positioned to provide an airtight seal.
4.3 Secure the driver to the enclosure with the three screws. Do not overtighten.
(See Figure 2)


Figure 2. 102 Flush-Mount Driver Replacement

## DISASSEMBLY/ASSEMBLY PROCEDURES

Note: The following procedures are for the transformered units only. The passive versions do not have a tap selection switch, transformer, or capacitor within the enclosure.

## 5. Wiring-Well Cover:

(Transformer and Capacitor Access)
5.1 To remove the wiring-well cover located in the back of the enclosure, use a flat-blade screwdriver or a $1 / 4$ " socket to loosen the two screws that hold the metal cover in place.
5.2 Swing the cover free to gain access to the transformer and capacitor.

## 6. Front plate removal

(Access to tap selection switch)
6.1 Using a flat-blade screwdriver or a $1 / 4$ " socket, remove the two screws that hold the plastic front plate in position.
6.2 Lift the plate out to gain access to the tap selection switch and wiring.

## $102{ }^{\circledR}$ Surface-Mount Loudspeaker

## 1. Grille Removal

1.1 To remove the grille, take a small flat-blade screwdriver or scribe and grasp the edge of the grille at one of the corners.
1.2 Gently work the grille out of the retaining slot.

Note: There is no grille frame exposed. You must grasp the grille on the metal portion of the grille and not on the polystyrene, which is part of the speaker enclosure.

## 2. Grille Replacement

2.1 To install the grille, first be sure that the Bose ${ }^{\circledR}$ logo is facing the same way as the print on the back of the enclosure.
2.2 Fit the grille to two adjacent corners of the enclosure.
2.3 Gently apply pressure to the two remaining corners to fit the grille into the enclosure.

## 3. Driver Removal

3.1 Using a cross-head screwdriver, remove the three screws that hold the driver in place.
3.2 Carefully lift the driver out of the enclosure and cut the wires as close to the driver terminals as possible.

## 4. Driver Replacement

4.1 Strip the wires and connect them to the replacement driver.

Note: Make certain that the red wire is connected to the positive (+) terminal and the black wire is connected to the negative (-) terminal of the driver.
4.2 Align the driver and gasket to the J -clips. Make sure the gasket is correctly positioned behind the driver to provide an airtight seal.
4.3 Secure the driver to the J-clips with the three screws. Do not overtighten.
(See Figure 3)


Figure 3. 102 Surface-Mount Driver Replacement

## DISASSEMBLY/ASSEMBLY PROCEDURES

Note: The following procedures are for the transformered units only. The passive versions do not have a tap selection switch or transformer within the enclosure.

## 5. Baffle Removal

5.1 Remove the six screws (1) that hold the baffle in place. Do not remove the three screws holding the driver in place.
(See Figure 4)
5.2 Pry the baffle away from the enclosure body. This can be accomplished by inserting the hook portion of a scribe or your fingers into the ports and using this as a grasping area to pry the two sections apart. This will expose the tap selection switch and transformer.

## 6. Baffle Replacement

6.1 Align the port side of the baffle to the side of the enclosure that has the input terminals.
6.2 Secure the baffle with the six screws.


Figure 4. $102^{\circledR}$ Surface-Mount Baffle Assembly

## 102 System Controller Procedures

## 1. Top Cover Removal

Note: Refer to Figure 5, 102 System Controller Exploded View.
1.1 Using a cross-tip screwdriver, remove the six screws (1) securing the top cover, (2) of the unit. There is one located on top, two on the sides, and three on the back panel.
1.2 Slide the top cover toward the rear of the unit until it clears the ribs on the front panel (3), then lift it straight off.

## 2. Top Cover Replacement

2.1 Align the top cover (2) with the rear panel, and slide it down and forward until it is in place against the front panel (3).
2.2 Secure the top cover using the six screws (1) removed in procedure 1.1.

## 3. Front Panel Removal

3.1 Remove the top cover (2) using procedures 1.1 and 1.2.
3.2 Turn the unit over, and remove the three screws (4) that secure the front panel (3) to the chassis (5).
3.3 Slide the front panel off of the chassis.

## 4. Front Panel Replacement

4.1 Slide the front panel (3) onto the chassis (5), aligning the holes for the LEDs and push-switch.
4.2 Secure the front panel to the chassis using the three screws (4) removed in procedure 3.2.
4.3 Replace the top cover (2) using procedures 2.1 and 2.2.

## DISASSEMBLY/ASSEMBLY PROCEDURES

## 5. Main Circuit Board Removal

5.1 Remove the top cover (2) using procedures 1.1 and 1.2.
5.2 Unplug the four cables from the connectors on the circuit board (6) at JE02, JE01, JE51, and JG01.

Note: You must first lift the tab on the connector to release the wire.
5.3 Remove the front panel (3) using procedures 3.1 through 3.3.
5.4 Remove the five screws (7) that secure the circuit board to the chassis (5).
5.5 Slide the circuit board forward out of the chassis.

## 6. Main Circuit Board Replacement

6.1 Align the circuit board (6) with the tabs located on the chassis (5).
6.2 Replace the front panel (3) using procedures 4.1 through 4.3.
6.3 Plug the four cables removed in procedure 5.2 back into their respective connectors.
6.4 Replace the top cover (2) using procedures 2.1 and 2.2.


Figure 5. 102 ${ }^{\text {® }}$ System Controller Exploded View


Figure 6. $102^{\circledR}$ System Controller Block Diagram

## TEST PROCEDURES

## $102{ }^{\circledR}$ Flush-Mount and 102 Surface-Mount Loudspeaker Test Procedures

Note: All testing for transformer variation units shall be done with the tap switch in the high position. The high impedance of the transformer allows testing with any conventional power amplifier.

Note: The 102 Flush-Mount Loudspeakers have input wires with the white wire being the positive, while the 102 Surface-Mount has input terminals that are clearly marked.

## 1. Rub and Tick Test

1.1 Connect the test setup as shown in Figure 7.
1.2 Apply an 8 Volt rms, 80 Hz signal for 4 and 8 ohm units; 30 Volt rms, 80 Hz for transformer units, to the speaker input terminals.
1.3 Replace any driver that has a rubbing or ticking noise. Quiet ticks are acceptable if they cannot be heard at a distance of 1 foot.

Note: To distinguish between normal suspension noise and rubs or ticks, remove the grille and displace the surround of the driver slightly with your fingers. If the noise can be made to go away, or get worse, it is a tick or a rub, and the driver should be replaced. If the noise stays the same, it is suspension noise and the driver is fine. Suspension noises will not be heard with program material.


Figure 7. Test Connections for 102F or 102S Loudspeaker

## 2. Sweep Test

2.1 Sweep the oscillator from 10 Hz to 3 $\mathbf{k H z}$, using the appropriate voltage found in the 102 Loudspeaker test signals table below.
2.2 Reduce the output of the amplifier to the appropriate voltage listed in the table below and continue sweeping from $\mathbf{3} \mathbf{~ k H z}$ to $\mathbf{1 5} \mathbf{~ k H z}$.
2.3 If there are any loud buzzes or distortion, replace the driver.
2.4 If there are any buzzes or rattles from inside the 102 cabinet, redress the wire or component causing the noise.

Note: The whooshing noise from the port around 80 Hz is normal.

102 Loudspeaker Test Signals

| Passive Units |
| :--- |
| 8 Volts rms, 10 Hz to 3 kHz |
| 4 Volts rms, 3 kHz to 15 kHz |
| 8 Watt Transformer units |
| 25 Volts rms, 10 Hz to 3 kHz |
| 12 Volts rms, 3 kHz to 15 kHz |
| 25 Watt Transformer units |
| 20 Volts rms, 10 Hz to 3 kHz |
| 16 Volts rms, 3 kHz to 15 kHz |

## TEST PROCEDURES

## 3. Transformer Tap Select Test.

 (transformer units only)3.1 Be sure that the tap selection switch is in the high position.
3.2 Apply a 25 Volt rms, 100 Hz signal to the input of the speaker.
3.3 Slowly change the tap selection switch on the unit from the high position to the off position.
3.4 A decrease in output level should be heard for each descending switch position.

Note: Upon completion of testing, be sure to switch the unit back to the high position, or where the customer had preset the control.

## 4. Phase Test

4.1 Check the wiring with that of Figure 8 to assure that the speaker is wired in phase.

## $102{ }^{\circledR}$ System Controller Test Procedures

Note: The 102 System Controller has two independent channels of full bandwidth equalization for music sources; an OptiVoice ${ }^{\circledR}$ circuit with separate equalization for voice input, a bass shelf and various sensitivity and muting features. You must test all modes of the 102 System Controller to assure proper operation.

Note: The 102 System Controller input(s) must be loaded properly in order to get the correct test output voltage levels.

Equipment Required:
Dual-trace oscilloscope
Audio signal generator
Distortion analyzer
dB meter
Digital voltmeter
Two 10k ohm,1/4W load resistors
Small screwdriver
102 System Controller Initial Switch Positions

| Switch | Position |
| :--- | :--- |
| Bass | Normal (out) |
| Channel B Mute | On |
| Channel A Input | 1 Volt |
| Channel B Input | 1 Volt |
| Voice Input | Line |
| Opti-Voice ${ }^{\circledR}$ | Full counterclockwise |
| Channel A output | 10 k ohm load |
| Channel B output | 10 k ohm load |

Note: Unless otherwise specified, all controls will remain in the positions listed in the 102 Controller Initial Switch Positions table above.

## 1. Music Channel Gain Tests

Note: When connecting the audio signal generator to the controller, do not jumper the minus (-) terminal to the ground terminal.

Note: The music channel inputs must be loaded with a $\mathbf{2 k}$ ohm input impedance in order to get the correct output levels.
1.1 Apply a 1 Volt rms, $\mathbf{1} \mathbf{k H z}$ signal to both A \& B inputs. Reference a dB meter to the applied signal level.
1.2 The output should be 1 Volt rms, ( $0 \mathrm{~dB} \pm 2 \mathrm{~dB}$ ).
1.3 Reduce the input signal to 100 mV rms, 1 kHz.
1.4 Change both input sensitivity switches to the 100 mV position.
1.5 The output should be 1 Volt rms, (+20 dB $\pm 2 \mathrm{~dB}$ ).

## 2. Music Channel Response Tests

2.1 Return both input sensitivity switches to the 1 Volt position.
2.2 Apply a 1 Volt rms, $\mathbf{1} \mathbf{~ k H z}$ signal to both $A$ and $B$ inputs.
2.3 Reference a dB meter to the left or right output, and perform the tests listed in the 102 System Controller Frequency Response table below.

102 System Controller Frequency Response

| Frequency <br> $(\mathbf{H z})$ | Bass <br> Switch | Response <br> $(\mathrm{dB})$ |
| :--- | :--- | :--- |
| 1,000 | Normal | 0 Reference |
| 40 | Normal | $0 \pm 4 \mathrm{~dB}$ |
| 80 | Normal | $+14+/-2 \mathrm{~dB}$ |
| 100 | Normal | $+12+/-2 \mathrm{~dB}$ |
| 100 | Decrease | $+7.5+/-2 \mathrm{~dB}$ |
| 200 | Normal | $+6+/-2 \mathrm{~dB}$ |
| 4,000 | Normal | $+7.5+/-2 \mathrm{~dB}$ |
| 13,000 | Normal | $+16+/-2 \mathrm{~dB}$ |
| 20,000 | Normal | $+6+/-4 \mathrm{~dB}$ |

## 3. Channel Separation Test

3.1 Apply a 5 Volt rms, $1 \mathbf{k H z}$ signal to the channel $A$ and $B$ inputs.
3.2 Reference a dB meter to the channel A output.
3.3 Remove the applied signal from channel A.
3.4 The output should be $>50 \mathrm{~dB}$ down at channel A.
3.5 Sweep the signal generator from 80 Hz to 13 kHz at 1 Volt rms.
3.6 The output should be > 50 dB down at channel A.
3.7 Return the signal to channel A.
3.8 Repeat steps 3.2 thru 3.7 for channel B.

## 4. Maximum Output Test

4.1 Apply an 8 Volt rms, $1 \mathbf{k H z}$ signal to the channel $A$ and $B$ inputs.
4.2 The output should be 8 Volts rms for both channels. ( $0 \mathrm{~dB} \pm 2 \mathrm{~dB}$ )

## 5. Distortion Test

5.1 Apply a 1 Volt rms, $1 \mathbf{k H z}$ signal to the channel $A$ and $B$ inputs.
5.2 The distortion should be < . $1 \%$ at both the channel A and B outputs.
5.3 Reduce the input signal to . 5 Volt rms and sweep the generator from $\mathbf{8 0 ~ H z}$ to $12 \mathbf{k H z}$, measuring the distortion at various frequencies.
5.3 The distortion should be < . 1 \% at both the channel A and B outputs.

## 6. Mute Test

6.1 Set the Voice Input Switch to the MIC position.
6.2 Apply a 1 Volt rms, 1 kHz signal to the channel $A$ and $B$ inputs.
6.3 Reference a dB meter to the channel A or B output.
6.4 Take another signal line from the generator, or any other line level output signal, and quickly add and remove the signal to the positive (+) input terminal of the voice channel.
6.5 Both music channels should drop $30 \mathrm{~dB} \pm 3 \mathrm{~dB}$.

Note: The mute release time is 2 seconds. It may be necessary to repeat procedure
6.4 several times to check the mute specification on both channels.
6.6 Move the mute switch on channel B to the OFF position.
6.7 Repeat step 6.4.
6.8 Channel A should drop $30 \mathrm{~dB} \pm 3 \mathrm{~dB}$.

Channel B should not be affected.
6.9 Return the channel B mute switch to the ON position.

## 7. Voice Channel Test

Note: The voice channel input must be loaded with a 600 ohm input impedance in order to get the correct output levels.
7.1 Apply a $\mathbf{2 0 ~ m V ~ r m s , ~} \mathbf{1} \mathbf{~ k H z}$ signal to the voice channel input.
7.2 The output should be 20 mV rms, ( $0 \mathrm{~dB} \pm \mathbf{2 d B}$ ). Reference a dB meter to the channel A or B output and proceed.
7.3 Move the voice switch to the MIC position.
7.4 The output should be $\mathbf{6 0 0} \mathbf{~ m V ~ r m s , ~}$ (+30dB $\pm 2 \mathrm{~dB}$ ).
7.5 Return the Voice Switch to the LINE position.
7.6 The output should be 20 mV rms , ( $0 \mathrm{~dB} \pm 2 \mathrm{~dB}$ ).
7.7 Turn the Opti-Voice ${ }^{\circledR}$ level fully clockwise. The output should be 600 mV rms, (+ $30 \mathrm{~dB} \pm 2 \mathrm{~dB}$ ).
7.8 Turn the Opti-Voice level control fully counterclockwise. The output should be 20 mV rms, ( $0 \mathrm{~dB} \pm 2 \mathrm{~dB}$ ).

## 8. Voice Channel Response Test

8.1 Apply a $\mathbf{3 0 0} \mathbf{~ m V ~ r m s , ~} \mathbf{1 k H z}$ to the voice channel input. Reference a dB meter to the channel $A$ and $B$ output.
8.2 Perform the tests listed in the 102 System Controller Voice Channel Response table below.

102 System Controller Voice Channel Response

| Frequency (Hz) | Response (dB) |
| :--- | :--- |
| 1000 | 0 Reference |
| 80 | $-10+/-3 \mathrm{~dB}$ |
| 200 | $+0.5+/-2 \mathrm{~dB}$ |
| 8000 | $+3+/-2 \mathrm{~dB}$ |
| 20,000 | $-5+/-2 \mathrm{~dB}$ |

## 9. Automatic Gain Control Test

9.1 Apply a 2 Volt rms, $\mathbf{1} \mathbf{~ k H z}$ signal to the voice channel input.
9.2 The output level should be 900 mV rms, $\pm 100 \mathrm{mV}$.

## 10. Voice Channel Distortion Test

10.1 Apply a 1 Volt rms, 1 kHz signal to the voice channel input.
10.2 Measure the distortion at both the channel $A$ and $B$ outputs. It should be less than . 1 \%.

## $102{ }^{\circledR}$ LOUDSPEAKER DRIVER WIRING



Figure 8. 102 Loudspeaker Schematic Diagram (Passive Units)


Figure 9. 102 Loudspeaker Schematic Diagram (Transformer Units)


Figure 10. Tap Selection Switch Wiring
Tap Selection Switch Wiring

| TERMINAL | COLOR | FROM |
| :---: | :---: | :---: |
| A | Red | Positive <br> terminal <br> of driver |
| 5 | Red | Transformer |
| 4 | Yellow | Transformer |
| 3 | Green | Transformer |
| 2 | Blue | Transformer |
| 1 | n/a | Not used <br> (off position) | (Transformer Units)

$102{ }^{\circledR}$ Flush-Mount Loudspeaker Parts Lists (per figures 11a and 11b)

| Item <br> Number | Description | *Part <br> Number for <br> Product <br> Code <br> o00889 and <br> $\mathbf{0 0 0 8 8 7}$ | *RoHS Part <br> Number for <br> Product Code <br> 040134 and <br> $\mathbf{0 4 0 1 3 5}$ | Qty | Note |
| :---: | :--- | :---: | :---: | :---: | :---: |
| 1 | TRANSFORMER, AUDIO, 70V, 25W <br> TRANSFORMER, AUDIO, 100V, 25W <br> TRANSFORMER, POWER, 25V, 25W <br> TRANSFORMER, POWER, 100V, 8W | 130147 <br> 130146 <br> 130237 <br> 125827 | $291499-001$ <br> $291498-001$ <br> N/A <br> N/A | 1 | 1 |
| 2 | SWITCH, ROTARY, SINGLE POLE, 6 | 130196 | 130196 | 1 | 1 |
| 3 | POSITION |  |  |  |  |

*Product code 040134 (102F 75V 25 WATT) and 040135 (102F 100V 25 WATT) are a RoHS compliant version of the 102F. Only RoHS compliant parts listed in the above chart can be used in the 102F with product code 040134 (102F 100V 25 WATT) and 040135 (102F 70V 25 WATT). Both part numbers listed above can be used in the 102F product code 000887 and 000889 .

Notes: 1. This component is not used in all versions of the 102 F Loudspeaker.
2. Hardware quantities vary according to variation.

## 102 Flush-Mount Loudspeaker Installation Hardware

| Description | *Part Number for <br> Product Code <br> $\mathbf{0 0 0 8 8 9}$ and <br> $\mathbf{0 0 0 8 8 7}$ | *RoHS Part <br> Number for <br> Product Code <br> $\mathbf{0 4 0 1 3 4}$ and <br> $\mathbf{0 4 0 1 3 5}$ | Qty |
| :--- | :---: | :---: | :---: |
| INSTALLATION HARDWARE KIT, QUAD SPEAKER | 129036 | $294289-001$ | 1 |
| INSTALLATION HARDWARE KIT, SINGLE SPEAKER | 125993 | N/A | 1 |
| WB-16 WALL BRACKET KIT | 125871 | N/A | 20 PACK |



Figure 11a. $102^{\circledR}$ Flush-Mount Non-RoHS Loudspeaker Exploded View


Figure 11b. 102 Flush-Mount RoHS Loudspeaker Exploded View
$102{ }^{\circledR}$ Surface-Mount Loudspeaker Parts Lists (per figure 12)

| Item <br> Number | Description | Part Number | Qty | Note |
| :---: | :--- | :---: | :---: | :---: |
| 1 | SWITCH, ROTARY, SINGLE POLE, 6 POSITION | 130196 | 1 | 1 |
| 2 | TRANSFORMER, AUDIO, 70V, 25W | 130147 | 1 | 1 |
|  | TRANSFORMER, AUDIO, 100V, 25W | 130146 |  |  |
|  | TRANSFORMER, POWER, 25V, 25W |  |  |  |
| TRANSFORMER, POWER, 100V, 8W | 130237 |  |  |  |
| 3 | INDUCTOR, 1.5mH | 125827 | 134705 |  |
| 4 | RESISTOR, WIRE WOUND, 5W, 10\%, 9.1 OHM | $125605-9 R 1$ |  |  |
| 5 | CAP, ELECTROLYTIC, BP, 85, 50V, 10\%, 5.0 uF | 125780 | 1 | 1 |
| 6 | SCREW, TAPP, 8-11 X.75, PAN, XRC/SQ | $172672-12$ | 9 | 1 |
| 7 | DRIVER ASSY, 4.5", FIP, (8 OHM UNITS) | $124612-5$ | 1 | 1 |
| 8 | DRIVER ASSY, 4.5", (4 OHM \& TRANSFORMER UNITS) | $123561-5 D$ |  |  |
| 9 | GASKET, DRIVER, 4.5" | 128407 | 1 |  |
| 10 | NUT, PUSH ON, .24 X. 75 | 125786 | 2 |  |
| 11 | NAMEPLATE, LOGO | $123981-1 \mathrm{A1}$ | 1 |  |
| 12 | GRILLE, 101 MM/102S, AL., BLACK | 129769 | 1 |  |
| 13 | INSERT, NUT, MM/102S, AL., WHITE | 129770 | 123991 | 2 |
| 14 | GONNECTOR, BARRIER, 2 POS. | $124484-02$ | 1 |  |
| 15 | GASKET, 102 | 128410 | 1 |  |
| - | CONSERT, EXT/INT THREAD | 124755 | 2 |  |
| - | CONNECTOR, PHONE JACK, 2 POS, FEMALE | 134677 | 1 |  |

Notes: 1. This component is not used in all versions of the 102 F Loudspeaker.
2. Hardware quantities vary according to variantion.

102 Surface-Mount Loudspeaker Installation Hardware

| Description | Part Number | Qty |
| :--- | :---: | :---: |
| INSTALLATION HARDWARE KIT, QUAD SPEAKER | 129036 | 1 |
| INSTALLATION HARDWARE KIT, SINGLE SPEAKER | 125993 | 1 |
| WB-16 WALL BRACKET KIT | 125871 | 20 PACK |



Figure 12. $102^{\circledR}$ Surface-Mount Loudspeaker Exploded View

(Side View)


Figure 13. $102{ }^{\text {® }}$ Surface-Mount Loudspeaker

## Semiconductors

| Reference Designator | Description | Part Number | See Note |
| :---: | :---: | :---: | :---: |
| DE01, DE02, DE03, DE51, DE52, DE53, DE54, DG01, DG02, DG03, DG04, DG32, DG35, DG61, DG62 | Diode, ISS133 | 127376 |  |
| D801, D802, D804, D805 | Zener, RD16EB1 | 127378 |  |
| DG34 | LED, SLP5400, WHT | 127382 |  |
| DG63 | LED, SEL 111OR, RD | 127380 |  |
| D803 | $\begin{aligned} & \text { LED, SEL } 13103 \text {, } \\ & \text { GRN } \end{aligned}$ | 127381 |  |
| D806 | Diode, SLVB20 | 127377 | 1 |
| $\begin{aligned} & \text { QE01, QE02, QE03, QE51, QE52, } \\ & \text { QG01, QG02, QG05 } \end{aligned}$ | OP-AMP, 2043DD | 127375 |  |
| QG03 | I.C., CA3080E | 127374 |  |
| QG04 | OP-AMP, 4558 | 127373 |  |
| QG31, QG33, QG34 | Transistor, 2SC945 | 127385 |  |
| QG32, QG61, QG62 | Transistor, 2SA733 | 127383 |  |
| QG36, QG37 | FET, 2SK30 | 127379 |  |
| Q802 | Transistor, 2SD313 | 127386 |  |
| Q803 | Transistor, 2SB507 | 127384 |  |

## Capacitors

| Reference Designator | Description | Part Number | See <br> Note |
| :--- | :--- | :---: | :---: |
| CE03, CE11, CE53, CE61, CG04 | Ceramic, 330 pf | 129314 |  |
| CE04, CE14, CE54, CE64, CG08 | Ceramic, 33 pf | 129315 |  |
| CE16, CE17, CE66, CE67, CJ01, <br> CJ02, CJ03, CG17 | Ceramic, .01 uf | 129316 |  |
| C808, C809 ! | Ceramic, .01 uf | 129316 | 1 |
| CE18, CE68 | Ceramic, 1000 pf | 130253 |  |
| CG03, E68 | Ceramic, 3300 pf | 129317 |  |
| CG05 | Ceramic, 220 pf | 129318 |  |
| CG06 | Ceramic, 22 pf | 129319 |  |
| CG18 | Ceramic, $10,000 \mathrm{pf}$ | 129320 |  |
| CE05, CE06, CE55, CE56 | Film, .0056 uf, 5\% | 129321 |  |
| CE07, CE57 | Film,.047, uf, 5\% | 129322 |  |

## Note:

1. $\dagger$ This part is critical for safety purposes. Failure to use a substitute replacement with the same characteristics as the recommended replacement part might create shock, fire, and/or other hazards.

Capacitors (cont.)

| Reference Designator | Description | Part Number | See <br> Note |
| :--- | :--- | :---: | :---: |
| CG09, CG10, CG11, CE08, CE09, <br> CE58, CE59 | Film, .1 uf, 5\% | 129323 |  |
| CE10, CE60 | Film, .0068 uf, 5\% | 129324 |  |
| CE12, CE62 | Film, .27 uf, 5\% | 129325 |  |
| CG12 | Film, .0022 uf, 5\% | 129326 |  |
| CG13 | Film, .0033 uf, 5\% | 129327 |  |
| CG14 | Film, .0027 uf, 5\% | 129328 |  |
| CE01, CE02, CE15, CE51, <br> CE52, CE65 | Electrolytic, 10 uf, <br> CG0V | 129329 |  |
| CG15, CG16, CG31, CG61 | Elec., 4.7 uf, 50V | 129330 |  |
| CG01, CG02 | Elec., 22 uf, 50V | 129331 |  |
| CG07 | Elec., 22 uf, 25V | 129332 |  |
| CG33 | Elec., 220 uf, 16V | 129333 |  |
| CG35 | Elec., 33 uf, 16V, BP | 129334 |  |
| CG62 | Elec., .22 uf, 50V | 129335 |  |
| C801 1 | Elec., 470 uf, 35V | 130252 | 1 |
| C802 1 | Elec., 220 uf, 35V | 129336 | 1 |
| C803, C804 | Elec., 330 uf, 16V | 129337 |  |
| C805, C806 | Elec., 100 uf, 16V | 129338 |  |
| C807 | Elec., 470 uf, 10V | 130251 |  |

## Resistors

| Reference Designator | Description | Part Number | See <br> Note |
| :--- | :--- | :---: | :---: |
| RE01, RE02, RE51, RE52 | $1 \mathrm{k} \mathrm{ohm}, 1 / 2 \mathrm{~W}, 1 \%$ | 127368 |  |
| RE03, RE05, RE53, RE55 | 1 k ohm, $1 / 4 \mathrm{~W}, 1 \%$ | 127370 |  |
| RE04, RE56, RE06, RG01, RE54, <br> RG06 | 9.09 ohm, $1 / 4 \mathrm{~W}, 1 \%$ | 127372 |  |
| RE07, RE14, RE64, RG12, RG39, <br> RG66 | $22 \mathrm{k} \mathrm{ohm}, \mathrm{1/8W} ,\mathrm{5} \mathrm{\%}$ | 129340 |  |
| RE08, RE09, RE15, RE57, RE58, <br> RE59, RE63, RG13, RG15, RG17 | $10 \mathrm{k} \mathrm{ohm}, \mathrm{1/8W} ,\mathrm{5} \mathrm{\%}$ | 129341 |  |
| RE10, RE11, RE12, RE15, RE21, <br> RE23, RE60, RE61, RE62 | $4.7 \mathrm{k} \mathrm{ohm}, \mathrm{1/8W} ,\mathrm{5} \mathrm{\%}$ | 129342 |  |

Note:

1. $\dagger$ This part is critical for safety purposes. Failure to use a substitute replacement with the same characteristics as the recommended replacement part might create shock, fire, and/or other hazards.

Resistors (cont.)

| Reference Designator | Description | Part Number | See Note |
| :---: | :---: | :---: | :---: |
| RE16, RE66 | 82k ohm, 1/8W, 5\% | 129343 |  |
| RE17, RE18, RE67, RE68 | 8.2k ohm, 1/8W, 5\% | 129344 |  |
| $\begin{aligned} & \text { RE19, RE20, RE69, RE70, RE64, } \\ & \text { RG69. RG73. R807 } \end{aligned}$ | 2.2k ohm, 1/8W, 5\% | 129345 |  |
| RE22, RE72, RG07, RG08, RG10 | 1.5k ohm, 1/8W, 5\% | 129346 |  |
| RE25, RE75, RG16, RG42, RG47 | 100k ohm, 1/8W, 5\% | 129347 |  |
| RE26, RE76, R805, R806 | 470 ohm, 1/8W, 5\% | 129348 |  |
| RE27, RE77 | 330 ohm, 1/8W, 5\% | 129349 |  |
| $\begin{aligned} & \text { RE28, RE29, RE78, RE79, RG27, } \\ & \text { RG28 } \end{aligned}$ | 330k ohm, 1/6W | 129350 |  |
| RG01, RG02 | 301 ohm, 1/2W, 1\% | 127369 |  |
| RG03, RG05 | 301 ohm, 1/4W, 1\% | 127371 |  |
| RG11, RG61 | 15k ohm, 1/8W, 5\% | 129351 |  |
| RG14 | 220 ohm, 1/8W, 5\% | 129352 |  |
| RG19, RG71 | 6.8 ohm, 1/8W, 5\% | 129353 |  |
| RG22 | 3.9k ohm, 1/8W, 5\% | 124354 |  |
| RG23, RG24, RG25, RG26, RG33, RG38, RG49, RG51, RG74 | 3.3k ohm, 1/8W, 5\% | 129355 |  |
| RG31, RG70 | 150k ohm, 1/8W, 5\% | 129356 |  |
| RG34 | 330k ohm, 1/8W, 5\% | 129357 |  |
| RG37, RG40, RG72, R803, R804 | 1k ohm, 1/8W, 5\% | 129358 |  |
| RG45, RG48 | 680 ohm, 1/8W, 5\% | 129359 |  |
| RG46 | 100 ohm, 1/8W, 5\% | 129360 |  |
| RG62 | 33k ohm, 1/8W, 5\% | 129361 |  |
| RG67, RG68 | 1M ohm, 1/8W, 5\% | 129362 |  |
| RG75, RG76 | 10 ohm, 1/16W | 130254 |  |
| R801, R802 | $\begin{aligned} & 39 \text { ohm, } 1 / 4 \mathrm{~W} \text {, } \\ & \text { Fusible } \end{aligned}$ | 127387 | 1 |
| R810 | 150 ohm, 1/2W, Metal | 127388 | 1 |
| RG09 | 50k, Var Res., Voice, Gain | 127389 |  |

## Note:

1. ! This part is critical for safety purposes. Failure to use a substitute replacement with the same characteristics as the recommended replacement part might create shock, fire, and/or other hazards.

Miscellaneous

|  | Description | Part Number | $\begin{aligned} & \hline \text { See } \\ & \text { Note } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| T001 | Transformer-115 Volt | 127392 | 1 |
| W001 | Power Cord - 115 Volt | 127395 | 1 |
|  | 220 Volt | 127394 |  |
|  | PCB Assembly | 127364 | 2 |
|  | Chassis - 110 Volt | 127411 |  |
|  | 220/240 Volt | 127412 |  |
|  | Cover, Top | 127410 |  |
|  | Front Panel Assembly | 127367 |  |
|  | Knob | 127421 |  |
| JE01, JE51, JG01 | Jack, 3-pin | 127397 |  |
| JE01, JE51 | Jumper Cable, 3-pin | 127401 |  |
| JE02 | Jack, 4-Pin | 127398 |  |
| JE02 | Jumper Cable, 4-pin | 127403 |  |
| WE03 | Jumper Cable, 3-pin | 127402 |  |
| SE01, SE51, SG01, SG32 | Slide Switch, Gain, Sel. | 127391 |  |
| SG31 | Push Switch, Bass | 127390 |  |
|  | Input Terminal, 4-Pole | 127399 |  |
|  | Output Teminal, 9-Pole | 127400 |  |
|  | Lug, Grounding | 127429 |  |
|  | Nut, Hexagon, Gnd. | 127428 |  |
|  | Screw - Cover, Front |  |  |
|  | Panel, Transformer | 127425 |  |
|  | Screw - Grounding | 127427 |  |
|  | Screw - PCB Hold Down | 127422 |  |
|  | Screw - Rear Terminals | 127426 |  |
|  | Screw - Accessory Kit | 127423 |  |
|  | Screw - Accessory Kit | 127324 |  |

## 102 System Controller Packing List

| Description | Part Number |
| :--- | :---: |
| Carton | 127415 |
| Filler | 127416 |
| Owner's Guide | 125966 |
| Registration Card | 125967 |

## Note:

1. This part is critical for safety purposes. Failure to use a substitute replacement with the same characteristics as the recommended replacement part might create shock, fire, and/or other hazards.
2. This part is not normally available from Customer Service. Approval from the Field Service Manager is required before ordering.
$102{ }^{\circledR}$ Flush-Mount Loudspeaker Packing List

| Item Number | Description | Part <br> Number | Quantity |
| :---: | :--- | :---: | :---: |
| 1 | SHEET, DECLARATION OF <br> CONFORMITY, 102 F | 184846 | 1 |
| 2 | MANUAL, OWWER'S, 102F, | 130291 | 1 |
|  | TRANSFORMER VERSIONS |  |  |
|  | PASSIVE VERSIONS | 134672 | 1 |
| 3 | GUIDE, OWNER'S, ADDENDUM, | 143369 | 1 |
| 4 | 102F |  | $129059-01$ |
| 5 | PAD, PACKING, 102 | 138393 | 1 |
| 6 | CARTON, PACKING, 102 | 126784 | 1 |
| - | PACKING, INSERT, 102 | 100278 | 1 |
| - | BAG, POLY, 9.38 X6 X 2 MIL | 175175 | 2 |



Figure 14. 102 Flush-Mount Packing Diagram

| Item Number | Description | Part Number | Quantity |
| :---: | :--- | :---: | :---: |
| 1 | CARTON, RSC, 102 S | 138389 | 1 |
| 2 | PACKING, END CAP | 124921 | 2 |
| 3 | MANUAL, OWNER'S, 102S, |  |  |
|  | TRANSFORMER VERSIONS | 130292 | 1 |
|  | PASSIVE VERSIONS | 134683 | 1 |
| 4 | BROCHURE, ALL PRODUCTS | 141478 | 1 |
| - | BAG, POLY, 10X13X6X2 MIL | 123831 | 2 |



Figure 15. 102 Surface-Mount Packing Diagram

## SERVICE MANUAL REVISION HISTORY

| Date | Revision <br> Level | Description of Change | Change Driven By | Pages <br> Affected |
| :---: | :---: | :--- | :---: | :---: |
|  | 00 | Document release revision 00 | Service Manual <br> release | All |
|  | 01 | Unknown |  |  |
| $11 / 96$ | 02 | Unknown | Added RoHS part numbers | This product is now <br> built with RoHS <br> compliant parts. |
| $02 / 06$ | 03 | $1,17,19,28,2$ <br> 9 |  |  |
| $6 / 09$ | 04 | Updated RoHS drawing for the <br> 102F loudspeaker | Update | 18 |

## SPECIFICATIONS AND FEATURES SUBJECT TO CHANGE WITHOUT NOTICE

Bose Corporation
The Mountain
Framingham Massachusetts USA 01701
P/N: 130105 Rev 04 6/2009
http://serviceops.bose.com

