CARVER P R O F E S S I O N A L

PM-1200

(INCLUDING PM-1.5a)

MAGNETIC FIELD POWER AMPLIFIER SERVICE MANUAL

CONTENTS Page

1. SAFETY INFORMATION 3
2. INTRODUCTION 4
3. SPECIFICATIONS 5
4. CIRCUIT DESCRIPTIONS 6
5. CALIBRATION PROCEDURE 9
6. BLOCK DIAGRAM 10
7. SCHEMATICS AND LAYOUTS 11
8. PARTS ORDERING 28
9. PARTS LIST 29
10. VOLTAGE CONVERSION 41
11. SERVICE BULLETINS 43

SECTION 1

SAFETY INFORMATION

WARNING.

Any person performing the procedures described in this manual will be exposed to hazardous voltages and the risk of electric shock.
Carver Corporation assumes that any person who removes the cover from the unit has been properly trained in protecting against avoidable injury and shock.
Therefore, the procedures described here are to be performed by qualified electronics service personnel only.

We recommend that the unit be tested only when line isolation is provided by an isolation transformer. The line cord of the unit must be disconnected and the power supply fully discharged before any components are replaced. Failure to do so may result in severe damage to the unit and the risk of electric shock.
The safety tests described below must be performed properly.

CAUTION:

Before returning the unit to the customer, one of the following safety tests must be performed.

1. Check the leakage current. Connect the unit to 120 VAC supply and turn the power switch "ON". Using an ammeter, measure the current between the neutral side of the AC supply and chassis ground of the unit under test. If leakage current exceeds 0.5 mA , the unit is defective.
Reverse the polarity of the AC supply and repeat.
2. Measure the resistance from either side of the linecord to chassis ground. If it is less than 500 k ohms, the unit is defective.

WARNING - DO NOT return the unit to the customer if it fails one of these tests until the problem is located and corrected.

CAUTION

The lightning flash with arrowhead symbol within an equilateral triangle is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclosure, that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user of the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

SECTION 2
 INTRODUCTION

This manual is intended for use by qualified, authorized personnel only.
Due to the unique and complex circuit designs of Carver Corporation, the following procedure is recommended to diagnose \& repair problems with speed and accuracy.
The best way to figure out what is wrong is to leam what is working properly first. Then, through the proces of elimination, the defective area can be located. Upon locating the defective area, you then would use you own preferred troubleshooting skills.

The removal of parts for testing, should be kept to an absolute minimum. "In circuit" analysis should provide you with enough data to determine correct operation.
At Carver Corporation we continually strive for the most reliable, cost-efficient product available.
When updates and service bulletins are sent to you, please take the time to review them and insert them int/ the correct service manuals.

The Carver PM-1.5a Magnetic Field Power Amplifier was released in March of 1989. It was an updated version of the PM-1.5 power amplifier which had been in production for six years. The PM-1.5a included th more power output transistors per channel and two fans instead of just one.
In 1990, the Professional line of power amplifiers was renamed to indicate the total power output into 4 ohr Thus, in March of 1990 the PM-1.5a became the PM-1200.
The PM-1200 is a stereo power amplifier rated at 450 W per channel into 8 ohms and 600 W per channel intc 4 ohms. In bridged-mono mode of operation it will deliver 1200 W into 8 ohms.

SECTION 3

SPECIFICATIONS

Specifications for the PM-1200 (PM-1.5a) Magnetic Field Power Amplifier

Power Output:
Continuous Average Output Power, both channels driven:
450 watts per channel into 8 ohms from 20 Hz to 20 kHz , with no more than 0.5% THD
600 watts per channel into 4 ohms from 20 Hz to 20 kHz , with no more than 0.5% THD
Bridged-mono operation:
1200 watts into 8 ohms from 20 Hz to 20 kHz , with no more than 0.5% THD
Power at Clipping, both channels driven:
500 watts per channel into 8 ohms at 1 kHz

Dynamic Headroom:
Frequency Response:
Crosstalk:
Damping Factor:
Input Impedance:
Input Overload:
Sensitivity:
Gain:
IM Distortion:
THD:
Noise:

Slew Rate:
Power Consumption:
Power Requirements:
Display:
Size (H x W x D):
Weight:
1.6 dB @ 8 ohms
2.0dB @ 4 ohms

20 Hz to $20 \mathrm{kHz}(+0,-0.5 \mathrm{~dB})$
$-50 \mathrm{~dB}, 100 \mathrm{~Hz}-10 \mathrm{kHz}$
Greater than 200 at 1 kHz
15k ohms unbalanced; 30k ohms balanced
$+15 \mathrm{dBu}$
1.5 V ms for rated power into 8 ohms at 1 kHz 71 mV ms for 1 W output into 8 ohms at 1 kHz
32 dB
Less than 0.1\%
Less than 0.5\%
-110 dB A-weighted, referenced to rated power (nominal) -107dB A-weighted, referenced to rated power (limit)
-83dBW A-weighted, referenced to 1W (nominal)
-80dBW A-weighted, referenced to 1W (limit)
$25 \mathrm{~V} / \mu \mathrm{S}$
1500W at full power
120W at idle
$120 \mathrm{VAC} / 60 \mathrm{~Hz}$ (USA and Canada) $230 \mathrm{VAC} / 50 \mathrm{~Hz}$ (Europe)
LED Ladder; 7 indicators per channel 1 mS attack time; 500 mS decay time
$3.5^{\prime \prime} \times 19^{\prime \prime} \times 10.75^{\prime \prime}$ (12" overall) $89 \mathrm{~mm} \times 483 \mathrm{~mm} \times 273 \mathrm{~mm}$ (305 mm overall)
21 lbs .
9.5 kg

Test Note: Accurate measurement depends on a sufficiently "stiff' AC supply. The 60 Hz AC line distortion must be below IHF specifications.

SECTION 4

CIRCUIT DESCRIPTION PM-1200/1.5a

TECHNICAL DESCRIPTION

This section discusses the theory of operation of the PM-1200. All descriptions apply to the electrically identical PM-1.5a as well. For a better understanding of the circuitry involved, refer to the block diagram and schematic diagrams presented later in this manual. Op-amps described in the circuitry use the following notation: IC1(7) means IC1, whose output appears on pin 7 . Unless - otherwise noted, this discussion centers around the left-channel circuitry. The right-channel circuitry is essentially identical.

LOW LEVEL CIRCUITRY

Input signals enter the circuit via the rear-panel XLR connector, or tip-ring-sleeve (TRS) phone jack. The left channel input circuit includes a phasereverse switch that is used for mono-bridge operation. IC1(7) is configured as a differential amplifier with a gain of 1.47 driving the rightchannel level control. On the amplifier board R1, R 2 , and U 2 form an attenuator whose loss is dependent on the resistance of U2, an LED-LDR module. The drive for the LED portion of U2 comes from the clipping eliminator circuitry, which will be discussed later on.
The PM-1200 may be configured to operate as a conventional 2-channel, stereo amplifier or a single-channel, mono amplifier with high-voltage output. The operational mode is determined by mono-bridge switch SW1. For now, assume that SW1 is set for 2-channel, dual-mode (stereo) operation.

POWER AMPLIFIER CIRCUITRY

The PM-1200 uses the patented Carver Magnetic Field power amplifier circuitry. This innovative circuit uses the combination of a smart power supply and a highly linear, triple-rail power amplifier circuit.

IC1(6) is the input stage, providing differential inputs for input and feedback connections as well as most of the open-loop voltage gain of the circuit. The output of IC1(6) drives Q14 and Q15, operating as common-emitter amplifiers which level-shift the drive signal, provide voltage amplification, and couple it to common-emitter amplifiers Q13 and Q20. Q13 and Q20 provide additional voltage gain, and when combined with the voltage gain of the input op-amp is sufficient to swing the input signal between the $+/-124 \mathrm{~V}$ power supply rails. Q16 and Q17 are connected as an NPN-PNP conjugate pair and used as a V VE multiplier for bias control. Q16 is thermally connected to the output transistors and together with Q17 provides bias stabilization over a wide temperature range. Overall negative feedback from the output stage via R59 and R3 sets the closed-loop gain at 32 dB .
Up to now, the amplifier circuitry has been fairly conventional. From this point on, there is a marked departure from convention. The PM-1200 uses a triple-stacked output stage, with each stage having access to its own power supply. Each level of the output stage turns on only when needed, which keeps the power dissipation of the output stage at a minimum.
Ignore the negative-going portion of the output stage for now. The positive-going portion of the output stage is comprised of an emitter-follower driver (Q8) and a series-connected output stage (Q7, Q6/Q24). The negative-going portion of the output stage is exactly complementary to the positive-going portion; an emitter-follower PNP driver (Q3) and a series-connected output stage (Q4, Q5/Q25).
The innermost pair, that is, the output transistor pair whose emitters are closest to the output (load) terminals (Q6/Q24, Q5/Q25) are driven from the opposite sides of the $V_{\text {be }}$ multiplier (Q16/Q17). The circuit looks suspiciously like a full-complementary amplifier. It is exactly that. Diodes D15-D17 and

D31 level-shift the drive signal to the requirements of the innermost output transistors while Q23 is a local $V_{B E}$ multiplier to limit the maximum voltage difference between the output transistor bases.
Q18 operates as a VI limiter, sensing the voltage drop across emitter resistor R49, and reducing the drive signal to the output stage under overload conditions. Q19 operates in similar fashion for the negative-portion of the output stage. Q26 senses current limiting in the negative half of the output stage and passes this signal to the power supply as a shutdown signal. C30 causes Q26 to also tum on in the presence of large high-frequency signals.
Q7, the middle output transistor receives its drive via D14. When the drive signal exceeds 36 V plus two diode drops, Q7 begins to turn on and supplies additional voltage output capability via the intermediate 76 V power supply. When this occurs, D13 disconnects the 36 V supply from the amplifier. The same is true for the negative half of the amplifier (Q4, D25, D24). We now have an amplifier capable of swinging the load from approximately +76 V to 76 V (minus saturation drops, of course).
Now consider the outermost pairs of output transistors (Q9/Q10 and Q1/Q2). These transistors are driven (via Q12/Q11 and Q21/Q22) from the positive and negative sides of the $V_{B E}$ multiplier (Q16/Q17) via zener diodes D34 and D35, which level shift the output signal by the zener voltage towards the 124 V power supply rail. As long as the peak $A C$ output voltage remains below the zener voltage, Q12 and Q21 do not conduct. Once the AC output signal exceeds the zener voltage, the outermost output transistors begin to conduct. Diodes D12 and D23 are commutator diodes that disconnect the output stage from the 76 V power supply whenever the voltage at the connection point between Q10 and Q7 exceeds 76V. Under high-frequency conditions, C10 and C20 provide phase lead for the outermost output transistors, ensuring that they can "stay ahead" of the audio signal.
Under small-signal conditions, the innermost pair of transistors does all the work. As the signal level grows larger and larger, the middle pair of transistors assumes part of the burden. At the highest signal levels, the outermost pair of transistors assumes the remainder of the burden of providing a high-voltage output signal to the load. This three-stage approach minimizes the voltage across each of the output devices which also minimizes the power dissipation required. Without this
approach, the output transistors would be required to support the entire power supply voltage under small-signal conditions and the "unused" portion of the power supply voltage would be turmed into heat.

ANTI CLIIPPING CIRCUIT

The amplifier's input operational amplifier, IC1(6) also drives a bridge rectifier (D1 through D4). The output of the rectifier drives the LED portion of U2. IC1(6) is inside of the overall feedback loop, thus the signal voltage at this point is quite low, unless the feedback loop loses control (such as at clipping). Under these conditions, the output of the bridge rectifier is sufficient to illuminate the LED in U2, which reduces the resistance of the resistor portion of U2 which reduces the drive signal to the amplifier. The net result is a moderately fast limiter that is activated by amplifier clipping.

MAGNETIC FIELD POWER SUPPLY

The main power supply for the PM-1200 is a triplevoltage design which provides no-load voltages of $+/-124,76$ and 36 volts DC. Triac TR1 drives the primary of the magnetic field power transformer. TR1 operates as a phase controlled switch; its gate signal depends on the signal supplied to optoisolator U 2 , which isolates the drive circuitry from the AC power line. Diode bridge D1 through D4 provide steering for the phototransistor in U2, allowing the triac to fire on both altemations of the power line. The phototransistor, resistors R4, R3 and R2, capacitors C3 and C2, and diac D5 make up a phase-shiff firing circuit that fires the triac earlier or later in the AC cycle depending on the phototransistor's conduction. When the LED in U2 is OFF, the triac conducts earliest in the AC cycle: the power supply is operating at maximum output. Emitter-followers Q5 and Q6 drive the LED portion of opto-isolator U2. Their base drive is derived from the $+/-124 \mathrm{~V}$ supplies and the $+/-36 \mathrm{~V}$ supplies. RP1 sets the LED current, which in tum sets the no-load (idle) voltage of the power supplies. Under signal conditions, the 125 V and 36 V supplies will rise and fall as determined by signal / load demands. This changes the LED current, which in turn tells the triac what to do (more LED current, less triac current). This effectively keeps the various supplies at or near their no-load values.

Q2 and Q3 operate as a differential amplifier whose input is the logical OR of the various fault-detection systems. Q4 inverts the output of the diff-amp, and references it to the 76 V supply. If Q2 is turned on, Q4 pulls additional LED current through the opto-isolator LED and shuts the power supply down.

DC FAULT PROTECTION

IC1(1) is a differential amplifier whose inputs are the amplifier outputs, severely low-pass filtered. The low-pass filtering prevents the circuit from operating on anything but DC output from the amplifier channels. The gains of the two inputs are different to ensure circuit operation if opposite halves of the amplifier decide to fail at the same time. If IC1(1) is negative-going, D5, R53, and D6 couple the signal to Q3's base, which results in Q4 turning on (via Q3). If IC1(1) is positive-going, D4 couples this signal to Q2's base, again tuming on Q4, which disables the power supply.

SHORT CIRCUIT/LOW IMPEDANCE PROTECTION

Q1's input is the output of each channel's protection sense transistors (Q26). If the protection transistors are triggered (low impedance load, output terminals shorted, high-frequency overload, etc.), Q1's collector goes positive. C2 provides a small time lag to allow momentary overloads to pass. When Q1 is triggered, its output drives Q2, which again disables the power supply via Q4.

OVERVOLTAGE PROTECTION

IC1(12) is connected as a comparator. Its inputs are: +5.8 Vdc , derived from the +11.5 V regulator, and +5.2 Vdc which is derived from the +124 V supply via voltage divider R1, R2 and R59. If the 124 V supply should exceed 141V, IC1(12) triggers, driving Q2 and Q4 through D1, again disabling the power supply.

DISPLAY CIRCUIT

The clipping indicators are driven by transistors Q9, Q12 (left), Q10 and Q11 (right) located on the power supply PCB. Each pair of transistors drives
one of the LEDs. The signal for the clipping indicators comes from the main amplifier boards from IC1(6) via voltage divider R97/R12. This is the same signal that operates the anti-clipping optoisolator. D17 half-wave rectifies the negative-going portion of the signal and drives Q9, which is a switch. C15 and R45 establish the time constant of the clipping indicator. When Q9 turns on, Q12 tums on as well, illuminating the clipping LED (located on the display PCB).
The display driver circuit comprised of IC1 $(4,3,12,10)$ and IC2 $(12,3,4,10)$ is basically a ladder comparator driving LEDs, with a twist. Assume that the signal at IC1(2) is zero volts and ignore R23 and D4 for now. R12 and R13 are a voltage divider that establishes a reference voltage for the comparators (four per channel). The comparators compare their input signal against the voltages established by the tapped voltage divider made up of R21, R19, R17, and R24. The left channel LEDs are in the following sequence (lowest to highest): D11 (green), D10 (red), D9 (red), D8 (red), D7 (red), D6 (red), D5 (yellow).
The display board receives a positive-going halfwave rectified and smoothed signal from the amplifier outputs via the power supply PCB. With the input signal at zero volts, all of the comparator outputs are at -12 V , except for IC1(4) which is high. None of the LEDs (except D11 and D18 power on indicators) have any voltage across them; all are extinguished. As the input signal rises, it crosses, in sequence, the thresholds established at each of the four comparators. First IC1(3) fires; its output goes high, and D10 illuminates. Next IC1(12) fires, its output goes high; D10 extinguishes (no net voltage across it) and D9 illuminates. Finally IC1(10) fires; D9 extinguishes, and (this is the twist) D4/R23 supply current to the bottom of the R17, R19 and R21 voltage divider, which inverts the relationship of the comparators to each other.
When IC1(10) fires, the current through R23 reverses the sequence of the voltages that establish the thresholds for the three comparators. This allows the same comparators to perform doubleduty. The new thresholds leave IC1(10) high, IC1(4) low, IC1(12) and IC1(3) low and D8 on. D6 and D7 are off. As the input signal rises further, IC1(12) fires, extinguishing D8 and illuminating D7. Next, IC1 (3) fires, extinguishing D7 and illuminating D6. Finally IC1(4) fires, extinguishing D6. The last LED is the clipping indicator, D5.

SECTION 5

CALIBRATION PROCEDURE PM-1200/1.5a

High Rail Voltage Adjust

With no signal and no load:

1. Adjust RP1 on the power supply board for $\pm 124 \mathrm{VDC}$ when measured at the large filter capacitors.
2. Verify the following DC voltages on the power supply board:

D23 Cathode	$+76.5 \mathrm{VDC}(\pm 1 \mathrm{~V})$
D24 Anode	$-76.5 \mathrm{VDC}(\pm 1 \mathrm{~V})$
D27 Cathode	$+36.5 \mathrm{VDC}(\pm 1 \mathrm{~V})$
D28 Anode	$-36.5 \mathrm{VDC}(\pm 1 \mathrm{~V})$
IC1 Pin 7	$-11.5 \mathrm{VDC}(\pm 0.5 \mathrm{~V})$
IC1 Pin 11	$+11.5 \mathrm{VDC}(\pm 0.5 \mathrm{~V})$

Idle Bias Adjust

For all version:
With no signal and no load:

1. Adjust RP1 on each amp board for 3.4 mVdc across both emitter resistors (R49/R87).

Note: This adjustment should be made after the amplifier has been on approximately two minutes, while it is still cool. After the amplifier warms up, the bias reading may be higher.

SECTION 6

BLOCK DIAGRAM

SECTION 7
 SCHEMATICS AND LAYOUTS

PagePM-1200 Amp Schematic 12
PM-1200 Amp Board Layout 13-14
PM-1200 Power Supply Board Layout 15-16
PM-1200 Power Supply Schematic 17
PM-1200 Regulator Schematic 18
PM-1200 Regulator Board Layout 19
PM-1200 Line Filter Schematic 21
PM-1200 Input Schematic 22
PM-1200 Input Board Layout 23
PM-1200 Display Schematic 24
PM-1200 Display Board Layout 25
PM-1200 Fan Drive Schematic 26
PM-1200 Fan Drive Board Layout 27

OTES: UNLESS OTHERWISE SPECIFIED

5 MARK DASH ND. AND REV AT LOLATION SHOWN.
4. ALL UNUSED COMPONENT HOLES TD BE MASKED BEFORE SOLDER OIP.
3. COMPONENT VALUES OF LESS THAN $1 / 2 W$ TO BE RUSH MOUNTED TO PCB COMPONENT VALUES DF $1 / 2 W$ OR MORE TO BE MOUNTED OFF FCE BY V/4 INCH.
ALL ITEMS ARE ON 602-00128-01 PARTS LIST.

1. USE PCB 501-00128-00

NOTES : UNLESS OTHERWISE SPECIFIED,

SECTION 8

PARTS ORDERING

Please provide the Model numbers of the units involved when ordering genuine CARVER replacement parts. Also provide the CARVER part number and the generic part number to confirm the correct part needed.
The Carver Parts Department is open Monday thru Friday, 7:00 a.m.to 4:45 p.m. PST.
The following phone number is to be used for part orders only! Technical assistance is not available on this line.

1-800-433-0547

Or if you prefer to FAX in your part order, please use the following FAX number:

1-206-775-9180

From time to time, when it is necessary, we may make a substitution for the original part ordered, due to circuit revisions or part availability.
Random deviation from the original CARVER designated part is not recommended!
Complete PCB replacement is not recommended. You must have prior approval for warranty repair should PCB replacement be necessary.

SECTION 9

PARTS LISTS

PM-1200/1.5a AMP BOARD P/N 602-00126-07

CAPACITORS

"TEMPORARY SUBSTITUTE USED

$206-00001-00$	CAP TANT	$10 \mu \mathrm{~F} / 16 \mathrm{~V} 10 \%$	C5

RESISTORS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
$251-00008-00$	RES CFILM	2.7 OHM $1 / 4$ W PREP .4	R40
$251-00014-00$	RES CFILM	4.7 OHM 1/4W PREP .4	R21,57,72
$251-00030-00$	RES CFILM	22 OHM 1/4W PREP .4	R104,105
$251-00032-00$	RES CFILM	27 OHM 1/4W PREP .4	R86
$251-00036-00$	RES CFILM	39 OHM 1/4W PREP .4	R38,71

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
$320-20001-00$	DIODE	1N4148 75V PREP	D1-5,7,18,33
$320-20004-00$	DIODE	1N4004 400V PREP .4	D9,11,14-17,20,22,25-28,31,32
$320-20006-00$	DIODE	BAV20 400V PREP .4	D6,8,10,19,21
$320-20007-03$	DIODE	MR852	D12,13,23,24
$320-30004-00$	DIODE	ZENER 1N4736 6.8V PREP	D34
$320-30006-00$	DIODE	ZENER 1N4738 8.2V PREP	D35

TRANSISTORS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
$321-10000-00$	XISTOR	152 NPN SM SG MPSW06	Q12
$321-10001-00$	XISTOR	152 PNP SM SG MPS6729	Q21
$321-20001-00$	XISTOR	202 NPN PWR MPSU10	Q20
$321-20002-00$	XISTOR	202 PNP PWR MPSU60	Q13
$321-40001-00$	XISTOR	TO92 NPN SM SG MPSA43	Q14,26
$321-40003-00$	XISTOR	TO92 PNP SM SG MPS8093	Q17,19
$321-40004-00$	XISTOR	TO92 PNP SM SG MPSA93	Q15
$321-40013-01$	XISTOR TO98 NPN SM SG 2N3403 W/TAB	TO92 NPN SM SG MPSA18	Q18,23
$321-50000-00$	XISTOR	TO220 NPN PWR MJE3055	Q16
$321-60000-00$	XISTOR	TO220 PNP PWR MJE2955T	Q11
$321-60002-00$			Q22

INTEGRATED CIRCUITS

CARVER P/N	DESCRIPTION		REF DESIGNATORS	NOTES
330-30002-00	IC	TL081 OP AMP BIFET	U1	For French Version use T.I. part only P/N 330-30002-01
330-40008-00		CLM-51 OPTOISOLATOR DIP (or VLT5C4)	U2	"See Note Below
"TEMPORARY SUBSTITUTE USED				
$\begin{aligned} & 330-40001-00 \\ & \text { or } \\ & 330-40006-00 \end{aligned}$		CLM6000 OPTOISOLATOR AX 60V VLT5C2 OPTOISOLATOR	U2	

mISCELLANEOUS ITEMS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
118-50002-00	TRANSISTOR SOCKET		Use on Q1-10
160-30012-00	HEADER 15 PIN 90 DEG TIN . 156 CTR	P1	Remove 1 pin before installing.
401-10634-00	WIRE 22AWG TEW GRAY 4.5 ${ }^{\circ}$		Use on Q24, Q25
401-10602-00	WIRE 22AWG TEW BLACK 5°		Use on Q24, Q25
401-10633-00	WIRE 22AWG TEW RED 5.75 ${ }^{\circ}$		Use on Q24, Q25
401-30002-00	JUMPER INSULATED ${ }^{\text {\% } 22 ~} .^{\text {a }}$	JP1	
401-30003-00	JUMPER INSULATED .4*	JP2-13	
402-00001-00	SLEEVING CLEAR 10 GA .		Use on R102
402-00006-00	SLEEVING BLACK 18 GA. . 4°		Use on R49,87
403-10003-00	SEALANT SILICONE RUBBER RTV		Use on C35
501-00126-00	PCB, AMP PM-1.5		
616-00001-00	CHOKE $\quad 5 \mu \mathrm{H} 18 \mathrm{GA}$. WIRE	L1	

PM-1200/1.5a POWER SUPPLY BOARD P/N 602-00127-01

CAPACITORS

CARVER P/N	DESCRIPTION		REF DESIGNATORS	NOTES
205-00001-00	CAP LYTIC	$1 \mu \mathrm{~F} / 50 \mathrm{~V}$ RAD	C9,10,15,16	
205-00003-00	CAP LYTIC	$2.2 \mu \mathrm{~F} / 50 \mathrm{~V} 20 \% \mathrm{RAD}$	C21	
205-00009-00	CAP LYTIC	$4.7 \mu \mathrm{~F} / 100 \mathrm{~V}$ RAD	C5	
205-00010-00	CAP LYTIC	$10 \mu \mathrm{~F} / 35 \mathrm{~V}$ RAD	C1,C7	
205-00011-00	CAP LYTIC	$22 \mu \mathrm{~F} / 16 \mathrm{~V}$ RAD	C2	
205-00013-02	CAP LYTIC	47 $\mu \mathrm{F} / 25 \mathrm{~V} 20 \%$. 2 RAD	C6,11,12	
205-00028-00	CAP LYTIC	$2200 \mu \mathrm{~F} / 50 \mathrm{~V} / 80 \mathrm{~V}$	C13,14	Dual Capacitor - No longer available Replace with Cap Assy P/N 602-00500-01 See Service Bulletin PM-1200-5

RESISTORS

CARVER P/N	DESCRIPTION		REF DESIGNATORS	NOTES
251-00027-00	RES CFILM	16 OHM 1/4W PREP . 4	R63	
251-00030-00	RES CFILM	22 OHM 1/4W PREP . 4	R6,7,19	
251-00043-00	RES CFILM	75 OHM 1/4W PREP . 4	R68	
251-00057-00	RES CFILM	300 OHM 1/4W PREP . 4	R3,4	
251-00067-03	RES CFILM	750 OHM 1/4W PREP . 4	R72	Mount on back of board
251-00077-00	RES CFILM	2.0K 1/4W PREP . 4	R22	Standup
251-00078-00	RES CFILM	2.2K 1/4W PREP . 4	R36,39	
251-00094-00	RES CFILM	10K 1/4W PREP . 4	R35,38	
251-00098-00	RES CFILM	15K 1/4W PREP . 4	R16	
251-00101-00	RES CFILM	20K 1/4W PREP . 4	R2,10	
251-00102-00	RES CFILM	22K 1/4W PREP . 4	R5	
251-00104-00	RES CFILM	27K 1/4W PREP . 4	R13,53	
251-00107-00	RES CFILM	36K 1/4W PREP . 4	R46,48,65,66	
251-00108-00	RES CFILM	39K 1/4W PREP . 4	R42	
251-00112-00	RES CFILM	56K 1/4W PREP . 4	R15,45,47	
251-00113-00	RES CFILM	62K 1/4W PREP . 4	R17	
251-00114-00	RES CFILM	68K 1/4W PREP . 4	R11,44	
251-00118-00	RES CFILM	100K 1/4W PREP . 4	R43	
251-00121-00	RES CFILM	130K 1/4W PREP . 4	R37,40	
251-00123-00	RES CFILM	160K 1/4W PREP . 4	R12	
251-00124-00	RES CFILM	180K 1/4W PREP . 4	R41,56	
251-00125-00	RES CFILM	200K 1/4W PREP . 4	R57	
251-00127-00	RES CFILM	240K 1/4W PREP . 4	R59	
251-00128-00	RES CFILM	270K 1/4W PREP . 4	R52,54	
251-00130-00	RES CFILM	330K 1/4W PREP . 4	R21,23	
251-00133-00	RES CFILM	430K 1/4W PREP . 4	R1	
251-00139-00	RES CFILM	750K 1/4W PREP . 4	R14	
251-10043-03	RES CFILM	75 OHM 1/2W PREP . 5	R67	
251-10083-03	RES CFILM	3.6K 1/2W PREP . 5	R26,28	
251-10125-03	RES CFILM	200K 1/2W PREP . 5	R20,24	

CARVER P/N	DESCRIPTION		REF DESIGNATORS	NOTES
$255-20091-00$	RES MET OXIDE	470 OHM 2W	R25	
$255-20117-00$	RES MET OXIDE	3.6 K 2 W	R60	With Sleeving
$255-20124-00$	RES MET OXIDE	6.8 K 2 W	R58	
$259-20002-00$	TRIM POT	2K PCB MOUNT	RP1	

DIODES

	DESCRIPTION	REF DESIGNATORS	NOTES	
$320-20001-00$	DIODE	1N4148 75V PREP	D1,4-6,8,11,12,17,18,31-34	
$320-20005-03$	DIODE	MR504 400V UNPREP	D49,50	Mount on back of board
$320-20010-00$	DIODE	6 AMP 200V PREP .75	D23-30	Standoff D25,26,29,30
$320-30001-00$	DIODE	ZENER 1N4742 12V PREP .4	D13,14	

TRANSISTORS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
$321-10001-00$	XISTOR	152 PNP SM SG MPS6729	Q4
$321-40001-00$	XISTOR	TO92 NPN SM SG MPSA43	Q2
$321-40003-00$	XISTOR	TO92 PNP SM SG MPS8093	Q6,9,10
$321-40004-00$	XISTOR	TO92 PNP SM SG MPSA93	Q1
$321-40013-01$	XISTOR	TO92 NPN SM SG MPSA18	Q3,5,11,12
$321-60000-00$	XISTOR	TO220 NPN PWR MJE3055	Q7
$321-60002-00$	XISTOR	TO220 PNP PWR MJE2955T	Q8

INTEGRATED CIRCUITS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
$330-30003-00$	IC QUAD OP AMP (4136)	U1	

MISCELLANEOUS ITEMS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
108-00003-00	INSULATOR MICA TO220 .005* THICK		Heatsink Bracket Assy
151-20001-00	SCREW MACH PP BLK $\# 440 \times 1 / 4^{\circ}$		Heatsink Bracket Assy
151-30002-00	SCREW SHT MTL PP BLK $34 \times 3 / 8^{\circ}$		Attach Heatsink Bracket to Board
152-10001-00	KEPNUT \#4-40 ZC		Heatsink Bracket Assy
154-40007-01	WASHER SHLDR TEFLON $34 \times .050^{*}$		Heatsink Bracket Assy
159-20002-00	POP RIVET AL OE $1 / 8^{\circ} \mathrm{D} \times 1 / 4^{\circ} \mathrm{L}$		Attach Bracket to Board
160-20002-00	CONNECTOR 7 PIN GOLD	P1	Attach Bracket Assy
401-10114-00	WIRE 18 AWG TR-64 RED 6.5 ${ }^{\circ}$	WP-X	
401-10117-01	WIRE 18 AWG TR-64 BROWN 7**	WP-Y	
401-30003-00	JUMPER INSUL .4*	JP1-17	
401-40006-00	WIRE T \#22 1EA RED/WH,BLK $13{ }^{*}$	WP-F,G	
401-40007-00	WIRET \#22 1EA GRN/WHT, BLK 13*	WP-I,H	
402-00006-00	SLEEVING BLACK 18 GA .4*		For R60
403-10020-00	LOCTITE \#222		Heatsink Bracket Assy
403-20001-00	THERMALCOTE \#253		Heatsink Bracket Assy
501-00127-00	PCB POWER SUPPLY PM-1.5		
507-00003-00	BRACKET, MOLEX CON SUPPORT 90 DG		
511-00004-00	HEATSINK FAB PM-1.5		Heatsink Bracket Assy
602-00500-01	CAPACITOR CARD ASSEMBLY		Replaces C13, C14 See Service Bulletin PM-1200-5

PM－1200／1．5a REGULATOR BOARD P／N 602－00129－01

CAPACITORS

CARVER P／N	DESCRIPTION		REF DESIGNATORS	NOTES
201－00033－00	CAP CER DISC	．0047 μ F／400V 20\％	C5	介
204－00015－00	CAP MYLAR	． $01 \mu \mathrm{~F}$	C3，9	
204－00020－00	CAP MYLAR	． $022 \mu \mathrm{~F}$	C2	
207－10005－00	CAP MET POLY	． $47 \mu \mathrm{~F}$	C4	介
207－10014－01	CAP MET POLY	． $47 \mu \mathrm{~F} / 250 \mathrm{~V}$ CSA	C4	$\text { \} \text { csA Version }}$
207－10010－00	CAP MET POLY	． $1 \mu \mathrm{~F} / 250 \mathrm{~V}$	C1	介
207－10015－01	CAP MET POLY	． $1 \mu \mathrm{~F} / 250 \mathrm{~V}$ CSA	C1	A. CSA Version

RESISTORS

CARVER P／N	DESCRIPTION		REF DESIGNATORS	NOTES
251－00052－00	RES CFILM	180 OHM 1／4W PREP ． 4	R6	
251－00078－00	RES CFILM	2．2K 1／4W PREP ． 4	R5	
251－00101－00	RES CFILM	20K 1／4W PREP ． 4	R2	
251－00103－00	RES CFILM	24K 1／4W PREP ． 4	R3	
251－00104－00	RES CFILM	27K 1／4W PREP ． 4	R10	
251－00135－00	RES CFILM	510K 1／4W PREP ． 4	R7	
251－10028－00	RES CFILM	18 OHM 1／2W PREP ． 5	R1	
251－10156－00	RES CFILM	3．9M 1／2W PREP ． 5	R8	
255－10130－00	RES MET OX	DE 12K 1W	R4	

DIODES

CARVER P／N	DESCRIPTION	REF DESIGNATORS	NOTES	
$320-20006-00$	DIODE	BAV20 400V PREP ．4	D1－4	N
INTEGRATED	CIRCUITS			
CARVER P／N	DESCRIPTION			
$330-40002-00$	IC CNY17－2 OPTOISOLATOR PHOTOCOUPLER	U2		
$330-40008-00$	IC CLM－51NTL5C4 OPTOISOLATOR DIP	U1		

MISCELLANEOUS ITEMS			
CARVER P／N	description	REF DESIGNATORS	NOTES
101－22001－00	BRACKET RECTANGLE PCB MNT 1／2＊＊		
159－20001－00	POP RIVET CE 1／8＊		
319－00001－00	DIAC 40V 1／8W	D5	\＄
319－00062－00	TRIAC T3 FP 35A 400V MOT	TR1	\＄

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
401-10132-00	WIRE 18 AWG TEW BLACK 8"	WP-J	
401-10134-01	WIRE 18 AWG TEW BROWN 19.25*	WP-F	
401-10135-00	WIRE 18 AWG TEW GRN/WHT 19.25*	WP-C	
401-10136-00	WIRE 18 AWG TEW VIOLET 19.25*	WP-E	
401-10137-00	WIRE 18 AWG TEW VIONHT 19.25*	WP-D	
401-20203-00	BUSS WIRE 22 GA 1.5*	WP-M	Mount on back of board
401-30003-00	JUMPER INSULATED .4*	JP6	
501-00129-00	PCB REGULATOR PM-1.5		
550-00002-00	CABLE 250 \#18 TEW RED 2.5*	WP-C on Q1	
550-00002-01	CABLE 250 \#18 TEW BLUE 2.5*	WP-A on Q1	
550-00009-00	CABLE 250 \#18 TEW ORANGE 2.5*	WP-G on Q1	
550-00015-03	CABLE 250 \#18 TEW BLACK 10.5*	WP-A,B	

PM-1200/1.5a INPUT BOARD P/N 602-00132-01

CAPACITORS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
$201-00008-00$	CAP CER DISC	$50 \mathrm{pF} 10 \% 1000 \mathrm{~V}$	$\mathrm{C4}, 5,6,7$
$205-00016-00$	CAP LYTIC	$100 \mu \mathrm{~F} / 25 \mathrm{~V}$ RAD	C 3

RESISTORS

CARVER P/N	DESCRIPTION	REF DESIGNATORS
$251-00066-00$	RES CFILM	680 OHM 1/4W PREP .4
$251-00083-00$	RES CFILM	$3.6 \mathrm{~K} 1 / 4 \mathrm{~W}$ PREP .4
$251-00114-00$	RES CFILM	$68 \mathrm{~K} 1 / 4 \mathrm{~W}$ PREP .4
$251-00130-00$	RES CFILM	$330 \mathrm{~K} 1 / 4 \mathrm{~W}$ PREP .4
$252-00402-00$	RES MFILM	$15.0 \mathrm{~K} 1 / 4 \mathrm{~W} 1 \%$ PREP .4
$252-00418-00$	RES MFILM	$22.1 \mathrm{~K} 1 / 4 \mathrm{~W} 1 \%$ PREP .4
$253-20001-00$	RES WIRE WOUND	R14

DIODES

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES	
$320-20001-00$	DIODE	1N4148 75V PREP	D1	

TRANSISTORS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
$321-40003-00$	xISTOR	TO92 PNP SM SG MPS8093	Q1

mISCELLANEOUS ITEMS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
108-00102-00	INSULATOR RAG PAPER $3.3^{\prime \prime} \times 2.5{ }^{\circ}$		See Service Bulletin PM-1200-2
109-00002-00	JACK RT ANGLE XLR CONNECTOR	J1,2	
109-20001-00	PHONE JACK 1/4" PC MOUNT	J3,4	
111-20001-00	SOLDER LUG ${ }^{\text {W }} 4$		See Service Bulletin PM-1200-2
151-20002-00	SCREW MACH PP BLK $\# 440 \times 3 / 8^{\prime \prime}$		See Service Bulletin PM-1200-2
151-30002-00	SCREW SHT MTL PP BLK ${ }^{\prime \prime} 4 \times 3 / 8^{\circ}$		
152-10001-00	KEPNUT, \#440 ZC	-	See Service Bulletin PM-1200-2
154-40001-01	WASHER FL/NYL ${ }^{\text {\% } 4.11^{\circ} \mathrm{ID} \times .0245^{\circ} 0 \mathrm{D}}$		See Service Bulletin PM-1200-2
318-10000-00	SWITCH PUSH 1 KEY	SW1	
401-10535-00	WIRE 22 AWG TR-64 BLACK 8*	WP-J	
401-10536-00	WIRE 22 AWG TR-64 RED 4.5*	WP-L	
401-10537-01	WIRE 22 AWG TR-64 BROWN 4.5"	WP-K	
401-10539-00	WIRE 22 AWG TR-64 WHT/YEL 21*	WP-E	
401-10580-00	WIRE 22 AWG TR-64 ORANGE 15.75 ${ }^{\text {² }}$	WP-M	
401-10581-01	WIRE 22 AWG TR-64 BROWN 15.75*	WP-N	
401-10636-00	WIRE 22 AWG TR-64 BLACK $2.5{ }^{\circ}$		See Service Bulletin PM-1200-2
401-30003-00	JUMPER INSULATED .4*	JP'2,4,5	
401-30006-00	JUMPER INSULATED .6"	JP6,7	
401-40003-00	WIRE T \#22 1EA WHT/RED, BLACK 5.5 ${ }^{\circ}$		Cut to $3.5^{\prime \prime}$, strip and tin
401-40005-00	WIRE T \#22 1EA BLACK, GRN, WHT/RD 17"	WP-A,B,C	
403-10018-00	SEALANT SILICONE RTV		See Service Bulletin PM-1200-2
501-00132-00	PCB INPUT PM-1.5		
507-00001-00	BRACKET PM-1.5 INPUT BD MOUNT		Holds $\mathrm{J1}, 2$ in place
531-00004-00	SHIELD PLATE PM-1200		See Service Bulletin PM-1200-2

PM-1200/1.5a DISPLAY BOARD P/N 602-00128-01

RESISTORS

	DESCRIPTION		REF DESIGNATORS
CARVER P/N	RES CFILM	$2.7 \mathrm{~K} 1 / 4$ W PREP .4	R13
$251-00080-00$	RES CFILM	$4.3 \mathrm{~K} 1 / 4$ W PREP .4	R27,28
$251-00085-00$	RES CFILM	$7.5 \mathrm{~K} 1 / 4$ W PREP .4	R5,7,9,18,20,22
$251-00091-00$	RES CFILM	$10 \mathrm{~K} 1 / 4$ W PREP .4	R10,12,23
$251-00094-00$	RES CFILM	$30 \mathrm{~K} 1 / 4$ W PREP .4	R4,6,8,9,11,17,19,21,24
$251-00105-00$	RES CFILM	910 OHM 1/2W PREP .5	R25,26
$251-10069-00$			

DIODES		
CARVER P/N	DESCRIPTION	REF DESIGNATORS
$320-20001-00$	DIODE	NOTES
$320-40001-00$	LED RED	$\mathrm{D} 2,4,19,20$
$320-40002-00$	LED AMBER	$\mathrm{D} 6-10,13-17$
$320-40004-00$	LED GREEN H.E.	$\mathrm{D} 5,12$

INTEGRATED CIRCUITS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
$330-30003-00$	IC QUAD OP AMP (4136)	$\mathrm{U} 1,2$	

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES
160-30004-00	HEADER 7 PIN GOLD . 7	J2	
401-30003-00	JUMPER INSUL . ${ }^{\text { }}$	JP1-6	
501-00128-00	PCB DISPLAY, PM1.5		

PM-1200/1.5a FAN DRIVE BOARD

 P/N 602-00675-00
CAPACITORS

CARVER P/N	DESCRIPTION		REF DESIGNATORS	NOTES
$204-00024-00$	CAP MYLAR	$.047 \mu \mathrm{~F}$	C 2	
$205-00042-00$	CAP LYTIC	$470 \mu \mathrm{~F} / 35 \mathrm{~V}$ RAD	C1	

RESISTORS

CARVER P/N	DESCRIPTION	REF DESIGNATORS	NOTES	
$253-40050-00$	RES WIRE WOUND	6.8 OHM $5 \% 5 \mathrm{~W}$	R1	
$253-40057-00$	RES WIRE WOUND	12 OHM $5 \% 5 \mathrm{~W}$	R2,3	

MISCELLANEOUS ITEMS

CARVER P/N	DESCRIPTION	REF DESIGNATORS
$318-10000-00$	SWITCH PUSH 1 KEY NO FRAME	SW1
$401-10536-00$	WIRE 22 AWG TR-64 RED 4.5	
$401-10573-01$	WIRE 22 AWG TEW BLACK 24*	WP-E
$401-10598-00$	WIRE 22 AWG TR-64 BLUE 7*	WP-C
$401-10637-00$	WIRE 22 AWG TR-64 BLACK 4*	WP-F
$401-10647-00$	WIRE 22 AWG TEW BLACK 26*	WP-B
$401-10648-00$	WIRE 22 AWG TEW BROWN 7*	WP-A
$501-00675-00$	PCB FAN DRIVE PM-1.5	WP-D

PM-1200/1.5a FINAL ASSEMBLY P/N 607-00120-01

CARVER P/N	ITEM NO.	DESCRIPTION	REF DESIGNATORS	S
101-00001-00	5	BARRIER STRIP	TB1	
101-10004-00	10 BLADE	AN PLASTIC 2.5 CCW		
101-30001-00	20 BUMPONS RUBBER ROUND MEDIUM			
101-30002-00	25 BUMPON	UBBER ROUND SMALL		Used as spacers on mounting bracket (Item 515)
105-10005-00	35 FILTER ELEMENT $3^{\text {" }} \times 5.1^{\prime} \times 3 / 16^{\text {a }}$ THICK			
105-40002-00	40 FUSEHOLDER PANEL MOUNT DOMESTIC			A
$\begin{aligned} & 105-40014-00 \\ & 105-50000-00 \end{aligned}$	40 FUSE	LDER PANEL MOUNT USE CARRIER, GRAY		A. CSA Version
106-30001-00	45	ROMMET NEOPRENE		
106-30002-00	50	GROMMET GUM		
107-00001-01	55	DLE 2.5 ${ }^{\circ}$ ANO BLACK		
108-00001-00	60	NSULATOR MICATO3		
108-00003-00	65 INSULATOR MICA TO220.005 ${ }^{\circ}$ THICK			
108-00102-00	70 INSULATOR, RAG PAPER $.015^{\circ} 1.25^{\circ} \times 3.25^{\prime \prime}$			Install on top cover with RTV over predriver mod
111-20051-00	75	SOLDERLUG \#6		
111-20151-00	80	SOLDER LUG ${ }^{\text {\% } 10}$		
112-10003-00	85	MOTOR FAN 18V		
112-20001-00	90	MOUNT TYRAP WHITE		
115-10001-00	95 POST BIN	NG DUAL RED/BLACK		
118-50002-00	100 TRANSISTOR SOCKET TO3 PCB MNT			
118-80001-00	105 STANDOFF HEX THREADED $440 \times 1 / 4^{\circ}$			
118-80002-00	110 STANDOFF ROUND $\# 6 \times 1 / 4^{\circ} \mathrm{OD} \times 7 / 16^{\circ} \mathrm{H}$			
118-80005-00	115 STANDOFF ROUND ${ }^{(1)} 8 \times 1 / 4^{\prime \prime} \times 5 / 16^{\prime \prime}$ ALUMINUM			
118-80018-00	120 STANDO	HEX $34 \times 3 / 16^{\circ} \mathrm{D} .688 \mathrm{~L}$		Fan Drive PCB Mt.
118-90003-00	125 STRAIN RELIEF MCT. 125 WS. 355 16/3			
151-00155-00	130 SCREW MACH SCKT H BK 10-32 $\times 5 / 8$			
151-00159-00	135 SCREW MACH S/H BLK 10-32 $\times 1-1 / 8$			
151-10116-02	140 SCREW METRIC MA/PP PLT M $3 \times 16 \mathrm{~mm}$			
151-20002-00	145 SCREW MACH PP BLK $440 \times 3 / 8^{\circ}$			
151-20051-00	148 SCREW MACH PP BLK 6-32 $\times 1 / 4^{\circ}$			Cover mounting
151-20052-00	150 SCREW MACH PP BLK 6-32 $\times 3 / 8^{\circ}$			
151-20053-00	155 SCREW MACH PP BLK 6-32 $\times 1 / 2^{\circ}$			Triac Mounting
151-20054-00	160 SCREW MACH PP BLK 6-32 $\times 3 / 4^{\circ}$			
151-20102-00	165 SCREW MACH PP BLK $8-32 \times 3 / 8^{\circ}$			Line Filter (2)
151-20106-00	170 SCREW MACH PP BLK $8-32 \times 3 / 4^{\circ}$			
151-20152-00	175 SCREW MACH PP BLK 10-32 $\times 3 / 8^{\circ}$			
151-20152-01	180 SCREW MACH PP ZC 10-32 $\times 3 / 8^{\circ}$			
151-30052-00	190 SCREW SHT MTL PP BLK $6 \times 3 / 8^{\prime \prime}{ }^{\prime} B^{\prime}$			
151-30058-01	195 SCREW SHT MTLPP ZC $6 \times 1{ }^{\text {a }}$ 'B'			
151-31056-00	200 SCREW SHT MTL FHP $6 \times 3 / 4^{\circ}$ BLACK OX			
152-00001-00	205	NUT HEX 6-32 $\times 5 / 16^{\circ} \mathrm{ZC}$		
152-10001-00	210	KEPNUT 4-40 ZC		
152-10002-00	215 KEPNUT 6-32 $\times 5 / 16^{\prime \prime} \mathrm{ZC}$			
152-10003-00	220	KEPNUT $8-32 \times 11 / 32^{\circ} \mathrm{ZC}$		Line Filter (2)

CARVER P/N	ITEM NO. DESCRIPTION	EF DESIGNATORS	OTES
154-00003-00	225 WASHER COUNTERSUNK .50'OD x . 05^{*}		
154-20052-00	230 WASHER INT LOCK SAE BLK \# 6		
154-20101-00	233 WASHER INT LOCK BLK \#8		Une Filler Mounting
154-20152-00	235 WASHER EXT LOCK BLK OXIDE \#10		
154-20351-02	240 WASHER INT LOCK CAD PLTD 1/2*ID		
154-30001-00	243 WASHER SPLTT LOCK BLK \#10		Rear Handles
154-40002-01	245 WASHER SHLDR NYL WHT *4		
154-40351-01	250 WASHER FLAT NYL $3 / 8^{\prime \prime}$ ID $\times 5 / 8^{\circ} \mathrm{OD}$		
159-50001-00	255 TYRAP 3-3/8" L WHT		
160-20014-00	CONNECTOR, SPLICE NYLON INSUL		230V Version; X -fimr blue to brown.
204-00024-00	260 CAP MYLAR .047 $\mu \mathrm{F}$		
204-00027-00	265 CAP MYLAR. $1 \mu \mathrm{~F}$		
205-00030-00	270 CAP LYTIC 4800 $2 \mathrm{~F} / 130 \mathrm{~V}$	C15,16	$\widehat{\Delta}$
205-00111-00	266 CAP LYTIC $2200 \mu \mathrm{~F} / 50 \mathrm{~V}$ AL NICHR	C3,4	介. See Service Bulletin PM-1200-1
207-10002-00	272 CAP MET POLY . $1 \mu \mathrm{~F} / 250 \mathrm{~V}$ 10\% AX	C8	Use on 2-pos ground lsolation barrier strip
251-10104-03	274 RES CFILM 27K 1/2W UNPREP	R8	Use on 2-pos ground isolation barrier strip
255-50092-00	275 RES MET OXIDE 6.2K 5\% 5W	R9	Use on bridge rectifier
259-10005-00	280 POT 50KB PANEL MOUNT		
315-13002-00	285 FUSE MDA12		A. 115 V Version
315-14004-00	285 FUSE MDQ 6-1/4		A 230 V Version
318-20000-00	290 SWITCH ROCKER DPDT BLK		
318-20004-00	295 SWITCH ROCKER SPDT QUICK DISCONNECT		A Power Switch
318-50000-00	300 SWITCH THERMAL 50 DEG C		
318-50002-00	305 SWITCH THERMAL 90 DEG C		\xlongequal{A}
319-00036-01	RECTIFIER BRIDGE 200V 35A	D2	CSA Version only
319-00059-00	310 RECTIFIER BRIDGE 400V 25A	D1	\triangle
320-20004-03	315 DIODE 1N4004 400V UNPREP		
320-40001-00	317 LED RED		
321-30011-00	320 XISTOR TO3 NPN PWR MJ15024		
321-30012-00	325 XISTOR TO3 PNP PWR MJ15025		
401-10063-00	WIRE 16 AWG TR-64 BLACK 13.75*		From AC Terminals on D2 to Gnd Lift, CSA Version only
401-10102-00	330 WIRE 18 AWG TEW BLACK 3°		
401-10105-00	331 WIRE 18 AWG TEW BLACK 5.5 ${ }^{\circ}$		Use on C3, C4
401-10107-00	335 WIRE 18 AWG TEW BLACK 7^{*}		
401-10113-00	332 WIRE 18 AWG TR-64 RED 4*		Use on "+" side of large filter caps
401-10116-01	333 WIRE 18 AWG TR-64 BROWN 4^{*}		Use on "-" side of large filter caps
401-10121-00	340 WIRE 18 AWG TEW VIOLET 10.5 ${ }^{\circ}$		
401-10138-00	345 WIRE 18 AWG TR-64 BLACK 3.5*		
401-10140-00	350 WIRE 18 AWG TR-64 RED $18{ }^{\circ}$		
401-10146-00	355 WIRE 18 AWG TR-64 WHITE $18{ }^{\circ}$		
401-10404-00	356 WIRE 20 AWG TR-64 BLUE 8.75 ${ }^{\circ}$		Use on C3, C4
401-10413-00	357 WIRE 20 AWG TR-64 WHITE 8.75 ${ }^{\circ}$		Use on C3, C4
401-10542-00	365 WIRE 22 AWG TR-64 BLACK $11{ }^{\circ}$		
401-10547-01	370 WIRE 22 AWG TR-64 BROWN $15{ }^{*}$		
401-10551-00	373 WIRE 22 AWG TR-64 WHT/ORN 18*		Seq. Switch to P.S. Bd.
401-10552-00	375 WIRE 22 AWG TR-64 WHT/NEL 8"		
401-10553-00	376 WIRE 22 AWG TR-64 WHT/BLU 12*		
401-10594-01	380 WIRE 22 AWG TR-64 GREEN $2.5{ }^{\circ}$		

401-20056-00	BUSS WIRE 16 GA 1.75*	m"-" to " + " terminals of D2, CSA Version only
CARVER P/N	ITEM NO. DESCRIPTION	REF DESIGNATORS NOTES
401-20102-00	400 BUSS WIRE 18 GA 2.5 ${ }^{\circ}$	
401-20104-00	405 BUSS WIRE 18 GA 2°	
401-20204-00	410 BUSS WIRE 22 GA 3.5 ${ }^{\circ}$	
401-90014-00	415 LINECORD, EURO 16A BLACK	介 ${ }_{\text {I }} 230 \mathrm{~V}$ Version
401-90019-01	415 LINECORD 16/3 SJT BLACK	A 115V Version
402-00002-00	420 SLEEVING CLEAR 16 GA	
402-00003-00	425 SLEEVING BLACK 18 GA	
402-00004-00	430 SLEEVING IMPREGNATED FIBERGLASS	
402-10002-00	435 TUBING HEAT SHRINK CLEAR 1/4**	
403-10003-00	450 SEALANT SILICONE RUBBER RTV	
403-10007-00	455 PLASTIC ADHESIVE	
403-20001-00	460 THERMALCOTE \%253	
403-40001-00	465 TAPE FOAM DOUBLE BACK $1 / 8^{\circ} \times 1^{\prime \prime}$	
403-40012-00	466 TAPE FOAM DOUBLE BACK $1 / 16^{\circ} \times 1^{\prime \prime}$	
403-40023-00	470 VELCRO STRIP $22^{\circ} \times .5{ }^{\circ}$	
403-40023-02	480 VELCRO STRIP $.25^{\circ} \times 2.3^{\prime \prime}$	
502-30042-01	485 CHASSIS SCREENED PM-1.5a	
502-30042-02	485 CHASSIS SCREENED PM-1200	
503-40005-01	490 PANEL FRONT SCREENED PM-1.5a	
503-20066-01	490 PANEL FRONT SCREENED	
504-10004-01	495 COVER XISTOR PAINTED BLACK PM-1.5	
504-20007-01	500 COVER TOP PAINTED BLACK PM-1.5	
507-00002-00	505 BRACKET PM-1.5 FAN MOUNT	
507-00005-00	510 BRACKET 4800 μ F/130V CAP MOUNT	
507-00006-00	515 BRACKET 2200 $2 \mathrm{~F} / 50 \mathrm{~V}$ CAP MOUNT	
507-00070-00	517 BRACKET LINEFILTER	Line Filter Mounting for 615-00005-01
507-00071-00	517 BRACKET LINEFILTER	Line Filter Mounting for 615-00004-01
508-00030-07	520 KNOB 14 mm KNURL BLACK 180 DEG	
509-10001-03	525 FERRULE 5/16* PRO PAINT	
510-10001-03	535 HANDLE 2" PRO PAINT	
511-00016-00	540 HEATSINK TRANSISTOR PM-1.5	
512-10201-01	545 STANDOFF ${ }^{(10} 10 \times 1 / 2^{\circ} \times 1 / 2^{\circ}$ BLK OX	
512-10401-03	550 NUT METRIC DRESS 7 mm CAD	
530-10154-00	551 LABEL, FUSE 12A 125V SLOW-BLOW	
530-20100-00	555 STICKER SERIAL NUMBER	
532-20006-00	BOX, PACKING	For Packing
532-30042-00	FOAM CORNER BLOCK	For Packing (4 por)
602-00126-07	560 ASSY PCB AMP PM-1.5a/1200	
602-00127-01	565 ASSY PCB POWER SUPPLY PM-1.5/1.5a/1200	
602-00128-01	570 ASSY PCB DISPLAY PM-1.5/1.5a/1200	
602-00129-01	575 ASSY PCB REGULATOR PM-1.5/1.5a/1200	
602-00132-01	580 ASSY PCB INPUT PM-1.5/1.5a/1200	
602-00675-00	585 ASSY PCB FAN DRIVE PM-1.5a/1200	
615-00004-01	590 NOISE FILTER EURO 8A	A. German Version "See Note Below
615-00005-01	590 LINEFILTER JMK 12A	All Versions except German "See Note Below
617-10017-00	595 TRANSFORMER PM-1.5/1.5a/1200	
617-10071-01	595 TRANSFORMER PM-1200, CSA	A CSA Version
*HISTORY		
615-00002-00	590 NOISE FLLTER TDK ZCB2206-02	A. Below S/N 91X31600000 (All Versions)

SECTION 11

VOLTAGE CONVERSION FOR PM-1200/1.5a

PM-1200/1.5a Voltage Conversion
 $120 \mathrm{~V} / 60 \mathrm{~Hz}$ to $240 \mathrm{~V} / 50 \mathrm{~Hz}$

On Regulator Board

Change C4 from . $47 \mu \mathrm{~F} / 250 \mathrm{~V}$	to	. $1 \mathrm{HF} / 250 \mathrm{~V}$ met poly radial (Carver P/N 207-10010-00)
Add C10 (parallel with C4)		$.1 \mu \mathrm{~F} / 250 \mathrm{~V}$ met poly radial (Carver P/N 207-10010-00)
Add C6 (parallel with C 2)		. $01 \mu \mathrm{~F}$ mylar (Carver P/N 204-00015-00)
Add C7 (parallel with C 3)		$.01 \mu \mathrm{~F}$ mylar (Carver P/N 204-00015-00)
Change R4 from $12 \mathrm{k} \Omega 1 \mathrm{~W}$	to	$33 \mathrm{k} \Omega 2 \mathrm{~W}$ Wire Wound (Carver P/N 253-20140-00)
Add R9 between point "J" and R3		30k Ω 1/2W (Carver P/N 251-10105-03)
Add jumpers		JP3, JP4 and JP5
Change TR1 from Q2025	to	Q6035, 35A 600V (Carver P/N 319-00063-00)

Note: An alternative to changing all the above parts is to purchase a tested 240 V regulator board (Carver P/N 601-76127-01).

On Power Supply Board

Change R19	from	$22 \Omega 1 / 4 \mathrm{~W}$	to	$33 \Omega 1 / 4 \mathrm{~W}$ (Carver P/N 251-00034-00)
Change R59	from	$240 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$	to	$220 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$ (Carver P/N 251-00126-00)

Other

Change fuse from MDA12 to MDA 6-1/4
(Carver P/N 315-13004-00)
Apply label near linecord
Apply label near fuseholder
$220-250 \mathrm{~V} 50 \mathrm{~Hz}$
(Carver P/N 530-10043-00)
6A/240V Slo-Blo 1200W
(Carver P/N 530-10072-00)

Power Transformer (Magnetic Field Coil)

Rewire the primary windings on the regulator board so they are in series (see schematic diagram of 240 V power supply). Remove brown and blue wires from regulator board and splice together.

PM-1200/1.5a Voltage Conversion $240 \mathrm{~V} / 50 \mathrm{~Hz}$ to $120 \mathrm{~V} / 60 \mathrm{~Hz}$

On Regulator Board

Change C4	from	$.1 \mu \mathrm{~F} / 1000 \mathrm{~V}$	to
			$.47 \mu \mathrm{~F} / 250 \mathrm{~V}$ met poly (Carver P/N 207-10005-00)
Remove C10			$.1 \mu \mathrm{~F} / 1000 \mathrm{~V}$ metal polyester
Remove C6			$.022 \mu \mathrm{~F}$ mylar
Remove C7			$.01 \mu \mathrm{~F}$ mylar
Change R4	from $33 \mathrm{k} \Omega 2 \mathrm{~W}$	to	$12 \mathrm{k} \Omega 1 \mathrm{~W}$ Metal Oxide (Carver P/N 255-10130-00)
			$30 \mathrm{k} \Omega 1 / 2 \mathrm{~W}$

Note: An alternative to changing all the above parts is to purchase a tested 120 V regulator board (Carver P/N 602-00129-01).

On Power Supply Board

| Change R19 | from | $43 \Omega 1 / 4 \mathrm{~W}$ | to |
| :--- | :--- | :--- | :--- | | $22 \Omega 1 / 4 \mathrm{~W}$ |
| :--- |
| (Carver P/N 251-00030-00) |
| Change R59 | from $220 \mathrm{k} \Omega 1 / 4 \mathrm{~W} \quad$ to \quad| $240 \mathrm{k} \Omega 1 / 4 \mathrm{~W}$ |
| :--- |

Other
Change fuse from MDA-6 1/4 to MDA12
(Carver P/N 315-13002-00)
Remove label near linecord

Remove label near fuseholder
$220-250 \mathrm{~V} 50 \mathrm{~Hz}$
(Carver P/N 530-10043-00)
6A/240V Slo-Blo 1200W
(Carver P/N 530-10072-00)

Power Transformer (Magnetic Field Coil)

Rewire transformer primary windings on the regulator board so they are in parallel (see schematic diagram of power supply). Separate the brown and blue wires; connect brown wire to point "G" or " H " on the regulator board; connect blue wire to point " K " or " L " on the regulator board.

SECTION 11
 SERVICE BULLETINS

Please insert Carver Service Bulletins pertaining to the PM-1200 here to ensure proper repair in the future.

Service Bulletin \# PM-1.5a-1	Model PM-1. Sa	Serial \# belong 21176

Reason: If the customer complains of the second fan running to slow at ide speed follow this procedure.

Procedure: Change R-2 18 ohm 5 watt 5% to a 12 ohm 5 watt 5%.

Delete: Qty -1 253-40064-00 (18 ohm 5 watt 5\%)

Add: Qty -1 253-40057-00 (12 ohm 5 wat 5%)

CARVER CDRPDRATIDN SERVICE BULLETIN

| Service Bulletin \# PM -1.5A-2 | Model PM-1.5a | Serial \# before 20850 |
| :--- | :--- | :--- | :--- |

Reason: Driving the output level to maximum at high frequencies with no load can cause the outputs to fail if this condition is sustained.

Procedure: At location $R-86$ change the resistor from a 43 ohm to a 27 ohm.

CAFRER CDRPDRATIDPM SERNICE BULLETIM

Servire Bulletin * PM-1.5A-3A/Model PM-1.5A \quad Serial H Below 22600

Reason: If the amplifier section in either channel fails the outputs that are mounted away from the boards respectively may be miss-wired.

Procedure: At location $Q 5$ and Q check to see if the external outputs are uired correctiy. The GREY wire should be connerted to the right portion of QS transistor socket (emitter). The BLACK wire should bl connected the left portion of the QS transistor socket (base). The BLACK wire should be connected to the left portion of Qa transistor socket (base). The GREY uire sould be connected to the right portion transistor socket(emitter) The red wires should be uired to the metal base of the $Q 5$ and Q6 transistor sockets (collector).

ECO 非1233
Delete:

Add:

CARVER CDRPロRATIDM SERVICE BULLETIN

Service Bulletin * PM-1.5A-4	Model PM-1.5/1.5A	Serial \# AS NEEDED

Reason: To make the input stage truly balanced with balanced drive.
Procedure: At location R2 change from a 6.19 K to a $15 \mathrm{~K} 1 \%$.
At location R5 change from a 9.09 K to a $22.1 \mathrm{~K} 1 \%$.
At location C5 change from a 100 f to a 50 f.
At location R7 change from a 9.09 K to a $22.1 \mathrm{~K} 1 \%$.
At location R8 change from a 6.19 K to a $15 \mathrm{~K} 1 \%$.
At location C6 change from a 100 f to a 50 f.

$$
\begin{aligned}
& \text { Add: Qty -2 } 252-00402-00 \text { RD RB } \\
& \text { Qty -2 } 252-00418-00 \\
& \text { RS RT } \\
& \text { Qty -2 } 201-00008-00 \text { CS Cb }
\end{aligned}
$$

SERVICE APPROVAL ENGINEERING APPROVAL

CARVER CORPORATION
 SERVICE BULLETIN

Service Bulletin \# PM-1200-1	Model:PM-1200/PM-1.5a	Serial nos. PM-1200 Below 3200
REASON:	Date: $1 / 03 / 90$	

To reduce filter cap failure due to excessive ripple current.

PROCEDURE

1)

Place caps on foam tape and twist + and - leads together as shown in Figure 1.

2) Attach wires to cap assembly as shown in Figure 2. Make sure wires are as close to the cap body as possible.

CARVER CORPORATION
 SERVICE BULLETIN

Service Bulletin \#PM-1200-1	Model: PM-1200/PM-1.5 a	Serial nos.

3) Remove the input board and make the following connections as shown in Figure 3:
a) attach the blue wire from the negative terminal of the cap assembly to the anode of D28.
b) attach the white wire from the positive terminal of the cap assembly to the cathode of D27.
c) attach the black wire from the twisted pair of leads on the cap assembly to the connection at the large filter caps that ties the two together (circuit ground).
4) After the connections have been made, re-install the input board.

CARVER CORPORATION
 SERVICE BULLETIN

| Service Bulletin \# PM-1200-1 | Model:PM-1200/PM-1.5 a | Serial nos. |
| :--- | :--- | :--- | :--- |

5) Attach second piece of foam tape to back side of cap assembly, and remove backing from foam tape. Apply some silicone RTV to the cap bracket and position the cap assembly as shown in Figure 4. Route the wires as close to the bottom of the chassis as possible.

Figure 4

CARVER CORPORATION

SERVICE BULLETIN

All PM-1.5a/PM-1.5's as needed | Service Bulletin \# PM-1200-2 | Model: PM-1200/PM-1.5a/PM-1.5 | Serial nos. PM-1200 Below 03445 |
| :--- | :--- | :--- |
| REASON: | Date: $1 / 28 / 91$ | |

To reduce noise in outputs.

PROCEDURE

During the months of $2 / 91$ through $6 / 91$, some of the PM-1200 power amplifiers were built with C2000 and C3000 power transistors. It has been found that these transistors may suffer from premature failure. When servicing a PM-1200 with a serial number that falls within the range indicated above, please check the high-rail commutator transistors and replace with MJ15024 and MJ15025 transistors as necessary.

CARVER CORPORATION

SERVICE BULLETIN

PROCEDURE

The dual capacitors used for C 13 and C 14 (P / N 205-00028-00) on the power supply board in the Carver PM-1.5, PM-1.5a and PM-1200 power amplifiers are no longer available.
If replacement of C13/C14 becomes necessary, we are providing a substitute part (Capacitor Card Assembly P/N 602-00500-01) which is pin-for-pin compatible with C13 and C14 on the power supply board.

To install the Capacitor Card Assembly:

1. Remove 2 screws from the bottom of the chassis securing the capacitor bracket located on top of C13 and C14.
2. Unsolder C13 and C14 from the power supply board.

Note: There are 8 pins per capacitor; 4 electrical connections and 4 connections for mechanical support.
3. Remove C13 and C14 from the power supply board and from the capacitor bracket.
4. Install the Capacitor Card Assembly so that the angled corner of the Card aligns with the angled corner on the power supply board (see illustration below). Solder into place.
5. Reinstall the 2 screws to secure the capacitor bracket in place.

CAPACITOR CARD ASSEMBLY

