Edition August 1978

Service Manual

Dual Gebrüder Steidinger 7742 St.Georgen/Schwarzwald

Fig. 1 TA-Anschlußschema / Audio Connection Diagram / Schema de branchement / Esquema de conexion del fono captor

Contents

Page	
2	Pick-up Connection Diagramm
3	Technical Data
4	Motor and Drive
4	Speed Changeover
4	Platter
4	Flat belt
4	Replacement of Motor Pulley
5	Stroboscop
5	Pitch Control
6	Tonearm and Tonearm Bearing
6	Removal of Tonearm from Bearing Frame
6	Removal of Tonearm cpl. with Tonearm Bearing
6	Removal of Spring Housing
6	Adjustment of Tonearm Bearing
7	Antiskating Control
7	Tonearm Lift
7	Removal of Lift pin
8	Tonearm Control
8	Starting
8	Manual Start
8	Continuous Play
9	Muting Switch
9	Record to met drop
9	Stopping
9	Shut-off and Change Cycle
10	Shut-off Mechanism
10	Adjustment points: Tonearm set-down point
10	Set-down point for 30 cm records
10	Set-down point for 17 cm records
10	Shut-off point
	Release rocker
11	Release
11	Correct nominal speed obtained only at extreme settings.
11	Platter does not
11	Platter does not reach required speed
11	Stylus slips out of playing groove
12	Pick-up head not parallel to platter
12-15	Replacement parts and exploded views
16	Lubrication

Specification

Current Line Voltage
Drive
Power consumption
Starting Time
Power consumption

Platter Speeds

Platter Speeds
Total Wow and Flutter

Rumble

(according to DIN 45 500)
Tonearm
Effective Length of Tonearm
Offset Angle
Tangential Tracking Error
Tonearm Bearing Friction
(related to stylus tip)

Stylus pressure

Cartridge Holder

Adjustable Overhang Weight

Pick-up Connection Diagramm
Motral
Speed Changeover
Platter
Flat belt
Replacement of Motor Pulley
Stroboscop
Pitch Control
Removal of Tonearm from Bearing Frame
Removal of Tonearm cpl. with Tonearm Bearing
Removal of Spring Housing
Adjustment of Tonearm Bearing
Antiskating Control
Tonearm Lift
Removal of Lift pin
Tonearm Control
Starting
Continuous Play
Muting Switch
Record to met drop

Shut-off and Change Cycle
Adjustment points: Tonearm set-down point
Set-down point for 30 cm records
Set-down point for 17 cm records
hut-off point
Release
Correct nominal speed obtained only at extreme settings.
Platter does not
Stylus slips out of playing grooveed
Stylus slips out of playing groove
Replacement parts and exploded views
Lubrication

AC 50 or 60 Hz . Changeable by changing motor pulley $110-130 \mathrm{~V}$ or $220-240 \mathrm{~V}$. switchable
Dual 8 -pole synchronous motor: Flat belt for flywheel drive approx 10 watts
(to reach nominal speed) approx. 2 seconds at $331 / 3 \mathrm{rpm}$
at $220 \mathrm{~V}, 50 \mathrm{~Hz}$: approx. 75 mA
at $117 \mathrm{~V}, 60 \mathrm{~Hz}$: approx. 140 mA
Non-magnetic, dynamically balanced, detachable, $1.3 \mathrm{~kg} .304 \mathrm{~mm} \phi$, total speed load of drive system (Platter with flywheel drive) 2.1 kg
$331 / 3$ and 45 rpm , Automatic tonearm set-down coupled with speed adjustment
Acoording to DIN 45507 (German Industry Standard) $< \pm 0.09 \%$

Unweighted	$>42 \mathrm{~dB}$
Weighted	$>63 \mathrm{~dB}$

Torsion-resistant tubular aluminum tonearm in four-point gimbal
221 mm
$24^{\circ} 4^{\prime}$
$0.16^{\circ} / \mathrm{cm}$
Vertical
$<0.07 \mathrm{mN}(0.007 \mathrm{~g})$
Horizontal
$<0.16 \mathrm{mN}(0.016 \mathrm{~g})$
$(0.30 \mathrm{~g})$ operable from $2.5 \mathrm{mN}(0.25 \mathrm{~g})$ stylus pressure up
Removable, accepting any cartridges with $1 / 2^{\prime \prime}$ mounting and a weight from 5.5 to
10 g (including mounting hardware)
5 mm
approx. 4.6 kg

Fig. 2

Fig. 3

Fig. 4

Motor and Drive

The drive for the turntable platter and the changing mechanism is supplied by a split eight pole synchronous motor suspended by radially located elastic mounts and having a very small magnetic stray field as well as little vibration.
The speed of the motor is independent of line voltage, temperature or load variations. Speed is dependent on and proportional to power line frequency. The motor is adapted to 50 or 60 cycle (Hz) power line frequencies by the correct choice of the motor pulley (116).

Pulley for 50 Hz Art.-No. 234453
Pulley for 60 Hz Art. -No. 243454
The drive is transmitted to the platter by means of the griuded flat belt (15).

Speed Changeover

Platter speeds of $331 / 3$ and 45 rpm are adjusted by linking the flat belt (16) to the corresponding step of the drive pulley (116) (Fig. 3).
The speed switch lever is brought into the required position (33 or 45 rpm) by means of the speed selection lever (16), the switch lever (101) and the spring lever of the switch levers. If the device is switched off, the switch lever is interlocked by the stop lever. The speed is in this way only preselected. The stop lever (12) is only released when the platter (7) turns. This then moves the flat belt (15) onto the required step of the drive pulley (116).

Platter

The platter (7) is held in position by the platter locking lever (28). When removing the platter, lift the platter covering over one of the cutouts and rotate the platter until the cutout is above the drive pulley. Detach the flat belt (15) from the drive pulley(116) and lay it on the running surface of the platter (7).

Flat Belt

The exchanging of the flat belt is described above with the platter to be removed. Fit the new belt to the running surface of the platter.

Attention: The griuded (mat) side had to be on the running sur face. Install the platter Put the flat belt onto drive pulley (116).

Changing the drive pulley

1. Remove the flat belt (15) from the drive pulley (116) and take off the platter (7). Remove the toothed belt (109).
2. Detach tension spring (114) from screening sheet (122).
3. Remove the hexagonal screw (110), remove the adjustment cam (111), the belt pulley (112) as well as the counter bearing (113).
4. Loosen set screws (117) and remove motor pulley (116). Place complete replacement motor pulley on motor axle. Remove conical sleeve. Be careful with the interior distance bushing. Adjust motor pulley vertically (see Fig. 3) and tighten set screws (117) uniformly. Place conical sleeve into the motor pulley (116).
5. Outer counter bearing (113), belt pulley 2 (112) and adjustment cam (102) should now be fitted and the hexagonal head mounting screws tightened (111). Replace the tension spring and toothed belt (109). Install the platter (7). Fit the flat drive belt (15) onto the drive pulley (116).
6. Setting up the nominal speed: set the regulator knob (16) to its central position. By loosening or tightening the hexagonal nut (110) adjust the nominal speed.

Stroboscope

Excactly setting of the platter speed $331 / 3 \mathrm{rpm}$ can be checked during play with the aid of the stroboscope device.
When the platter (7) is rotating at exactly $331 / 3 \mathrm{rpm}$ the lines of the stroboscope appear to stand still. If the lines of the stroboscope move in the direction of rotation of the platter, the platter speed is too high. If the lines move backwards, the platter is rotating more slowly than the nominal speed.
Adjustment is carried out with the "pitch" knob (16).
Strobe markings for 50 or 60 Hz are provided on the platter rim. When echanging the lamp the strobe must be removed from the base plate (22). After removal of the stroboscope housing (244) the lamp (215) may be exchanged.

Fig. 5

Pitch Control

The unit has a separately adjustable pitch control the two standard speeds $331 / 3 \mathrm{rpm}$ and 45 rpm can be varied by approximately 6% (semitone).
By turning the fine speed adjustment knob (16) the belt pulley 2 (112) is moved. This rotation is transferred by means of the toothed belt (109) to the drive pulley 1 (105). (Fig. 9).Thus moving the counter bearing (113) upwards or downwards. The taper bush of the drive pulley designed to vary the diameter of the drive pully thus varying the nominal speed within the tolerance of $\pm 3 \%$.

Fig. 7

Fig. 9

Tonearm and Tonearm Bearing

The Dual 1246 has a feather light, extremely torsion-resistant aluminum tonearm which is suspended in a gimbal. Suspension is by means of 4 hardened and precision polished steel points which rest in precision ball bearings. Tonearm bearing friction is thus reduced to a minimum.

Bearing friction vertical $<0.07 \mathrm{mN}(0.007 \mathrm{~g})$ Bearing friction horizontal $<0.16 \mathrm{mN}$ (0.016 g)

Ensures of pick-up. Before adjusting the pick-up force the tonearm is balanced with the scale set to zero. Coarse adjustment is caried out by moving the weight with the pin (51) the subsequent fine adjustment by turning the weight. The balance weight is designed, so that pick-up cartridges having a deadweight (incl. hardware) of $5.5 \cdot 10 \mathrm{~g}$ can be balanced. The tracking force is adjusted by turning the graduated spring housing (64) incorpo. rating a coil spring. The scale has markings for a range of adjustment from 0 to $30 \mathrm{mN}(0$ to 3 g) which permit accurate adjust ment of the tracking force.

Removing the tonearm from the bearing frame

1. Clamp unit in the repair jig. Remove the balance weight (51), remove clamp screw (58). Set spring housing scale (64) to zero
2. Turn the unit over and remove the screening sheet (149). Unsolder the tonearm connections on the muting switch (146).
3. Turn the unit back to normal position. Turn the two fixing screws (75) - SW 5.5 - counter-clockwise into the bearing frame (68). Slide tonearm (63) backwards and lift tonearm from bearing frame (68).
Reverse this procedure when reassembling.

Removing the tonearm compl. and tonearm bearing

1. Clamp unit in the repair jig. Remove the balance weight (51), remove clamp screw. Set spring housing scale (64) to zero.
2. Turn the unit over and remove the shield (149). Unsolder the tonearm connections on the muting switch (146).
3. Remove main lever (177) and lock washer (242). Turn adjustment screw (40) until guide bearing (241) and positioning slide (204) are free. Remove lock washer (228) and positioning slide (204).
4. Unlock tension spring (212). Loosen lock washer (216) and remove skating lever (215).
5. Remove lock washers $(205+206)$ and take stop lever (179) away from segment (200).
6. Remove hex nut (202) and take off segment (200).
7. Hold tonearm (50). Remove hex nut (42) and washer (41) a well as tonearm cpl . with tonearm bearing.

Reverse this procedure when reassembling.

Replacing spring housing

Remove tonearm (50) from bearing frame (55) as described above. Loosen lock nut (47) and threaded pin (46). Unscrew bearing screw (66). Lift bearing frame (55). Remove spring housing (64) and washer. When installing note that the helical spring catches the bearing frame. And tighten bearing screw (66). Reinstall tonearm (55). Set bearing play as described below using threaded pin (46) and lock nut (47).

Adjusting the tonearm bearing

First balance tonearm exactly. Both bearings must have slight, just perceptible play.
The horizontal tonearm bearing is correctly adjusted when at anti-skating settings " 0.5 " and being touched it slides in without resistance.: The vertical tonearm bearing is correctly adjusted when it swings in after being touched. The play of the horizontal tonearm bearing should be adjusted with threaded pin (46).

Antiskating Device

The adjustment of the antiskating force is made by turning the indicator disc (73) located on the supporting back. The skating lever (215) is displaced from the tonearm fulcrum by an amount depending on the setting of this control. The antiskating force is transmitted to the tonearm (50) via the tension spring (212) and segment.
Optimum adjustment is carried out at the factorys for styliwith a tip radius of $15 \mu \mathrm{~m}$ (spherical), 5/6 and 18/22 $\mu \mathrm{m}$ (elliptical). and CD 4-cartridges.
Any alteration can only be carried out with the aid of a Dual-Skate-0-Meter and a test record and should only be done by an authorized service station.
Any check may be carried out as follows:
Balance tonearm (50) exactly. Set pointer washer (73) to zero position. The tonearm is now to stop at any point of its turning range. The boring of the skating lever (215) is to vanish towards the center axle of the tonearm - adjustable with the eccentric (E). This part is accessible with the aid of the boring in the back cover (72) (Fig. 12).
Set pointer washer (73) to " 0.5 ". Now the tonearm must slide back from the platter centre to its rest position (49) without braking.

Tonearm lift

Raising the lever (218) to position " $\boldsymbol{\nabla}$ " or " Σ " moves the lift cam (219) and the setting rail (204) so that the tonearm is raised from the record (or lowered onto it). If the unit is started with the arm lever in the " $\boldsymbol{\nabla}$ " position, then the tonearm is guided over the record by the set-down mechanism. Only when the lever (218) is brought to the position " " will the tonearm be lowered onto the record. The vertical lift height can be adjusted by means of the locating screw (40) and should be $3-5 \mathrm{~mm}$.

Fig. 12

Adjustment of lifting Bolt

1. Remove tonearm cpl . with tonearm bearing as described on page 5).
2. Remove guide (68) on lifting bolt. Remove lock washer (51), adjusting sleeve (52) and second lock washer (68).
3. Remove lifting bolt (68) and compression spring.

Before reassembling clean lifting bolt and lift tube and smear constant with wacker silicone oil AW 300000.

Fig. 13

Tonearm Control

Automatic movement of the tonearm is initiated by the control cams on the inside of the cam whel (161) on rotating through 360°.
The control elements for raising and lowering are the main lever (177) and lift pin (256), for horizontal movement the main lever (177) with segment (200).

The automatic tonearm set down is designed for 30 cm and 17 cm records and is coupled to the platter speed changeover. The setdown points of the tonearm are determined by the spring pin of segment (200) contacting the setting rail (204). Limitation of the horizontal movement of the tonearm is produced by the pin of segment contacting the stop attached to the setting rail. Only during set-down does main lever (177) lift the slide bar and the stop attached to it which, as a result, moves into the swivel range of the stop pin fitted on the segment. After completion of set down (lowering of the tonearm onto the record) the setting rail (204) is released again and returns to neutral position. As a result the stop moves out of the swivel range of the stop pin so that unimpeded horizontal movement of the tonearm is possible for playing.

Start

Switching the start/stop lever (48) into the "start" position initiates the following sequence:
a) The start lever (207) rotates the switch lever (193) which is pivoted about the notched stud. At the same time, the switch arm is moves and the motor (132), via the mains switch (135), and the platter starts turning.
b) Operating the start/stop lever (58) also releases the start slide (191) which is drawn toward the cam by means of the tension spring (192). This causes the shut-off lever to engage with the drive pinion and the cam turns.
c) Moving the switch lever (48) releases the start angle (191) which is pulled towards the cam wheel by means of the tension spring (192). As a result, the shut-off lever is transported to the range of the dog on the platter (PR), thus driving the cam wheel.

Fig. 15

Continuous play

Continuous play is switched on by means of turning the rotary knob (76) which turns the switch angle (236). The switch lever (207) then forces the cam follower lever to start position. After the record has been played the tonearm is guided back and again set onto the record at its lead-in groove. This procedure is repeate - also when using the changer facility - until the switch lever (48) is taken to "stop" position or the rotary knob (78) to position " 1 ".

Muting switch

To prevent disturbing noises during automatic operation of the tonearm the unit is fitted with a muting switch. Control of the switch springs for both channels is effected by the camwheel. With the unit in neutral state the short circuit of the pick-up leads is eliminated.

Adjustment

In zero position of the cam there should be a distance of approximately 0.5 mm between the contacts of the muting switch. This distance should be adjusted by bending the muting switch contacts. The contacts should be sprayed with a suitable cleaning agent.

Record drop

Insert the changing spindle - AW 3 for standard records $(7 \mathrm{~mm}$ or 1/4" center hole) or AS 12 for 45 rpm records (38 mm or $11 / 2^{\prime \prime}$ center hole).
The record drop is initiated by the cam wheel (161) whose drop cam surface (AK) controls the release rocker (AW) and the changer actuator rod.

Fig. 16

Fig. 17

Fig. 18

Shut-off mechanism

Shut-off and change functions are determined by the position of the guide lever (U). After every start or recorddrop, the guide lever is brought to its stop position by the main lever (longer end towards the center of the main cam). As the record is dropped the guide lever (U) is turned to its start position by the cam rocker, so that the tonearm can swing in toward the record and be lowered on to it. If there are no more records on the spindle, and the cam rocker cannot turn the guide lever, the lever remains in its stop position and allows the tonearm to swing to its rest position.

When the main cam wheel (161) returns to its neutral position, the switch arm (186) drops into a cut-out in the main cam, opening the power switch (135) and disengaging the drive idler.

Tonearm set down point

Lift Dual loge sligthely in left bottom corner and turn out-side. One of the adjustment screws in the opening now visible.

Set-down point for $\mathbf{3 0} \mathbf{~ c m}$ records

Set adjustment knob (16) to " 45 " and adjust setting with a suitable screwdriver. If the stylus sets down too far inside, turn adjustment screw clockwise, if the stylus sets down outside the 30 cm record turn adjustment screw counter-clockwise.

Set-down point for $\mathbf{1 7} \mathbf{~ c m}$ record

Set adjustment knob (16) to " 33 " and proceed by turning the screw as described above.

The switch off position

With the tonearm on the pillar, the eccentric (B) can be adjusted to alter the switch-off position.

Fig. 20

Release rocker

The eccentric screw (c) is used to alter the travel of the changing bolt (168). The setting is correct when at the rest position of the cam wheel (161) and with interlocked changer spindle, the changing bolt (168) has a travel of 0.2 mm (Fig. 21).

Fig. 21

Pawl

The play of the pawl (236) may be adjusted with the eccentric screw (E).
Pull out mains plug and turn unit over. Turn tonearm in until pawl is caught. Turn cam wheel (161) out of "zero" position. There should be about 0.3 mm play between pawl (236) and square section. If necessary turn eccentric screw (E) to left or right

Tonearm vertical lift

The adjustable sleeve (52) is used to adjust the tonearm vertical lift (for automatic operation). Pull out the mains plug, unlock the tonearm, turn the cam wheel (159) until the tonearm reaches its highest point. The tonearm should now be approximately 3 mm above the pillar stop (see Fig. 23). Adjust by means of sleeve (52).

Fig. 22

Fig. 23

Repair

Set control knob (16) to its central position, loosen or tighten the hexagonal nut (110) to set up the correct nominal speed.
a) Mount belt
b) Check connecting at switch plate and power play.
c) Fix Motor pulley
a) Renew drive pulley
b) Clean friction surface of flat belt, drive pulley and platter. Renew flat belt if necessary. Once the platter, has been cleaned do not touch it with your fingers.
c) Clean and oil bearings
a) Check tonearm bearings
b) Renew steel ball (178)

Fig. 24

Defect

Tonearm head not parallel to platter.

Cause

Seat of tonearm head on the tonearm tube has changed during transport

Remedy

Remove platter. Insert screwdriver through the hole in the chassis mounting plate. Align tonearm head and retighten screw.

Safety regulations

Servicing of electronic equipment should be performed only by authorized service personnel.
During service the unit has to be operated with an isolated transformer.
Safety requirements (e.g. VDE 0860 H) have to be strictly observed during repair.
In order to not reduce safety, the original design of the unit should not be changed, e. g. cover plates, mechanically secured wiring. tracking and creepage distance in air etc.
Use only factory replacement parts which must be reinstalled per original design.
Upon completion of repair make shure that all accessible and conductive parts do not carry line voltage.

Replacement parts

Pos.	Part No.	Oty.	Description	Pos.	Part.No.	Oty.	Description	
1	238434	1	Washer	42	210366	1	Hex nut	M 4
2	215470	1	Automatic spindle	43	234635	1	Lock nut	
3	213895	1	Automatic spindle	44	230063	1	Set screw	
4	220213	1	Centering piece	45	242590	1	Frame complete	
5	201101	1	Centering pin	46	234634	1	Set screw	
6	246754	1	Platter covering	47	234635	2	Lock nut	
7	246755	1	Platter complete	48	244785	1	Switch lever	
8	234428	1	Support complete	49	246744	1	Support complete	
9	210472	2	Machine screw M 3 \quad 4	50	246743	1	Tone arm complete	
10	210586	1	Washer 3.2	51	239420	1	Balance weight	
11	232086	1	Tension spring	55	242595	1	Bearing frame complete	
12	234430	1	Stop lever	56	236160	2	Supporting plate	
13	232087	1	Tension spring	58	236051	1	Clamp screw	
14	210194	1	Ring	59	239741	1	Pointer	
15	246084	1	Flat belt	60	234617	2	Holding screws	
16	234912	1	Adjustment knob	63	242596	1	Frame complete	
17	232078	1	Bearing bush	64	236907	1	Spring housing complete	
18	234910	1	Speed lever	66	234637	1	Bearing screw	
19	237222	1	Speed cover	67	237738	1	Fillister screw	
20	213260	3	Pin 2×6	68	237660	1	Guide	
21	237414	3	Shipping screw	69	210143	2	Block washer	1.5
22	246756	1	Mounting plate	70	218318	1	Adjusting sleeve	
23	232972	3	Spring suspension	71	241930	2	Fillister screw	M 3×5
	234815	1	Spring suspension (tone arm, side back)	72	242591	1	Cover back complete	
24	230529	4	Threaded piece	73	239582	1	Pointer washer	
25	230521	3	Compression spring	74	210362	1	Hex nut	
	234109	1	Compression spring (tone arm, side rear)	75	216867	1	Lock washer	5.2/10
26	200723	4	Rubber damping	76	225176	1	Curve washer	
27	200722	4	Steel cup	77	210362	1	Hex nut	
28	200543	1	Lock washer	78	240151	1	Rotary knob	
30	246741	1	Tone arm head complete	79	246757	1	Cover front complete	
31	237223	1	Contact plate complete	80	200444	2	Spring washer	
32	243168	1	Holder TK 25	100	210146	6	Lock washer	3.2
38	210472	1	Machine screw M 3×4	101	232096	1	Switch lever complete	
39	234599	1	Pin	102	232071	1	Special spring	
40	240069	1	Adjustment screw	103	232094	1	Connecting part	
41	210643	1	Washer 4.2/12/1	104	232079	1	Special nut	

Fig. 25 Exploded View 1

Fig. 26 Exploded View 2

Pos.	Part No.	Qty.	Description	Pos.	Part No.	Oty.	Description
105	232097	1	Belt pulley II	191	234545	1	Start-angle compl.
106	240035	1	Washer	192	229698	1	Tension spring
107	210607	1	Washer 3.2/10/0.5	193	244784	1	Switch assembly complete
108	210362	1	Hex nut M 3	194	234555	1	Selector level complete (continuous play)
109	232076	1	Toothed belt	195	210146	6	Lock washer 3.2
110	244104	1	Hex nut M 3.5	196	234598	1	Connecting piece
111	241641	1	Locating curve	197	236095	1	V spring
112	241642	1	Belt pulley I	200	242597	1	Segment
113	241644	1	Counter bearing	201	234026	2	Set screw M 2.5×4
114	233777	1	Tension spring	202	210362	2	Hex nut M3
115	232615	1	Compression spring	203	223777	1	Guide
116	234453	1	Drive pulley 50 Hz	204	240060	1	Positioning slide
	234454	1	Drive pulley 60 Hz	205	201187	1	Slip plate
117	233137	2	Set screw M 2.5×3	206	210145	6	Lock washer 2.3
119	210366	3	Hex nut M4	207	244709	1	Switch lever
120	210480	1	Machine screw \quad M 3×6	208	210641	1	Washer 4.2/10/1
121	210609	1	Washer 3.2/10/1	209	210362	1	Hex nut M 3
122	241328	1	Screening plate	210	234548	1	Roll
123	232841	3	Damping	211	210143	3	Lock washer 1.5
124	232840	1	Insert	212	218591	1	Tension spring
125	241570	1	Top bearing bracket	213	201184	1	Adjustment washer
126	209939	1	Sleeve	215	240086	1	Skating lever
127	241569	1	Stator 110/220 V	216	210146	6	Lock washer 3.2
128	233815	1	Machine screw	217	237543	1	Rubber sleeve
129	241571	1	Armature	218	237541	1	Handle lever
130	241572	1	Bottom bearing bracket	219	240063	1	Lift plate
131	210525	2	Machine screw M 4×25	220	210353	1	Hex nut M 2
132	242076	1	Motor SM 860/1 complete	221	240066	1	Bearing plate
133	234592	1	Switch lever	222	210469	2	Machine screw M 3×3
135	242580	1	Power switch (10 nF)	223	234674	1	Stop piece
	242583	1	Power switch (68 nF)	224	210587	1	Washer 3.2/7/1
136	236335	1	Slider	225	234588	- 1	Adjustment lever
137	200444	1	Spring washer	226	230087	1	Screw spindle
138	233012	1	Switch plate complete (10 nF)	227	210146	6	Lock washer 3.2
	236605	1	Switch plate complete (68 nF)	228	210145	6	Lock washer 2.3
139	230148	1	Switch slide	229	232545	1	Securing spring
140	239732	1	Tension spring	230	234593	1	Intermediate piece
141	219200	1	Snap spring	231	203477	1	Washer 2.7/8/1
142	230355	1	Capacitor $\quad 68 \mathrm{nF} / 250 \mathrm{~V} / 20$ \%	232	210353	1	Hex nut M 2
	241883	1	Capacitor 10 nF	233	239810	1	Securing spring
143	242095	1	Cover	234	240070	1	Intermediate plate
144	210498	1	Machine screw \quad M 3×28	235	210469	2	Machine screw M 3×3
145	231079	1	Cable clamp	236	232599	1	Pawl
146	232987	1	Muting switch complete	237	240071	1	Square section
147	239562	1	Soldering lug	238	210146	6	Lock washer 3.2
148	210472	8	Machine screw $\quad \mathrm{M} 3 \times 4$	239	229704	1	Washer 3.2/13/0.5
149	232084	1	Screening plate	240	210472	8	Machine screw \quad M 3×4
161	236912	1	Cam wheel complete	241	229362	1	Guide bearing
162	200522	1	Snap spring	242	210145	6	Lock washer 2.3
163	210366	1	Hex nut M4	243	243621	1	Stroboscope trim plate
164	229754	1	Ball bearing	244	241574	1	Stroboscope housing complete
165	218155	2	Hex screw M 4×6	245	225321	1	Glow lamp
166	242100	1	Bearing bridge	246	241674	1	Switch plate complete
167	234576	1	V-spring			1	
168	234577 213920	1	Spindle complete	C 2	224886	1	$\text { Capacitor } \quad 47 \mathrm{nF} / 250 \mathrm{~V}$
169	213920	1	Compression spring				
170	213921	1	Bushing		225247	1	Diode BY 183/300
171	210145	6	Lock washer 2.3	R 1	232401	1	Resistance $\quad 22 \mathrm{k} \Omega / 0.25 \mathrm{~W} / 5 \%$
172	210587	1	$\begin{array}{ll}\text { Washer } \\ \text { Bearing } & 3.2 / 7 / 1\end{array}$	R 2	232402	1	Resistance $\quad 22 \mathrm{k} \Omega / 0.125 \mathrm{~W} / 5 \%$
173	234677	1	Bearing Washer	247	241675	1	Cover
175	234676	1	Screw spindle	248	210469	2	Machine screw M 3×3
176	210147	2	Lock washer 4	249	209436	3	Flat connector
177	236914	1	Main lever	250	209424	1	Miniature plug
178	211718	1	Ball ${ }^{\text {a }}$	251	207303	1	Audio cable 5 pole
179	234668	1	Stop lever	252	207301	1	Audio cable cynch
180	234558	1	Ball bearing	253	209425	1	Cynch plug white
181	210472	8	Machine screw M 3×4	254	209426	1	Cynch plug black
182	210362	1	Hex nut M3	255	214602	1	Lug
183	234544	1	Spindle	256	232996	1	Power cable Europe
184	210586	1	Washer 3.2/7/0.5	257	232995	1	Power cable U.S.A.
185	236950	1	Stop	258	210586	1	Washer 3.2/7/0.5
186	234542	1	Switch lever complete	***	214120	1	Cartridge mounting material
187	229686	1	Tension spring	**	245548	1	Operating instructions
188	210144	1	Lock washer 1.9	**	246906	1	Mounting instruction
189	234579	1	Shut off lever	***	238324	1	Shipping carton
190	210145	6	Lock washer 2.3	**	241278	1	Shipping carton CS 1246

Lubrication

All bearing and friction points of the unit are adequately lubricated at the works. Replenishment of oil and grease is only necessary after approximately 2 years of normal use of the record player as the most important bearing points (motor bearings) have sintered metal bushes.
Bearing points and friction faces should be lubricated sparingly rather than generously.
It is important that no oil or grease should come in contact with the friction faces of the flat belt, drive pulley and platter, otherwise slip will occur.
When using different lubricants, chemical decomposition can often take place. To prevent lubrication failure we recommend using the original lubricants stated below.

Fig. 20

