

Dual CR 120 Service – Anleitung

Inhalt

	Seite
Technische Daten	2
Funktionsbeschreibung	3 – 5
Prüf- und Justierdaten	6 – 8
Abgleichanleitung	9 – 10
Abgleichpositionen	11
Schaltbild HF	12 – 14
Schaltbild NF	15 – 16
Leiterplatten und Module	17 – 26
Explosionsdarstellung	27
Ersatzteile	28 - 35

Technische Daten			NF-Teil		
Alle Meßwerte übertreffen die in Di festgelegten Anforderungen an Geräf Heimstudio-Technik (HiFi).		500	Ausgangsleistung (gemessen an 4 Ohm, Musikleistung Sinus-Dauertonleist bei Stereo-Betrieb	ung 4	x 30 Watt x 20 Watt x 26 Watt
HF-Teil Empfangsbereiche			Leistungsbandbreite		
FM 87,2 - 108 MHz MW 513 - 1620 kHz LW 147 - 350 kHz SW 5,85 - 15,6 MHz			(nach DIN 45 500) Klirrfaktor (gemessen bei 15 Wa		
Kreise FM 13, davon 10 ZF			Eingänge Phono-Magnet	2,6 mV an	47 kOhm
AM 6 Zwischenfrequenz FM 10,7 MHz AM 460 kHz			(entzerrt nach CCIR Phono-Ceramic 4 Channel		470 kOhm 470 kOhm
Antenne FM 240 Ohm AM hochohmig	indukt	iv	Tape 1 Tape 2		470 k0hm 470 k0hm
max. Antennenspannung bei 1 MHz, bezogen auf k ≦ 10 %			<u>Dämpfungsfaktor</u> Übertragungsbereich		
m = 30 % 900 mV m = 80 % 600 mV			(gemessen bei Mitte ler)	nstellung der K 20 – 20 000 Hz	± 1,5 dB
Empfindlichkeit FM (240 Ohm und 26 dB Rauschabstand 22,5 kHz Hub	d) bei		<u>Klangregler</u> (Vierfa Bässe + 1 Höhen + 1	ch—Drehwiderstä 7 bis – 18 dB b 6 bis – 17 dB b	nde) ei 40 Hz ei 15 kHz
Mono ≦ 2,5 μV Stereo ≦ 10 μV bei 40 kHz Hub Mono ≦ 1,7 μV			<u>Lautstärke</u> Vierfach-Drehwiders physiologischer Reg		
Stereo \leq 6 μV AM (gemessen über Kunstantenne DIN	45 300),	Balanceregler vier Einzelregler +	4 bis - 45 dB	
Serienschaltung 200 pF 400 Ohm) MW 35 µV LW 40 µV SW 12 µV				Stereo 2 x Stereo 4 Channel 50-Decoder	
Spiegelselection FM (bei 95 MHz) ≥ 60 dB			Stereo/Mono-Schalte	Multi–Decoder <u>r</u> auf Frontkanä	le wirkend
AM (über Ferritantenne) MW ≧ 40 dB LW ≥ 45 dB			Ausgänge 4 Lautsprecherbuchs	en DIN 41 529.	
AM (über Antennenbuchse) SW ≥ 10 dB MW ≥ 25 dB LW ≥ 25 dB			4 (4 - 16) Ohm 2 Kopfhörer-Anschlu koaxial für Vierkan Kopfhörer	ßbuchsen 1/4 in	ch. er Stereo-
Trennschärfe	- 60	-15	Fremdspannungsabsta (bezogen auf Na = 4	<u>nd</u> × 50 mW)	
AM (+ 9 KHz)	≥ 60 ≥ 36	dB	Eingang Phono-Magne typischer Wert hochohmige Eingänge	t	≥ 50 dB 56 dB ≥ 50 dB
Fehlmischprodukt Fe + $\frac{ZF}{2}$	≧ 80		typischer Wert (bezogen auf Nennle	ietuno)	60 dB
FM-Rauschzahl Stillabstimmung Schwellspannung	25	«To	Eingang Phono-Magne typischer Wert hochohmige Eingänge	t	≥ 60 dB 62 dB ≥ 70 dB
ZF-Dämpfung	≥ 90		typischer Wert		74 dB
ZF-Bandbreite (- 3 dB)	= 90	ub	Übersprechdämpfung		≧ 45 dB
FM 150 kHz AM 4.5 kHz			Leistungsaufnahme		a. 180 VA
Begrenzung	≦ 2,5	μ٧	<u>Netzspannungen</u>	110, 117, 220,	
Störabstände Meßbereich: 40 - 15 000 Hz (DIN 45			(Netz)	110, 117 Volt: 220, 240 Volt:	1 A träge
Signal 1 mV HF, 1000 Hz, 40 kHz Hul 240 Ohm Geräuschspannungsabstand		dB	Bestückung 3 Feldeffekt-Trans 62 Silizium-Transis	toren	
Fremdspannungsabstand	≥ 57	dB	10 Silizium-Leistun 15 integrierte Scha 4 Z-Dioden		
Deemphasis	50	μs	50 Silizium-Dioden 2 Silizium-Brücken	oleichrichter	
Mono/Stereo-Umschaltung	20	μν	1 Thermo-Schalter 8 G-Schmelzeinsätz		
AM-Unterdrückung	≥ 50	dB	zur Absicherung		
Pilotton-Unterdrückung 19 kHz	≥ 40	dB	Abmessungen 420 x	108 × 415 mm (B	× H × T)
Hilfsträger-Unterdrückung 38 kHz	≥ 50	dB	Gewicht	C	a. 9,7 kg

Funktionsbeschreibung

Allgemeines

Bei dem vorliegenden Empfängerkonzept sind alle HF- und ZF-Verstärker sowie die Decoder-Baugruppe auf einer gemeinsamen Leiterplatte bestückt.

Als Montageebene dient eine doppelseitig kaschierte Leiterplatte. Der servicefreundliche Aufbau ermöglicht von der Platinenoberseite her den gesamten Abgleich des Gerätes.

Um gute elektrische Eigenschaften zu erzielen, wurden die Verstärkerzweige für AM und FM getrennt aufgebaut. Die komplett bestückte Leiterplatte ist über verschiedene Steckverbinder mit den übrigen Baugruppen bzw. Betriebsspannungen verbunden.

Das Gerät besitzt zwei beleuchtete Instrumente sowie einen beleuchteten Skalenzeiger in Verbindung mit einer Blackout-Skala.

Zur bequemen Senderwahl bei UKW ist der CR 120 mit einem 4-fach-Festsenderspeicher und einer zusätzlichen Auslösetaste für Handabstimmung ausgestattet.

FM-Empfangsteil

Die Vorstufe T 101 (BF 256) arbeitet mit einem FET in selbstneutralisierter Zwischenbasisschaltung. Zur besseren Selektion wurde zwischen der Vor- und Mischstufe ein abgestimmtes Bandfilter verwendet, von dem aus das verstärkte Signal an das Gate des Misch-FET T 102 gelangt.

In dem mit elektronischer Dreifachabstimmung arbeitenden UKW-Baustein finden Doppeldioden vom Typ BB 104 Verwendung. Sie erhalten ihre Abstimmspannung von den Potentiometern des Festsenderspeichers bzw. vom Hauptabstimmpotentiometer.

Durch die Verwendung von Doppeldioden werden aussteuerbedingte Kreisverzerrungen vermieden.

Der Oszillator arbeitet mit dem Transistor BF 241 (T 103). Über den Kondensator C 117 gelangt die Oszillatorfrequenz an den Source-Anschluß des Misch-FET (T 102). Durch die Lage des Abgriffs der Oszillatorspule L 104 wird die Mischverstärkung beeinflußt. Die Oszillatorspannung an C 117 beträgt etwa 0,5 - 0,8 V. Die Kondensatoren C 119, C 121 stellen die temperaturbestimmenden Schaltelemente des Oszillators dar. Die AFC wird über die Diodenabstimmspannung vorgenommen. Im Vergleich zu einer getrennten Nachstimmdiode ergibt sich hier ein gleichmäßiger Nachstimmeffekt über den gesamten Empfangsbereich. (Siehe Aufbereitung der Diodenabstimmspannung).

FM-ZF-Verstärker

An der Drain-Source-Strecke der Mischstufe T 102 entsteht die Zwischenfrequenz 10,7 MHz, die über ein kapazitiv gekoppeltes Vierkreisfilter zum ersten ZF-IC I 101 gelangt. Es folgt das zweite Vierkreisfilter mit dem nachfolgenden zweiten Begrenzerverstärker und Demodulator. Die Bandfilter sind mit hoher Güte ausgeführt und dann mit geeigneten Widerständen bedämpft. Dadurch wird die Kurvenform des ZF-Verstärkers nicht von Spulenstreuungen beeinflußt.

Der TCA 420 A besteht aus vier gleichspannungsgekoppelten Differenzverstärkern, die als Begrenzer arbeiten, sowie einem symmetrischen Koinzidenz-Demodulator. Infolge der hohen Verstärkung erfolgt die Begrenzung bereits bei 1 μV . Das Demodulatorfilter L 120, L 121 hat einen Höckerabstand von 800 kHz. Dadurch wird erreicht, daß der Klirrgrad bei 40 kHz Hub und einer Verstimmung von \pm 50 kHz unter 1 % bleibt. Zwischen den Punkten 5 und 6 des I 102 wird die symmetrische Nachstimmspannung sowie das Multiplex – bzw. NF-Signal über die Drossel L 119 entnommen.

R 144 dient zur Symmetrierung der AFC-Regelspannung.

Ein zusätzlicher Differenzverstärker, gleichfalls im ZF-IC integriert, arbeitet als feldstärkeabhängige Abstimmanzeige. Das Anzeigeinstrument A 101 liegt dabei in einer Brückenschaltung. Mit dem Regler R 127 kann der Nullpunkt des Instrumentes eingestellt werden. Der Vollausschlag bei 108 MHz kann mit R 132 korrigiert werden.

AM-HF-ZF-Verstärker

Das Antennensignal kann bei MW und LW wahlweise in die Ferritantenne L 207/208 oder hochinduktiv in die Vorkreise L 205/L 206 eingekoppelt werden. Die Ferritantenne wird mit der Taste FA eingeschaltet und die Aussenantenne dabei für den MW- und LW-Bereich kurzgeschlossen. Die Antennenspannung gelangt induktiv an die abgestimmten Vorkreise zum Mischer des AM-IC I 201 Anschluß 2.

Für den KW-Bereich ist die Außenantenne immer wirksam. Zur Vermeidung unerwünschter Mischprodukte ist ein auf 460 (473) kHz abgestimmter Saugkreis L 202 vorgesehen.

Der Oszillator ist getrennt mit dem Transistor T 201 aufgebaut und arbeitet in herkömmlicher Basisschaltung. Alle nicht in Betrieb befindlichen Kreisspulen werden kurzgeschlossen, damit keine unerwünschten Nebenresonanzen entstehen können. Über den Doppelkondensator C 215 erfolgt dann die Einspeisung in den Emitter des Mischtransistors, Anschluß 3.

Als Mischer, ZF-Verstärker, Demodulator und NF-Verstärker wird hier der integrierte Schaltkreis TBA 570 verwendet. Im Leitungszug des ZF-Verstärkers liegt ein auf 460 (473) kHz abgestimmtes 3-kreisiges Hybrid-Filter, das für eine ausreichende Selektion sorgt. Das ZF-Signal wird im TBA 570 weiter verstärkt und anschließend gleichgerichtet. Da der Demodulator spulenlos aufgebaut ist, kann dessen Abgleich entfallen.

Die Abstimmanzeige arbeitet mit dem gleichen Instrument, das auch bei FM verwendet wird. Hierbei ist auch der für die Feldstärkeanzeige gewünschte logarithmische Verlauf der Anzeigespannung vorhanden. Dadurch können sowohl schwache als auch starke Stationen einwandfrei eingestellt werden.

Die beiden Dioden D 201/D 202 verhindern einen Stromfluß in umgekehrter Richtung, was bereits ohne HF-Signal einen Ausschlag am Instrument zur Folge hätte.

Der Transistor T 202 arbeitet als NF-Impedanzwandler um den FM-Demodulator möglichst wenig zu belasten. Die positive Basisspannung erhält T 202 über die beiden in Durchlaßrichtung geschalteten Dioden D 203/D 204. Über den Kondensator C 235 gelangt das NF-Signal zur weiteren Verstärkung an den Punkt 10 des TBA 570. Nach etwa 3-facher Verstärkung wird das NF-Signal über den Meßpunkt 7 an den Decodereingang I 901 (Anschluß 2) geführt.

Stereodecoder

Der Stereodecoder ist mit dem integrierten Schaltkreis TBA 450 (I 901) aufgebaut, der nach dem Matrix-Verfahren arbeitet. Er besitzt eine automatische, pilottongesteuerte Mono-Stereo-Umschaltung, die über den Anschluß 5 vorgenommen wird. Das Umschalten und die Stereoanzeige ist von der Größe des Pilottones und von der außen angelegten Schwellspannung abhängig. Mit den Spulen L 901/L 905 wird der Abgleich des Decoders durchgeführt. Die Einstellung auf optimale Kanaltrennung erfolgt mit dem Regler R 902.

Zusätzlich kann beim Empfang eines schwachen Stereo-Senders mit der Mono-Taste auf "Mono" geschaltet werden. Die Umschaltung erfolgt in der Weise, daß der Anschluß 5 mit Hilfe der "Mono"-Taste nach Masse geschaltet wird. Mit dem Regler R 908 werden die noch vorhandenen 38 kHz- und 76 kHz-Reste auf ein Minimum abgeglichen. Die beiden Sperrkreise L 906, L 907 am Ausgang des Decoders werden bei 76 kHz abgeglichen und unterdrücken somit die unerwünschten Interfrequenzanteile der Hilfsträgerfrequenz.

Pegelgesteuerte Umschaltautomatik (Stereo-Schwellwert)

Für einen störungsfreien Sterecempfang ist eine ausreichende Antennenspannung erforderlich. Mit dem Regler R 131 kann der HF-Schwellwert für die Mono-Stereo-Umschaltung zwischen 10 - 30 μV eingestellt werden. Für eine einwandfreie Umschaltung zwischen Mono und Stereo benötigt der Decoder eine positi-ve Spannung von 1 V. Am IC I 102 entsteht am Punkt 10 eine entsprechende Schwellspannung. Ohne, und bei sehr kleinem Eingangssignal steht an R 141 eine Spannung von + 1,6 V. Bei steigender Feldstärke wird diese Spannung immer negativer. In der Triggerschaltung, bestehend aus T 901, T 902 wird eine feldstärkeabhängige Schaltspannung gewonnen. Mit ansteigender Feldstärke wird zunächst T 902 gesperrt. T 901 erhält daher über die Widerstände R 911, R 912 eine höhere positive Basisspannung bis dieser Transistor leitend wird. Die benötigte Schaltspannung von + 1 V an R 914 steht damit dem Stereodecoder am Anschluß 5 zur Verfügung.

Stummschaltung und Ein- und Ausschaltgeräuschunterdrückung

Um das unerwünschte Durchlaufen der Sender beim Einschalten des Empfängers zu verhindern, wird der Schalttransistor T 203 kurzzeitig durch einen negativen Impuls gespert. Nach einer Verzögerungszeit durch R 215 und C 231 öffnet der Transistor wieder und läßt die NF ungehindert passieren. Parallel dazu wird beim Umschalten der Abstimmautomatik sowie der Stationstasten der Transistor T 203 über mech. Wischkontakte stummgetastet und damit Knackgeräusche vermieden.

Gleichzeitig wird nach dem Einschalten des Empfängers über den internen Stummschalter im TCA 530 (Anschluß 3) der Punkt 14 des ersten TCA 420 A über 3,3 kOhm nach Masse gezogen und stummgesteuert.

Beim Ausschalten des Empfängers wird ein Nachspielen verhindert, indem mit dem Schalter a 1, a 2 über die Diode D 205 das Gate des Transistors T 203 auf Minuspotential gelegt wird. Der NF-Zweig ist damit unterbrochen.

Stillabstimmung (Muting)

Die automatische Stillabstimmung unterdrückt bei FM-Empfang das störende Rauschen zwischen den Sendern.

Der integrierte Schaltkreis TCA 420 A liefert dazu eine feldstärkeabhängige Schwellspannung. Zusätzlich besitzt er eine abschaltbare Stummschaltung, steuerbar am Anschluß 12.

Der Einsatzpunkt der Stillabstimmung ist mit der Einschaltschwelle des Stereo-Decoders verknüpft. Daher müssen die entsprechenden Regler R 131 und R 143 in einer bestimmten Reihenfolge abgeglichen werden. Mit R 142 wird der Einstellbereich eingeengt wodurch ein besserer Abgleich gewährleistet wird.

Ohne HF-Signal und gedrückter Still-Taste stehen an R 141 ca. + 1,6 V. Mit steigender Feldstärke wird die Spannung negativer. Diese von der HF-Eingangsspannung abhängige Richtspannung gelangt zum Punkt 12 des zweiten TCA 420 A, und unterdrückt durch eine interne Stördämpfungsschaltung, die beim Abstimmen auf der Flanke der Demodulatorkurve vorhandenen Störgeräusche. Der Einsatzpunkt der Stillabstimmung wird mit dem Regler R 143 bestimmt.

Mit der durch die RC-Glieder R 139, C 167 festgelegten Zeitkonstante wird ein gleichmäßiger Einsatzpunkt der Schwell-Spannung bewirkt. Befindet sich die Still-Taste in Ruhestellung, wird Punkt 12 über R 139 nach Masse geschaltet und der TCA 420 A arbeitet mit voller Verstärkung.

Aufbereitung der Dioden-Abstimmspannung

Die Diodenabstimmung stellt sehr hohe Anforderungen an die Konstanz der Diodengleichspannung. Bei der vorliegenden Schaltung
wird als Stabilisierungsschaltung der TCA
530 verwendet. Mit dem Regler R 703 wird
die Sollspannung auf + 30 V eingestellt.
Die AFC-Spannung wirkt über die Punkte 10
und 11 auf die Ausgangsspannung am Punkt 6,
die als Abstimmspannung den Abstimmpotentiometern zugeführt wird.

Diese Schaltungsart hat den Vorteil, nicht nur den Oszillator, sondern auch die Vorkreise entsprechend zu korrigieren.

Um eine bereits nach 2 Sek. konstante Abstimmspannung zu erhalten, ist der TCA 530 mit einer internen Heizung versehen. Der Heizstrom gelangt über den Anschluß 1 an den TCA 530. Durch diese Maßnahme beträgt die max. Abweichung vom stationären Zustand + 150 mV.

Um während der Aufheizphase den Durchlauf von Sendern zu verhindern, enthält die Stabilisierungsschaltung einen internen Stummschalter, der den Punkt 14 des ersten TCA 420 A über 3,3 kOhm nach Masse legt. Die Funktion wird 2-fach gesteuert, einmal vom Temperaturfühler, der beim Erreichen der Solltemperatur den Stummschalter öffnet und zum zweiten von einer externen Zeitkonstante C 705 am Punkt 3.

FM-Frequenzanzeige A 102

Die Anzeige der jeweiligen Empfangsfrequenz erfolgt durch das Instrument A 102. Als Anzeigeverstärker arbeitet der T 105 in Kollektorschaltung. Die Einspeisung erfolgt über R 151 und belastet somit die Abstimmspannung kaum. Mit dem Regler R 157 wird die Instrumenteneichung bei 100 MHz mit der Bereichsskala in Übereinstimmung gebracht, während der Abgleich bei 92 MHz mit R 156 vorgenommen wird. Da die Abstimmspannung maximal 30 V beträgt, stimmt die Eichung bei 108 MHz automatisch und macht daher einen Abgleich überflüssig.

In Verbindung mit den UKW-Stationstasten wird mit Hilfe des Instrumentenzeigers die Einstellung des gewünschten Senders erleichtert

HF-NF-Bereichsumschaltung

Bei der Umschaltung der AM- und FM-Bereiche werden auf der NF-Seite Schaltdioden verwendet. Durch Anlegen einer positiven Schaltspannung von 15 V werden diese leitend.

Dadurch wird vermieden, daß die gegen Brummeinstreuungen empfindlichen NF-Leitungen über die Tastatur geführt werden müssen.

Die NF wird bei FM über C 161 an die Diode D 204 bzw. bei AM über C 233 an die Diode D 203 gelegt und gelangt so an die Basis von T 202.

Über die Widerstände R 224 und R 225 wird nicht nur die Dioden-Schaltspannung geführt, sondern gleichzeitig auch die positive Basisspannung für T 202 erzeugt. Befindet sich eine der Schaltdioden in leitendem Zustand, ist die andere automatisch gesperrt.

Neben diesen hochfrequenten Programmquellen werden die Eingänge für TA, TB und CD 4-Wiedergabe nach dem gleichen Prinzip elektronisch umgeschaltet. Die Transistoren T 301 - T 304 arbeiten dabei in Kollektorschaltung und man erhält dadurch einen niedrigen dynamischen Innenwiderstand. Damit kann das NF-Signal dem Hauptverstärker hochohmig zugeführt werden.

NF-Teil

Vorverstärker

Der Vorverstärker ist zweistufig ausgelegt T 100, T 101. Er besitzt eine frequenzabhängige Gegenkopplung. Die Entzerrung erfolgt in Stellung PHONO MAGNET, der Schneidkennlinie entsprechend, mit 3180, 318 und 75 us.

Frequenzbestimmende Bauteile sind R 106, R 107, C 103, C 104. Bei 1000 Hz ist die Verstärkung 41 dB (ca. 120-fach). Zur Symmetrierung der beiden Kanäle dient der Regler R 109, der es gestattet, die Verstärkung im linken Kanal dem rechten Kanal anzupassen.

Eingangsimpedanzwandler

Die Eingänge PHONO CERAMIC, TAPE 1 und TAPE 2 sind mit je einem Impedanzwandler T 102, bzw. T 103 und T 104 ausgestattet. Danach gelangt das niederohmige Signal über das Drucktastenaggregat an den SQ- und den Multifonie-Decoder.

SQ-Decoder III

Der SQ-Decoder besteht aus dem IC-Baustein XC 1312 und der dazugehörigen vom Hersteller empfohlenen Beschaltung, in der die Decodierung des SQ-Signals realisiert wird.

Multifonie-Decoder IV

Durch die Transistoren T 600 bis T 603 und die Widerstände R 608 bis R 611 findet die Decodierung

linker Kanal - rechter Kanal und

rechter Kanal - $\frac{1 \text{inker Kanal}}{2}$

statt. Der Kanal hinten links ist phasengleich mit vorne links, weil durch T 600
und T 602 jeweils eine Phasenverschiebung
von 1800 erfolgt. Im rechten Kanal wird nur
durch T 601 die Phase gedreht während der
nachfolgende Transistor T 603 als Impedanzwandler arbeitet. Dadurch ergibt sich für
das Signal hinten rechts eine Phasenverschiebung von 1800 gegenüber vorne rechts.

Betriebsartenschalter und Lautstärkeregler

Es folgt der Betriebsartenschalter, der es gestattet von STEREO auf 2 x STEREO, 4 CHAN-NEL, SQ oder MULTIFONIE umzuschalten. Der als 4-fach-Drehwiderstand ausgebildete Lautstärkeregler ist mit Abgriffen für die physiologische Lautstärkeregelung versehen, zuschaltbar mit dem Schalter S 200 LOUDNESS.

IC-Verstärker V

In dieser Verstärkerstufe fand ein in der Computertechnik bewährter integrierter Operationsverstärker der Serie 709 Verwendung. Seine Leerlaufverstärkung (typ. Wert) ist 93 dB, ca. 45 000-fach. Durch die Gegenkopplung, die die Verstärkung auf ca. 17 dB reduziert, wurden beste Übertragungseigenschaften erreicht, z.B. sehr kleiner Klirrfaktor.

Baß- und Höhenregler XII

Die Baß- und Höhenregler sind ebenfalls als 4-fach-Drehwiderstände ausgebildet und besitzen in Mittenstellung eine mechanische Rastung. In dieser Stellung ist ein linearer Frequenzgang gewährleistet.

Der aktive Klangregler ist mit dem integrierten Schaltkreis 748 bestückt.

Impedanzwandler und Pegelregler

Es folgt ein Impedanzwandler T 720, der das Signal niederohmig über die Pegelregler an den Endverstärker gibt.

Elektronische Sicherung

Die Endstufen des CR 120 sind elektronisch gegen zu niedrige Abschlußwiderstände einschließlich Kurzschluß am Lautsprecherausgang gesichert. Die zur Verstärkung der positiven Halbwellen vorgesehene Transistorkombination T 301, T 303 wird wie folgt geschützt:

Der Spannungsabfall am Emitter-Schutzwiderstand R 306 ändert sich in Abhängigkeit vom Stromfluß. Über einen Spannungsteiler R 820, R 821 wird der Transistor T 820 angesteuert. Dieser Transistor bildet einen Nebenschluß zur Basis-Emitterstrecke von T 301. Dadurch wird eine wirksame Strombegrenzung erreicht. Die Strombegrenzung der Transistoren T 302, T 304, die der Verstärkung der negativen Halbwellen dienen, erfolgt in gleicher Weise. Bei diesem Schaltungskonzept sind die Spannungsteiler so ausgelegt, daß der Einsatzpunkt der Strombegrenzung durch den Abschlußwiderstand beeinflußt wird. Bei zu niedrigem Abschlußwiderstand oder Kurzschluß setzt die Strombegrenzung wesentlich früher ein, um die thermische Belastung der Endtransistoren gering zu halten.

Netzteil und Stromversorgung

Ein streufeldarmer Schnittbandkern-Netztransformator für Netzspannungen von 110, 117, 220 und 240 V dient in Verbindung mit einem Silizium-Brückengleichrichter und den Siebelkos C 403, C 404 der Stromversorgung der Endstufen und Treiber. Die Speisespannungen X Y Z sind stabilisiert.

Prüf-und Justierdaten

Stromaufnahme

bei 220 V im Leerlauf max. 130 mA bei 220 V und Vollast (2 Kanäle) 8,9 V (20 W) an 4 $\Omega/\text{Kanal Front max.}$ 600 mA bei 220 V und Vollast (4 Kanäle) 8,9 V (20 W) an 4 Ω/Kanal Front und Rear

Betriebsspannungen

Mit R 908 die Spannung "X" im Leerlauf auf 15 V stellen.

+ 49 bis 52 V + 13,5 bis 15,5 V HF-Teil Spannung "X" + 13,5 bis 15,5 V
Spannung "Y" - 13,5 bis - 15,5 V
Spannung "Z" + 23 bis 25 V Endstufen im Leerlauf ± 22,5 bis ± 24 V Endstufen bei Vollast (20 W) Spannungsabfall max. 6 V

Ruhestrom der Endstufen Rear und Front

gemessen nach ca. 2 Min. ca. 20 mA Betriebszeit einstellbar mit R 301

Kurzbezeichnung für Regler, Schalter und Einstellung

La = Lautstärkeregler VOLUME Fr = Pegelregler FRONT

Re = Pegelregler REAR

K1 = Klangregler BASS, TREBLE Lou = Taste LOUDNESS gedrückt Ph = Taste PHONO gedrückt = Taste TAPE gedrückt Ta

Betriebsartenschalter 2 St = in Stellung 2 x STEREO St = in Stellung STEREO

4 Ch = in Stellung 4 CH SQ = in Stellung SQ Mu = in Stellung MULTI

= Regler offen

= Regler in mechanischer Mittenstellung

3 = Regler zurückgedreht

= Regler 6 dB unter Vollaussteurung = Regler 40 dB unter Vollaussteurung

Electronische Sicherung

An einem Kanal 8,9 V (20 W) an 4 Ω einstellen. Die anderen Kanäle bleiben offen.

Stromaufnahme bei 4 Ω Abschluß 300 - 320 mA Stromaufnahme bei 3 Ω Abschluß 340 – 390 mA Stromaufnahme bei 2 Ω Abschluß 330 – 380 mA Stromaufnahme bei 1 Ω Abschluß 320 - 370 mA Stromaufnahme bei Kurzschluß 300 - 350 mA

Nacheinander die übrigen 3 Kanäle in gleicher Weise prüfen.

Achtung! Die Stromaufnahme muß bei Kurzschluß niedriger sein als bei einem Abschluß von 1 – 3 Ω

Thermosicherung

8,9 V (20 W) 1000 Hz an 4 $\Omega/\text{Kanal einstel}$ len, alle Ausgänge kurzschließen und die Netzstromaufnahme messen. Stromaufnahme nach ca. 2 Sekunden max. 1 A Nach 8 - 13 Minuten Kurzschluß muß der Thermoschalter die Netzspannung unterbre-

Nach weiteren 1 - 3 Minuten muß das Gerät wieder betriebsbereit sein (Thermoschalter

geschlossen).

Verstärkungsabgleich und Ausgangsspannungen

4 Ch. La 1. Fr 2. Re 2. Kl 2 1000 Hz 290 mV am Eingang 4 CHANNEL einspeisen und mit R 1 (R 2) in jedem Kanal 1,33 V einstellen, gemessen am Kontakt 2 (C 800) der Universal-Treiber. Anschließend mit R 300 jeden Kanal auf gleiche Ausgangsspannung (8,3 – 9,5 V) an 4Ω einstellen.

Ausgangsspannung Ausgangsspannung an den Kopfhörerbuchsen, 4,5 – 5,5 V mit 400 Ω abgeschlossen 4,5 - 5,5 V an den TAPE-Ausgängen, Kontaktfedern an den TAPE-Noogangon, 1/2 und 4/2 mit 10 k Ω ab- 2 - 3 mV geschlossen

Lautstärkeregler

4 CH, La 1, Fr 2, Re 2, Kl 2 1000 Hz 290 mV am Eingang 4 CHANNEL einspeisen Lautstärkeregler auf Parallelität der Reglerbahnen prüfen. Kanalabweichung Front zwischen La 1 und La 2 max. 3 dB zwischen La 2 und La 40 max. 4 dB zwischen La 1 und La 2 Kanalabweichung Rear max. 5 dB max. 5 dB zwischen La 2 und La 40

Klirrfaktor

4 Ch, La 1, Fr 2, Re 2, Kl 2 Signalgenerator am Eingang 4 CHANNEL anschließen und an den FRONT- und REAR-Ausgängen den Klirrfaktor messen.

Klin	rrfal	kto	or (ger	nes	ssen a	an 4	$\Omega/\text{Kanal})$			
									\leqq	0,5	%
bei	7,8	V	(15	W)),	1000	Hz		\leq	0,5	%
						40			\leq	0,3	%
						12,5			\leq	0,7	%
						1000			\leq	0,2	%
bei	2	V	(1	W),	40	Hz		\leq	0,2	%
bei	2	V	(1	W,),	12,5	kHz		\leq	0,3	%

Klangregler

4 Ch, La 1, Fr 2, Re 2, Kl 1 ca. 30 mV am Eingang 4 CHANNEL einspeisen Baßanhebung bei 40 Hz 16-20 dB Höhenanhebung bei 12,5 kHz 16-20 dB Kanalabweichung K 1, 2, 3 und 4 max. 3 dB

K1 3 Baßabsenkung bei 40 Hz Höhenabsenkung bei 12,5 kHz 17 – 21 dB Kanalabweichung K 1, 2, 3 und 4 max. 3 dB

Pegelregler

Regelbereich der REAR- und FRONT-Regler, gemessen bei 1000 Hz + 3 bis + 6 dB -40 bis -60 dB

Symmetrie des Vorverstärkers

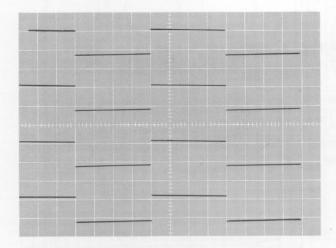
Ph, St, La 1, Fr 2, Re 2, Kl 2 1000 Hz ca. 2 mV am Eingang PHONO einspeisen und mit R 109 die Ausgangsspannung von FRONT links und FRONT rechts symmetrie ren. R 109 ist nach Abnahme des Abschirmbleches an der hinteren Seite des Gerätes (Eingänge) seitlich zugängig.

Frequenzgang des Vorverstärkers

Ph, St, La 2, Fr 2, Re 2, Kl 2 1000 Hz ca. 2 mV am Eingang PHONO einspeisen Baßanhebung bei 40 Hz Höhenabsenkung bei 12,5 kHz bezogen auf den 1000 Hz-Pegel Kanalabweichung K 1/K 2 max. 3 dB

Linearität des Verstärkers

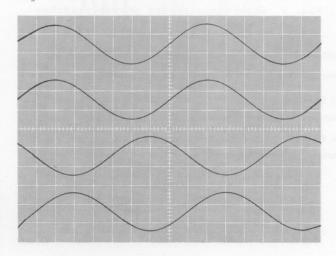
4 Ch, Fr 2, Re 2, Kl 2
290 mV am Eingang 4 CHANNEL einspeisen
Abweichung von der 0 dB-Linie (FRONT und
REAR) zwischen 40 Hz und 12,5 kHz
bei La 6 und La 40 <u>+</u> 1,5 dB
Kanalabweichung K 1, 2, 3 und 4 max. 3 dB


Physiologische Lautstärkeregelung

4 CH, La 40, Fr 2, Re 2, Kl 2, Lou 1000 Hz, ca. 290 mV am Eingang 4 CHANNEL einspeisen Höhenanhebung bei 12,5 kHz 3 - 7 dB Baßanhebung bei 40 Hz 12 - 16 dB bezogen auf den 1000 Hz - Pegel Kanalabweichung K 1, 2, 3 und 4 max. 3 dB

Rechteckverhalten

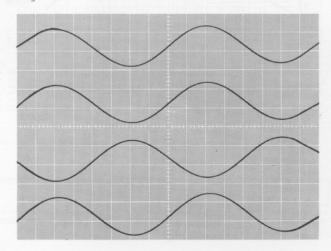
La 1, Fr 2, Re 2, Kl 2 500 Hz (Impulsfrequenz) einspeisen, 1 V am Frontausgang an 4 Ω/Kanal einstellen. Prüfen über alle linearen Eingänge und in allen Betriebsarten, außer SQ. Kontrolle und Beurteilung der Rechteckimpulse (Oszillogramm Fig. 1)


Fig. 1 Rechteckverhalten

SQ-Decoder

Ta, St, Fr 2, Re 2, Kl 2 1000 Hz, ca. 290 mV am Eingang TAPE einspeisen, beide Kanäle ansteuern, mit dem Lautstärkeregler 4 V an 4 Ω/Kanal FRONT einstellen. (Oszillogramm Fig. 2)

Fig. 2 SQ-Decoder


SQ Ausgangsspannung an 4 Ω/Kanal FRONT an 4 Ω/Kanal REAR Kanalabweichung	3,5 - 4,5 V 1,3 - 2,3 V max. 3 dB
Nur rechter Kanal angesteuert Ausgangsspannung an 4 Ω FRONT rechts an 4 Ω FRONT links an 4 Ω REAR rechts an 4 Ω REAR links Kanalabweichung	3 - 4 V 0,2 - 0,4 V 1,5 - 2,5 V 1,5 - 2,5 V max. 3 dB
Nur linker Kanal angesteuert Ausgangsspannung an 4 Ω FRONT rechts an 4 Ω FRONT links an 4 Ω REAR rechts an 4 Ω REAR links Kanalabweichung	0,2 - 0,4 V 3 - 4 V 1,5 - 2,5 V 1,5 - 2,5 V max. 3 dB
Beide Kanäle angesteuert Abweichung von der O dB-Linie zwischen 40 Hz und 12,5 kHz an 4 Ω FRONT rechts an 4 Ω FRONT links an 4 Ω REAR rechts an 4 Ω REAR links	+ 1,5 dB + 1,5 dB + 3 dB + 3 dB

Multifonie-Decoder

Ta, St, Fr 2, Re 2, Kl 2 1000 Hz ca. 290 mV am Eingang TAPE einspeisen, beide Kanäle ansteuern, mit dem Lautstärkeregler 4 V an 4 Ω/Kanal FRONT einstellen.

Mu			
Ausgangsspannung			
an 4 Ω/Kanal REAR	1,5	-	2,5 V
Phasenlage R/L			1800
(Oszillogramm Fig. 3)			

Fig. 3 Multi-Matrix

Nur linker Kanal angesteuert Ausgangsspannung an 4 Ω REAR links an 4 Ω REAR rechts	3		4 2,4	V
Nur rechter Kanal angesteuert Ausgangsspannung				
an 4 Ω REAR rechts an 4 Ω REAR links	3 1,4	=	4 2,4	V

la 3 Störspannung an den FRONT— und REAR—Ausgängen max. 0,7mV

SQ, La 1 Störspannung an den FRONT- und REAR-Ausgängen max. 4 mV Die gleichen Meßwerte sind auch für Betriebsart "Mu" verbindlich.

Ph, St, La 1, Fr 2, Kl 2, Lin Eingang PHONO mit 1 k Ω abgeschlossen Störspannung an den FRONT-Ausgängen max.

an den FRONT-Ausgängen max. 8 mV an den REAR-Ausgängen max. 1 mV

La 3 Störspannung an den FRONT- und REAR-Ausgängen max. 0,7mV

Fig. 4 Leistungsbandbreite

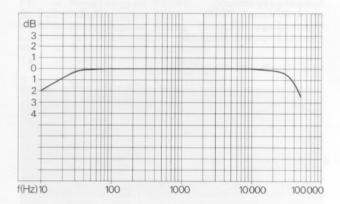
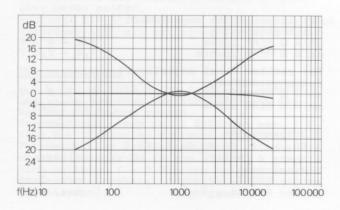



Fig. 6 Wirkungsbereiche der Klangregler 0 dB = Baß- und Höhenregler in Mittenstellung

SQ, La 1 Störspannung an den FRONT- und REAR-Ausgängen max. 10 mV Die gleichen Meßwerte sind auch für Betriebsart "Mu" verbindlich.

Übersteuerungsfestigkeit der Vorstufen

2 St, La 2, Fr 2, Re 2, Kl 2 Eingang PHONO, bezogen auf 2,5 mV ≧ 12 dB Linear-Eingänge, bezogen auf 290 mV ≧ 12 dB

Eingangsempfindlichkeit

für Vollaussteuerung, 4 x 20 W (8,9 V) an 4 $\Omega/{\rm Kanal}$ Phono 2 - 3 mV Linear-Eingänge 260 - 320 mV

Fig. 5 Klirrgrad bei 40 Hz, 1 000 Hz, 12 500 Hz in Abhängigkeit von der Ausgangsleistung

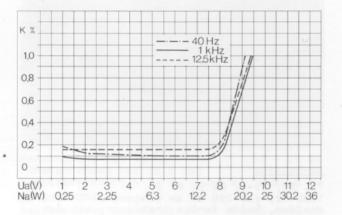
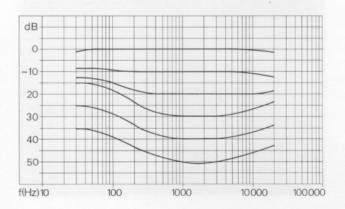



Fig. 7 Wirkungsweise der physiologischen Lautstärkeregelung O dB = Lautstärkeregler offen

Abgleichanleitung

Erforderliche Meßgeräte: ZF-Wobbler,

ZF-Wobbler, NF-Oszillograf Voltmeter (Ri ≧ 10 MOhm) Klirrfaktormesser (≦ 0,5 %)

FM/ZF-Abgleich 10,7 MHz

UKW-Bereichstaste drücken, NF-Oszillograf über Diodentastkopf an Meßpunkt 3 anschliessen. Vor Abgleich L 109 nach innen verstimmen. ZF-Wobbler mit Abgleichfrequenz 10,7 MHz (Ausgang mit 60 Ohm abgeschlossen) an Meßpunkt 2 einspeisen und das Vierkreisfilter F 102 (L 117, L 116, L 115, L 114) sowie die Spule L 110 auf maximale Kurvenhöhe und Symmetrie abgleichen. Die Wobblerspannung soll dabei so hoch gewählt werden, daß sich der nachfolgende ZF-Verstärker in begrenztem Zustand befindet. Dann Wobblersignal an Meßpunkt 1 einspeisen und das Vierkreisfilter F 101 mit den Spulen L 110, L 108, L 107 und zuletzt L 109 auf symmetrischen Kurvenform und max. Kurvenhöhe abglei-

Die Wobblerspannung ist jetzt so weit zu verringern, daß sich bei voll aufgedrehtem Anzeigeverstärker ein gut sichtbares Kurvenbild ergibt. Die Halbwertsbreite der ZF-Durchlaßkurve soll etwa 200 kHz im unbegrenzten Zustand betragen.

Zum Abgleich des Demodulatorfilters ist der NF-Oszillograf ohne Diodentastkopf an den Meßpunkt 13 anzuschließen. Die Ausgangs-spannung des ZF-Wobblers muß so weit erhöht werden (HF-Signal an Meßpunkt 1), daß der Höckerabstand der S-Kurve mindestens 200 kHz beträgt.

Mit der Spule L 120 wird bei 10,7 MHz auf S-Kurvennulldurchgang abgeglichen, dagegen mit L 121 größte Linearität bzw. Klirrfak-torminimum eingestellt. Steht ein Klirrfaktormesser zur Verfügung, wird mit L 121 auf geringsten Klirrgrad abgeglichen. Der Modulationshub soll dabei 40 kHz 1000 Hz betragen. (Siehe FM-Klirrfaktor- und AFC-Symmetrie).

AM-Unterdrückung

Meßsenderausgang 50 μV 103 MHz mit 1000 Hz 22,5 kHz Hub an Antenne 240 Ohm einspeisen. Danach mit 1000 Hz 30 % modulieren. Unterdrückung ≧ 40 dB.

AM/ZF-Abgleich 460 kHz (473 kHz)

ZF-Filter F 201 nur abgleichen, wenn ein Defekt vorliegt. MW-Bereichstaste drücken, Drehkondensator eindrehen, NF-Oszillograf an Meßpunkt 6. ZF-Wobbler mit Abgleichfrequenz 460 kHz (473 kHz) (Ausgang mit 60 Ohm abgeschlossen) an Meßpunkt 5 einspeisen. Beide Filterspulen sind auf maximale Kurvenhöhe und Symmetrie zum Piezofilter abzugleichen. Gesamtbandbreite – 3 dB ca. 4,5 kHz. Danach ZF-Wobbler an Meßpunkt 4 einspeisen (AM-Antenneneingang). ZF-Saugkreis L 202 auf Signalminimum einstellen.

AM-Vorkreisabgleich

Für den Vorkreisabgleich der Bereiche siehe Abgleichtabelle. Bei AM wird das Signal über eine Kunstantenne (200 pF + 400 Ω) an der Antennenbuchse eingespeist. Bei AM-Ferritantenne ist die "FA" Taste zusätzlich zu drücken und das Antennensignal induktiv

einzuspeisen. Vor Beginn des Vorkreisabgleichs ist zu prüfen, ob bei eingedrehtem Drehkondensator der Skalenzeiger auf der Endmarke der Skala steht.

Bemerkung: Bei Neuabgleich der AM Vor- und Oszillatorkreise ist die Einstellreihenfolge Langwelle, Mittelwelle, Kurzwelle.

FM-Oszillator- und Vorkreisabgleich

Vorbereitung zum Abgleich

Zunächst überprüfen, ob der Skalenzeiger auf der Endmarke der Skala steht. Hochohmiges Voltmeter (Ri ≥ 10 MOhm) an Anschluß-punkt 14 des Abstimmpotentiometers anschließen. Skalenzeiger an den rechten Anschlag (108 MHz) stellen und mit R 703 + 30 V (+ 100 mV) einregeln. Danach den Skalenzeiger auf Linksanschlag(87,2 MHz) bringen und mit R 154 3 V einstellen.

Die Abgleichtrimmer C 109 und C 113 sollen zur Hälfte eingedreht sein. Die Spulenkerne von L 102 und L 103 sollen ca. 1 mm über den Spulenkörper herausgedreht werden.

FM-Abgleich

Siehe Abgleichtabelle Der Meßsenderausgang soll 240 Ohm betragen (Impedanzwandler 60/240 Ohm).

Skalenzeiger auf Eichmarke 104 MHz stellen und mit L 104 auf Maximum abgleichen. Skalenzeiger auf 90,8 MHz stellen und mit R 154 auf Maximum abgleichen. Der Gleichlauf ist bei 90,8 MHz mit L 102 und L 103 und bei 104 MHz mit C 109 und C 113 einzustellen. Der Gleichlaufabgleich ist so lange zu wiederholen, bis ein Optimum erreicht ist.

Abstimmanzeige FM (A 101)

Mit dem Regler R 127 kann der Nullpunkt, oder eine evtl. angezeigte Rauschspannung zwischen zwei Sendern auf Minimum kompensiert werden. Der Vollausschlag wird bei einer beliebigen Frequenz mit einem Eingangssignal von ca. 10 mV mit R 132 eingestellt.

Frequenzanzeige FM (A 102)

Zur Eichung des Instrumentes A 102 wird der Empfänger auf 100 MHz abgestimmt. Mit dem Regler R 157 wird der Zeiger des Instrumentes auf die 100 MHz Marke geeicht. Der Regler R 156 kompensiert die Anzeigespannung bei 92 MHz.

Bemerkung: Der Einstellvorgang sollte bei beiden Reglern von der Mittelstellung aus erfolgen.

FM-Stillabstimmung

Mit R 143 wird der Einsatzpunkt der Stillabstimmung bestimmt. Moduliertes Meßsendersignal (22,5 kHz Hub/1000 Hz) 15 – 35 μ V/HF an Antennenbuchse 240 Ohm einspeisen. NF-Signal am Tunerausgang messen.

Still-Taste drücken.
Zunächst R 143 an Linksanschlag bringen.
Der FM-ZF-Verstärker ist damit stumm gesteuert. Dann R 143 so lange nach rechts
drehen, bis ca. 30 - 40 % der vorher gemessenen Modulation am NF-Ausgang wieder vorhanden sind.

Bemerkung: Der Einsatzpunkt der Stillabstimmung ist von dem eingestellten Wert der HF-Schaltschwelle des Stereo-Decoders abhängig. Daher sollte nach dem Abgleich des Stereoschwellwertes (siehe Stereo-Decoder), die Einstellung am Regler R 143 nicht mehr verändert werden. Die Stillabstimmung arbeitet dann automatisch im gewünschten Bereich. (Einsatzpunkt bei \leq 15 - 35 μ V an 240 Ω).

FM-Klirrfaktor und AFC-Symmetrie

UKW-FM-Sender mit 1000 Hz/40 kHz Hub modulieren und den Empfänger mit Hilfe des Abstimminstrumentes genau auf die Senderfrequenz (ca. 104 MHz/1 mV an 240 0hm) abstimmen. Klirrfaktormesser an NF-Ausgang anschließen und Klirrdämpfung messen. (\leq 0,5 % für 1000 Hz).

Genauer Abgleich: Zuerst mit L 120 maximale NF (1000 Hz), dann mit L 121 Klirrminimum einstellen.

Danach AFC-Taste drücken. Hierbei darf sich der gemessene Klirrfaktor und die NF-Amplitude nicht verändern.

Bei einer Abweichung, läßt sich mit dem Regler R 144, von der Mittenstellung (Grundstellung) ausgehend, unter mehrfacher Betätigung der AFC-Taste, die Symmetrie nachstellen.

Bemerkung: Sollte mit einem maximalen Drehwinkel von plus oder minus 45° keine Symmetrie erreicht werden, ist der Abstimmvorgang des Empfängers und der Abgleich von L 120/L 121 zu wiederholen.

Stereo-Decoder

Vorbemerkung

Der Stereo-Decoder wurde in unserem Werk sorgfältig eingestellt. Ein Neuabgleich sollte daher nur vorgenommen werden, wenn ein Defekt vorliegt.

Erforderliche Meßgeräte

Stereo-Coder, UKW-FM-Sender (für Stereomodulation bis 53 kHz geeignet), NF-Röhrenvoltmeter, NF-Oszillograf, RC-Generator max. Tonfrequenz 100 kHz.

Abgleich des Stereo-Decoders

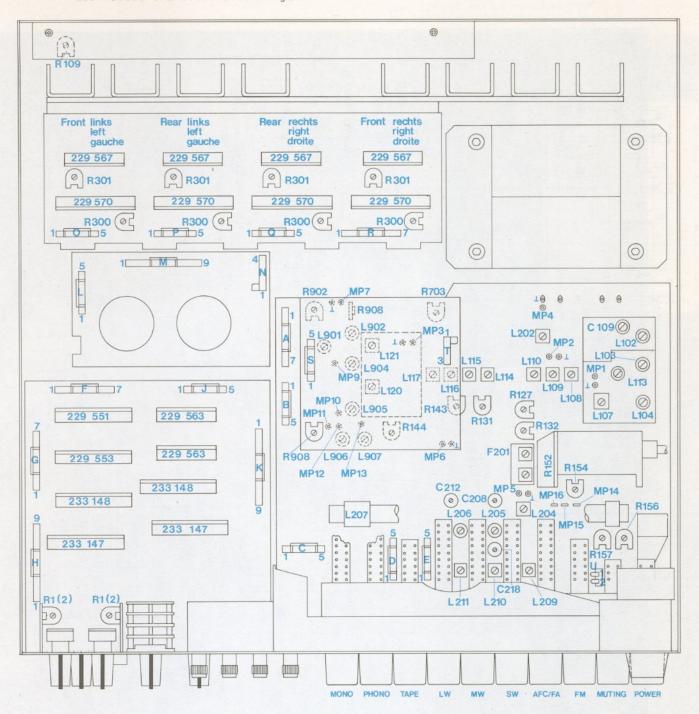
Vor dem Abgleich ist der Regler R 908 in Mittenstellung, und der Regler R 902 auf rechten Anschlag zu bringen. UKW-Taste drükken. UKW-FM-Sender vom Stereo-Coder mit 19 kHz (Hub 6,35 kHz) modulieren und Empfänger auf die Sender-Frequenz abstimmen (ca. 104 MHz 1 mV an 240 Ohm). Oszillograf über Tastkopf an Meßpunkt 9 anschließen und die Spulen L 901, L 904 auf 19 kHz Maximum abgleichen. Dann Oszillograf an Meßpunkt 10 und mit L 905 38 kHz-Maximum abgleichen.

UKW-FM-Sender mit Multiplexsignal und 1 kHz 40 kHz Hub links modulieren, Oszillograf am rechten NF-Ausgang. Mit L 904 minimales gegenphasiges Übersprechen (exakte Pilotphase) einstellen. Anschließend muß das Multiplexsignal abwechselnd mit 1 kHz und 10 kHz moduliert werden und dabei der Regler R 902, sowie die Spule L 902 wechselseitig auf minimales Übersprechen abgeglichen werden.

Mit dem Regler R 908 werden die 38 kHz Reste, mit den Spulen L 906, L 907 die noch vorhandenen 76 kHz Anteile auf Minimum abgeglichen.

Zur Gegenprobe ist das Multiplexsignal mit 1 kHz/40 kHz Hub rechts zu modulieren und der Oszillograf an den linken NF-Ausgang anzuschließen. Bei ungenügender Übersprechdämpfung ist der vorher beschriebene Abgleich-Vorgang mit L 904, R 902 und L 902 zu wiederholen.

Stereo-Schwellwert

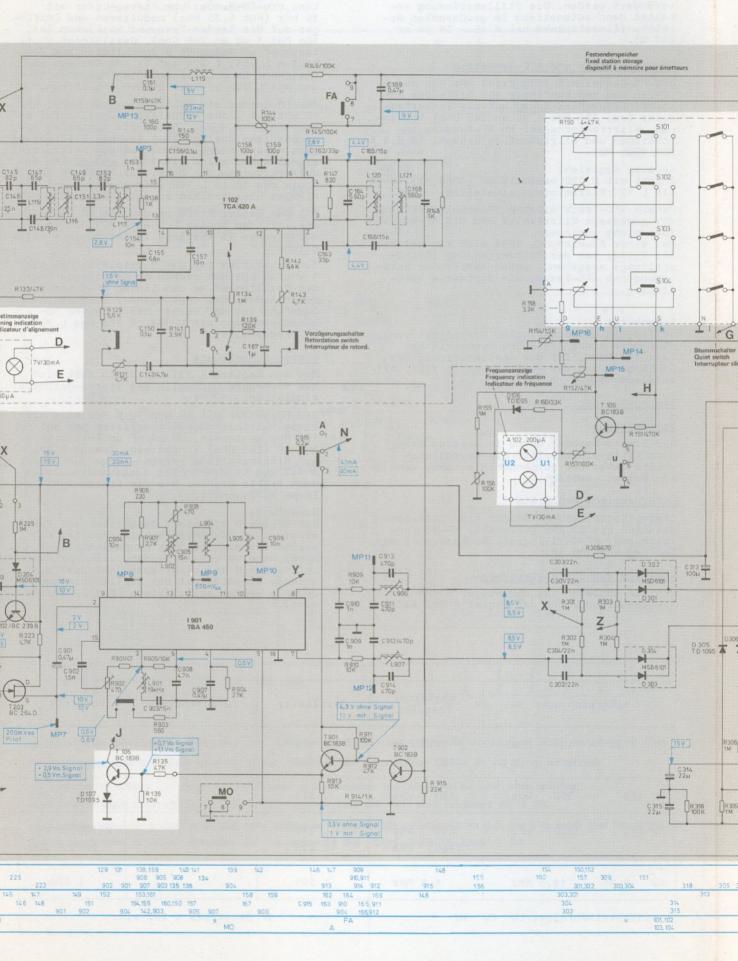

Mit den Reglern R 131 und R 143 läßt sich die HF-Ansprechschwelle des Stereo-Decoders einstellen.

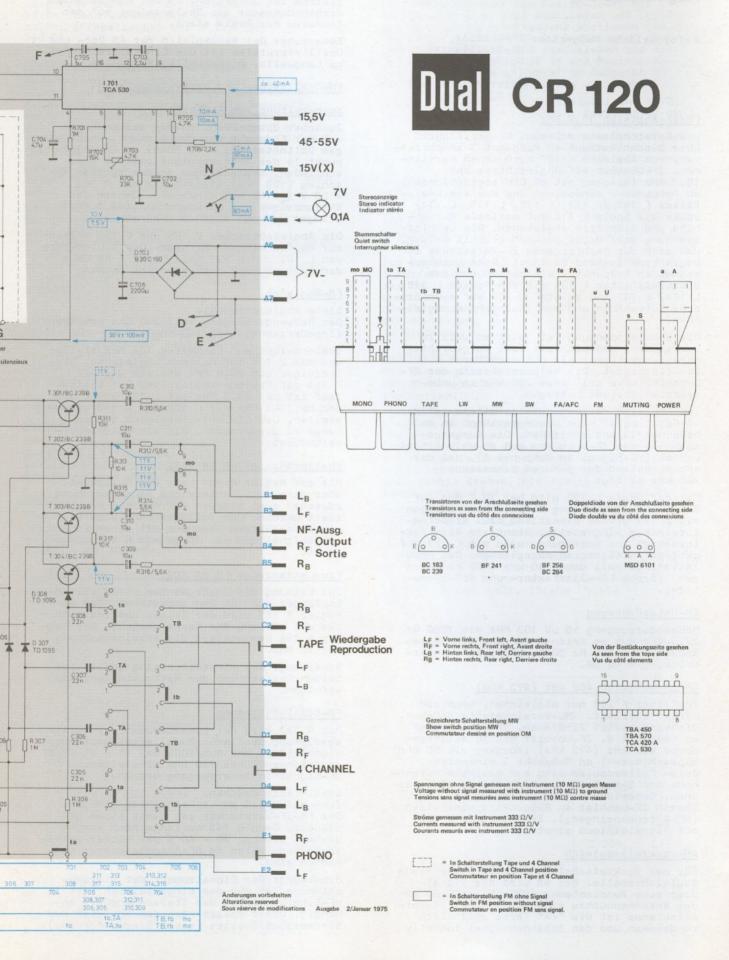
UKW-FM-Sender mit 19 kHz/10 % Hub oder mit einem Multiplexsignal modulieren und auf 104 MHz abstimmen. 20 $\mu V/HF$ an Antennenbuchse (240 0hm) einspeisen. Zuerst R 131 auf Mittenstellung bringen. Dann den Regler R 143 vom Linksanschlag ausgehend so lange nach rechts drehen, bis die Stereo-Anzeigelampe aufleuchtet.

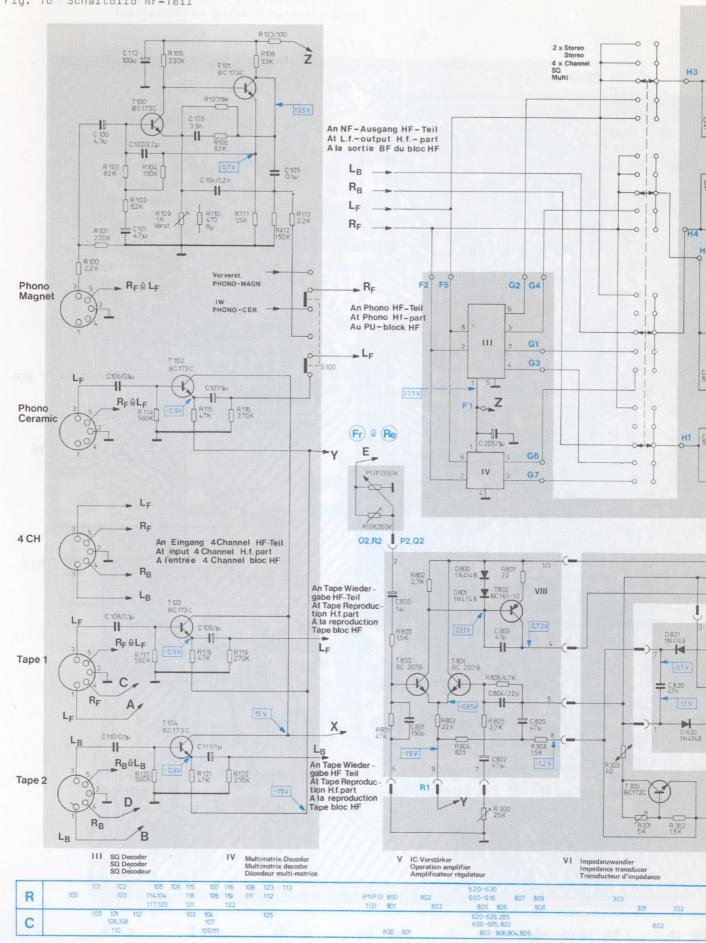
Bemerkung:
Der Regler R 131 dient zusätzlich zur Feineinstellung der Stereoschaltschwelle. Er
sollte nur dann von der Grundeinstellung
abweichend verändert werden, wenn der Regelumfang des R 143 nicht ausreicht oder ein
anderer Einsatzpunkt der Stillabstimmung
gewählt werden soll. (Siehe FM-Stillabstimmung).

Bereich	Abgleich- frequenz	Oszillator	Zwischenkreis	Vorkreis
FM 87,2 - 108 MHz	88,3 MHz	R 154	L 102, L 103	
	103 MHz	L 104	C 109, C 113	
LW 150 - 350 kHz	160 kHz	L 211		L 206, L 208
MW 510 - 1620 kHz	580 kHz	L 210		L 205, L 207
	1460 kHz	C 218		C 208, C 212
SW 5,85 - 16,5 MHz	6,5 MHz	L 209		L 204
bgleichreihenfolge: LW M	W SW	ZF	Saugkreis L 202 m	in.

Fig. 8 Abgleichpositionen und Lageplan der Module und Steckverbindungen




Die aufgeführten Kennummern dienen nur dem Auffinden der Module und dürfen für Bestellungen nicht verwendet werden! Für Ersatzteilbestellungen bitten wir die Artikel Nummern der Ersatzteilliste Seite 28 bis 35 zu entnehmen.


The identification number are given only for location of the modules and should not be used when ordering! When ordering spare parts please take the article numbers from the spare parts list pages 28 to 35.

Les numéros indicatifs servent seulement pour faciliter la recherche de modules. On ne doit pas s'en servir pour les commandes. Pour le commandes de pièces détachées user les références des listes pages 28 jusqu' à 35.

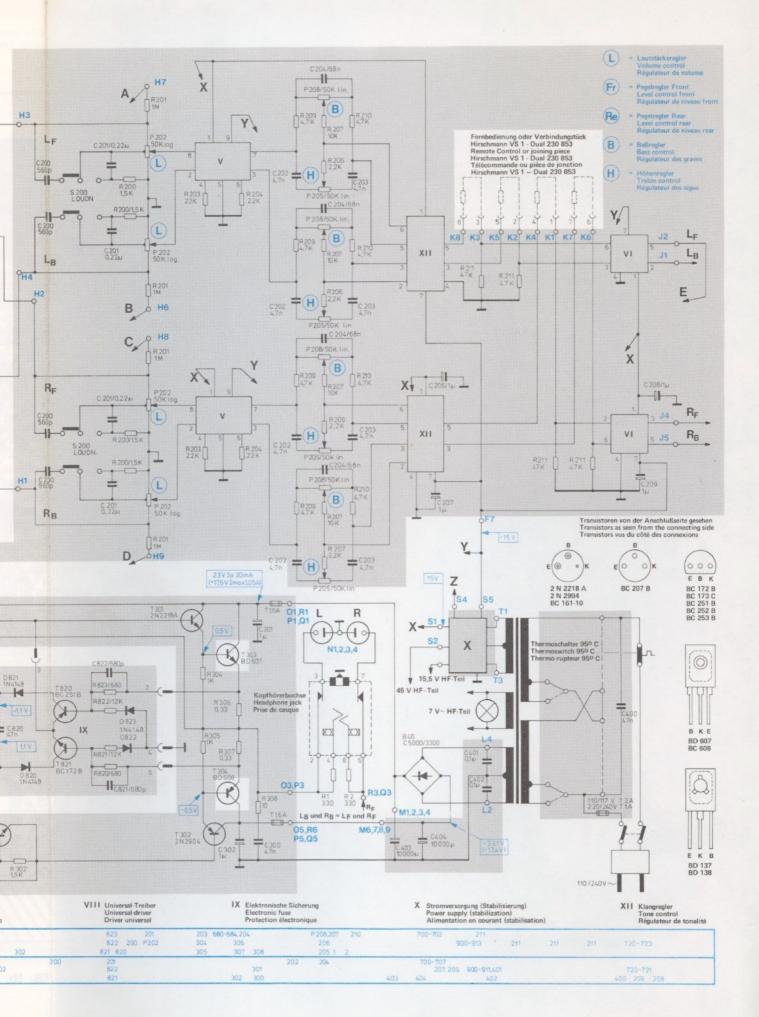
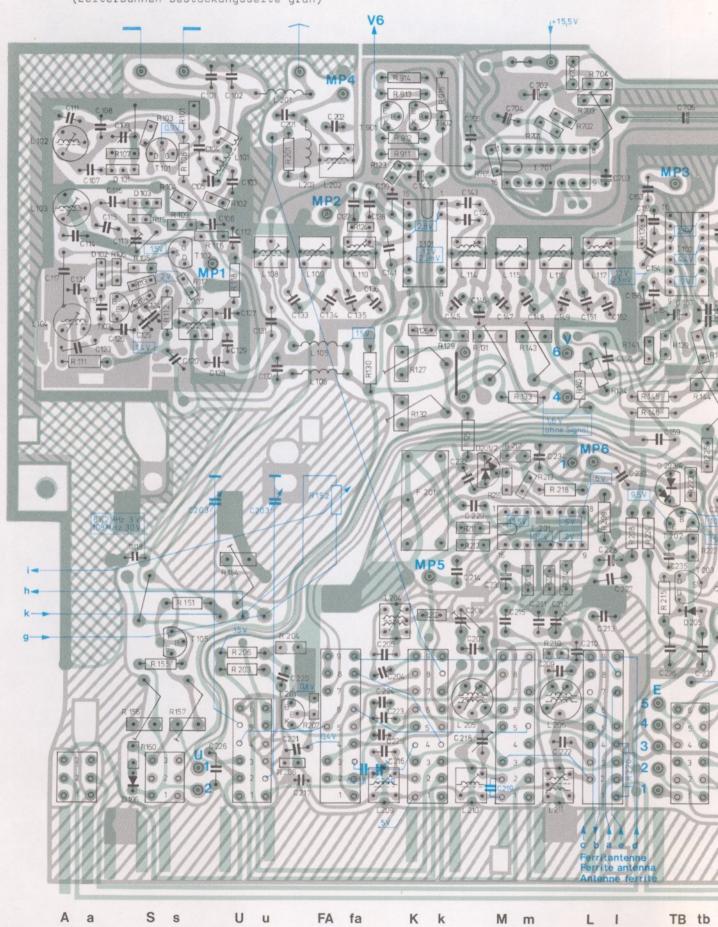
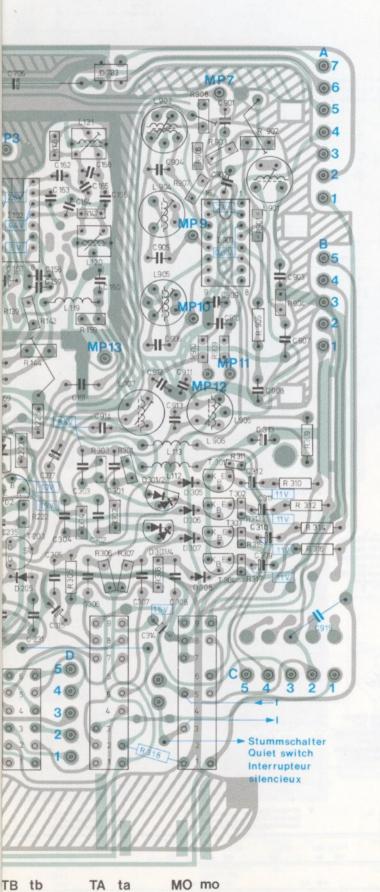





Fig. 11 HF-Teil 231 701 Leiterseite (Leiterbahnen Bestückungsseite grün)

K

0

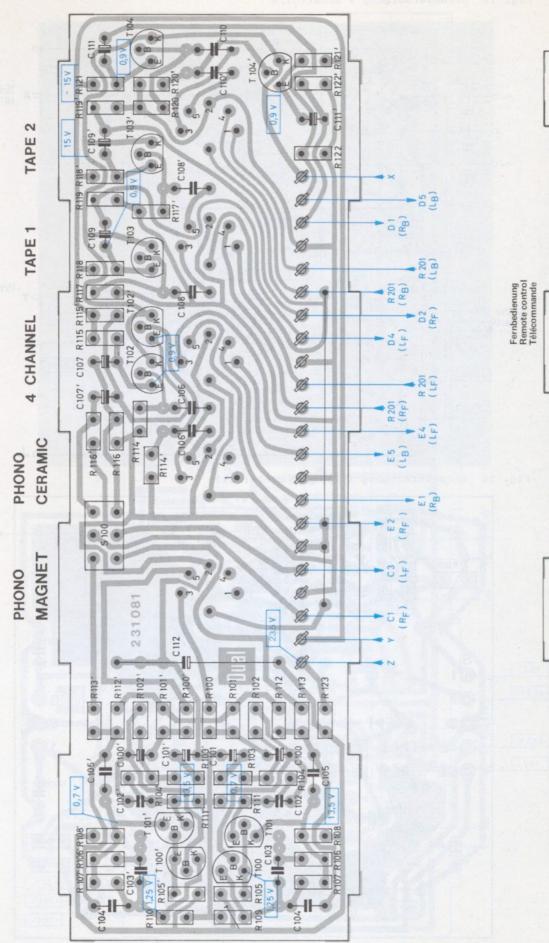
O 6 R211

0 8 •R211

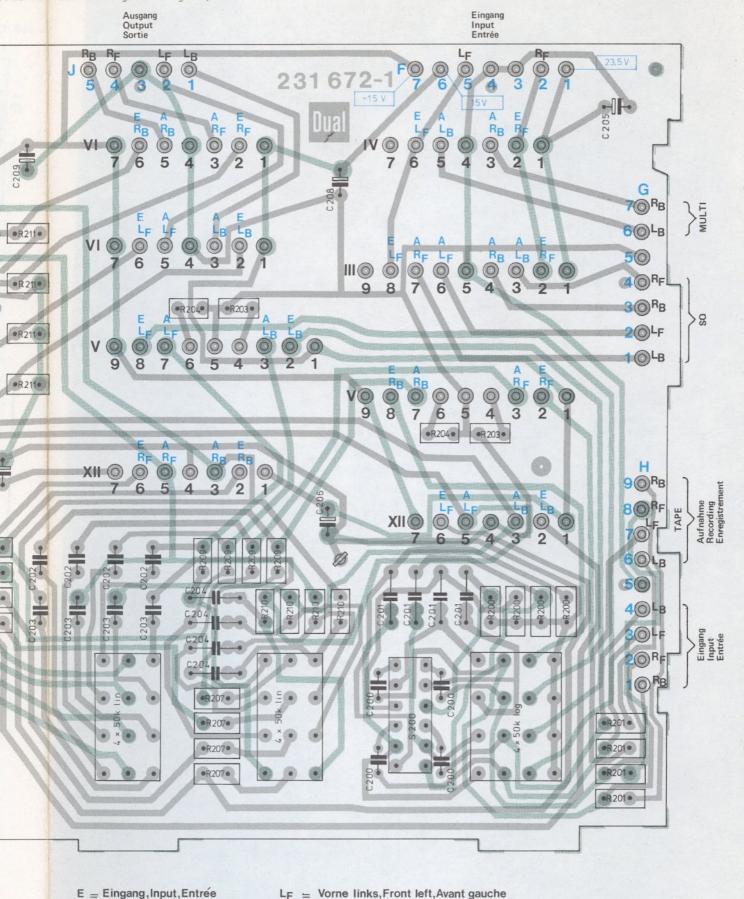
● 5 •R211

3

O 2


•R206•

•R206


R206

•R206•

1 •R211

A = Ausgang, Output, Sortie

R_F = Vorne rechts, Front right, Avant droite
L_B = Hinten links, Rear left, Arrière gauche
R_B = Hinten rechts, Rear right, Arrière droite

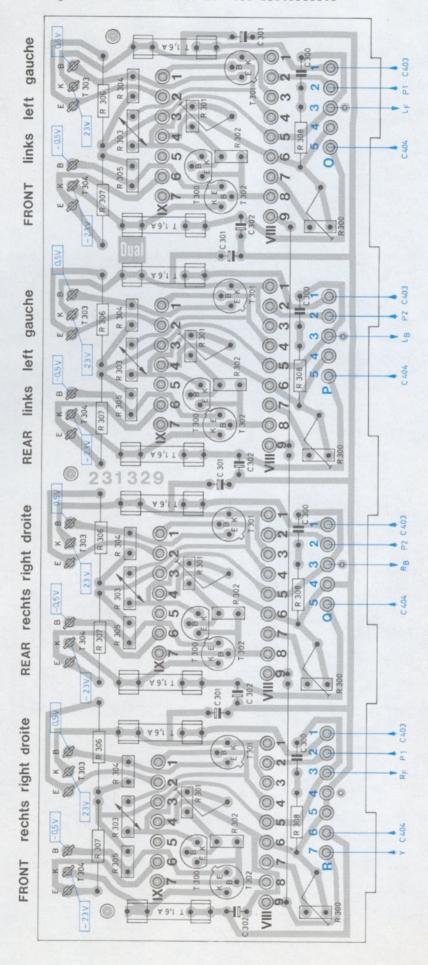


Fig. 15 Stromversorgung X Schaltbild

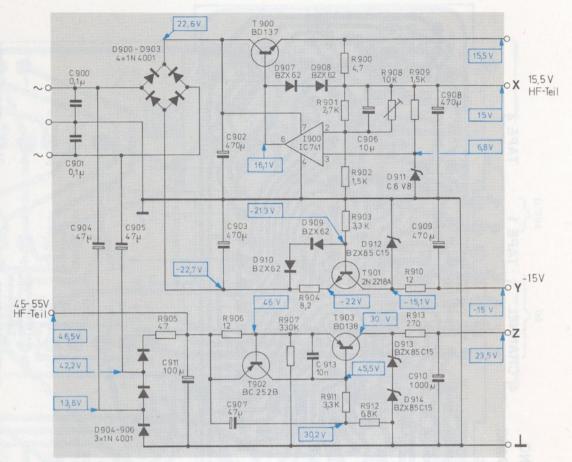
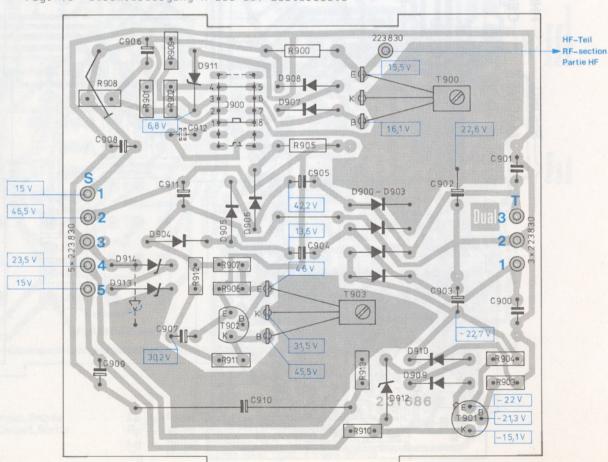
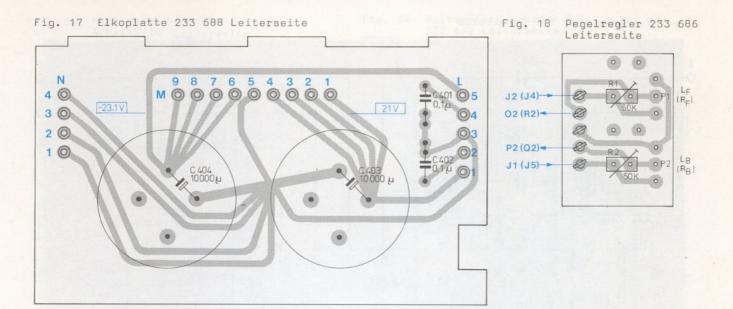




Fig. 16 Stromversorgung X 233 687 Leiterseite

Bestückungsseite

Trafo Transformer Transfo

110/130V T2A
220/240V T1A

C400

Netz Thermoschalter

Netzanschlußplatte 231 416

Fig. 20 Anschlußschema 110, 117, 220, 240 V

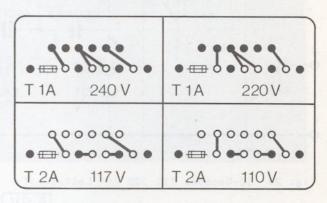


Fig. 21 Treiber VIII 232 452 Leiterseite

Fig. 19

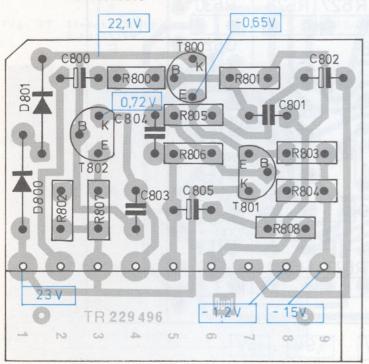


Fig. 22 Elektronische Sicherung IX 232 451 Leiterseite

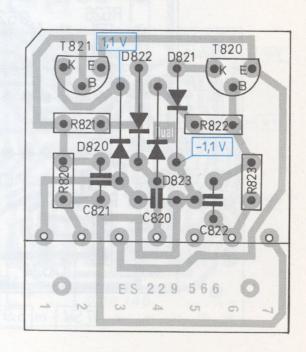


Fig. 23 SQ-Decoder III Schaltbild

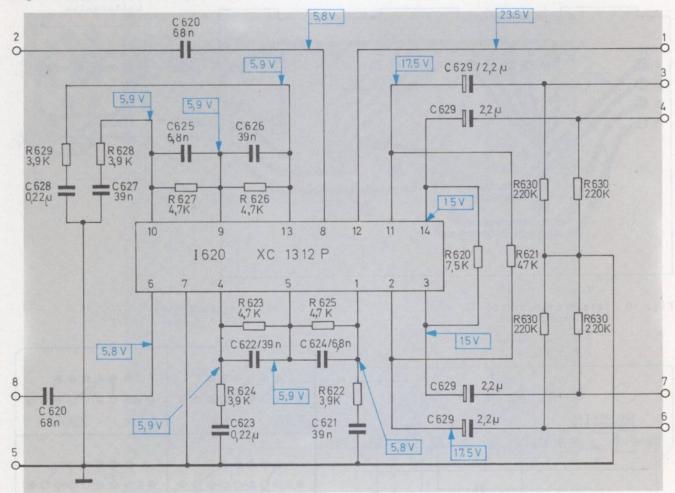
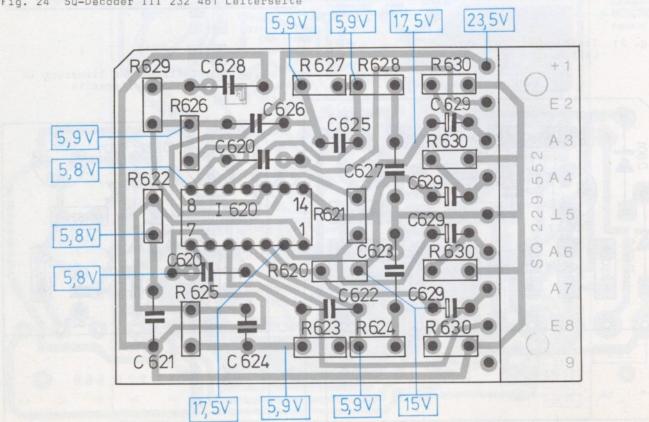



Fig. 24 SQ-Decoder III 232 461 Leiterseite

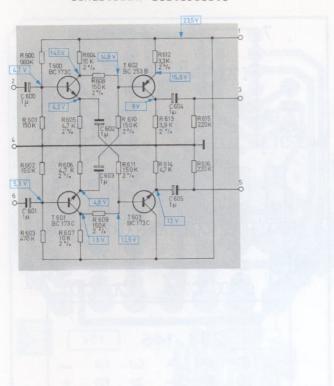


Fig. 25 Multimatrix-Decoder IV Fig. 26 Multimatrix-Decoder IV Schaltbild Leiterseite 232 462 Leiterseite

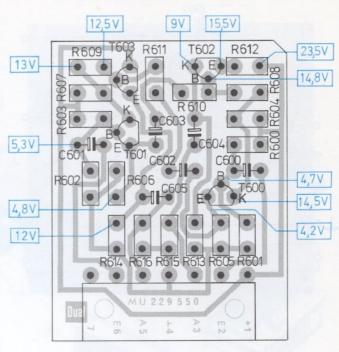


Fig. 27 IC-Verstärker V Schaltbild

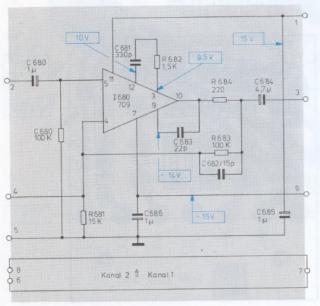


Fig. 28 IC-Verstärker V 232 459

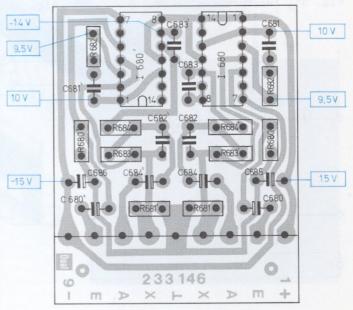
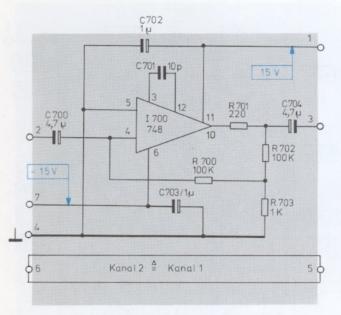



Fig. 30 Klangregler XII 233 054 Leiterseite

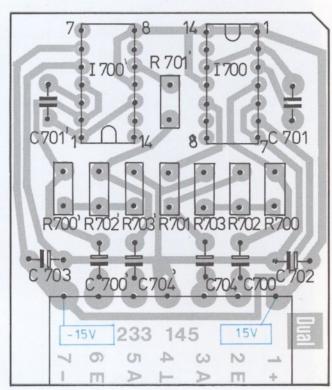
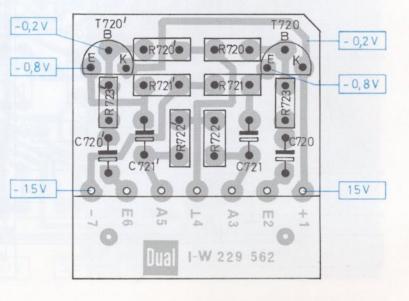



Fig. 31 Impedanzwandler VI Schaltbild

C720 R723 17720 BC173C -0.8V R721 10K 7 C721 4.7µ -15V

Fig. 32 Impedanzwandler VI 232 457 Leiterseite

Ersatzteile

Pos.	ArtNr.	Bezeichnung	Anzahl	
1	231 972	Gehäuse nußbaum kpl	1	
	231 973	Gehäuse weiß kpl	1	
2	223 794	Lüftungsgitter	1	
	210 286	Linsenblechschraube mit Kreuzschlitz B 2,9 x 9,5	2	
	202 041	Scheibe 3,2/7/0,5 St	2	
3	227 443	Sechskantblechschraube mit Schlitz B 3,5 x 13	3	
	210 641	Scheibe 4,2/10/1	3	
	225 948	Topfscheibe	3	
4	233 690	Frontblende kpl	1	
	227 467	Sechskantblechschraube 2,9 x 6,5	12	
	210 626	Scheibe 4,2 x 7 x 0,50	4	
	210 146	Sicherungsscheibe 3,2	4	
-	228 209 220 556	Durchführungstülle	4	
5	225 675	Kopfhörerbuchse kpl.	2	
0	224 377	Abdeckring	2	
R 1	211 152	Schicht-Widerstand 330 Ω/0,30 W/10 %	2 2	
R 2	211 152	Schicht-Widerstand 330 $\Omega/0,30$ W/10 %	2	
7	233 685	Stufenschalter kpl	1	
8	234 346	Leuchtstab für Stereoanzeige kpl. mit		
		Glassockellampe		
9	222 335	Dual-Zeichen		
10	236 091	Traverse vormontiert	1	
	236 093	Lagerbuchse	1	
11	230 498	Skalenfenster	1	
12	233 476	Reflektor	1	
13	233 475 233 477	Antriebsachse	1	
14	234 994	Drehkondensator kpl. mit Abstimmregler	1	
10	216 060	Spannring für Seilscheibe	1	
	233 480	Seilscheibe	1	
16	233 481	Kunststoffrollenhalter kpl	2	
17	233 482	Umlenkrolle	5	
	233 483	Rohrniet B 2,5 x 0,4 x 6	3	
	233 484	Rohrniet B 2,5 x 0,3 x 10	2	
	233 485	Rohrniet B 2,5 x 0,3 x 30	1	
18	233 486	Antriebsschnur, vormontiert	1	
19	227 634	Zuofeder	1	
20	233 487	Zeigerträger, vormontiert	1	
21	233 488	Zeiger	1	
	233 489	Kunststoffkappe, schwarz	1	
22	233 490	Subminiaturlampe 6 V/O,05 A	1	
23	229 906	Lampenfassung für Glassockellampe	2	
24	231 704	Glassockellampe T 10 7 V/O,3 A	2	
25	221 984	Drehknopf - Skala	7	
26	223 148	Drehknopf - Volume, Bass, Treble	1	
27	221 913	Drehknopf - Modeschalter	4	44
28	221 982	Doppelanzeigeinstrument, kpl	1	
29	234 985 236 072	Glassockellampe 7 V/O.04 A	2	
30	236 072	Silizium-Brücken-Gleichrichter B 40 C 5000	2	
30	210 480	Zylinderschraube AM 3 x 6	2	
	210 586	Scheibe 3,2 x 7 x 0,50	2	
	210 361	Sechskantmutter M 3	2	
31	223 834	Buchsenleiste 7-poliq	4	
32	226 514	Buchsenleiste 5-polig	9	
33	230 158	Buchsenleiste 9-polig	2	
34	229 864	Buchsenleiste 4-polig	1	
35	229 869	Buchsenleiste 3-polig	1	THE RES
36	230 501	Rückwandschild	-1	
37	222 040	Antennenbuchse, FM	1	
38	222 036	Antennenbuchse, AM	1	
39	210 584	Scheibe 3,2 x 6 x 0,50	2	
40	227 467	Sechskantblechschraube BZ 2,9 x 6,5	3	
41	230 218	Buchse 8-polig	1	
	230 189	Isolierstück	2	
42	222 041	Lautsprecherbuchse 2-polig	4	
43	233 691	Netztrafo kpl	1 4	
	221 463	Buchse	4	
	209 939	Durchführungstülle	4	
	221 116	Senkschraube M 5 x 8	4	
	229 313 225 294	Distanzmutter	4	
	231 442	Zylinderschraube BM 5 x 55	4	
	231 442	Scheibe 5,2 x 10 x 2	4	
	231 443	JUNE 10 7 2	7	

Pos.	ArtNr.	Bezeichnung	Anzahl	
44	209 737	Schmelzeinsatz T 1 A (220/240 V)	1	
	209 729	Schmelzeinsatz T 2 A (110/117 V)	1	
C 1	224 886	Papier-Kondensator 47 nF/250 V~ 20 %	1	
45	231 416	Trafoanschlußplatte kpl. (Primär)	1	
46 47	231 417 220 141	Trafoanschlußplatte kpl. (Sekundär) Netzkabel kpl.	1	
48	223 811	Kabeldurchführung mit Zugentlastung	i	
49 50	230 311 226 287	Kabelhalter	2	
51	233 693	Lampenfassung schwarz Verpackungskarton kpl.	1	
52	231 977	Bedienungsanleitung	1	
60	231 701	HF-Teil mit Tastenaggregat, Drehkondensator und Ferritantenne kpl.	1	
61	227 637 227 658	Ferritstabträger	2	
62	227 638	Ferritstab	1 2	
63	216 092	Stützpunkthalter	2	
64 65	233 466 227 624	Kunststoffdistanzstück Kunststoffdistanzstück	1	
66	233 467	Kunststoffdistanzstück	1	
67	220 885	Isoliermanschette	2	
68 69	233 465 233 459	I-C-Fassung 16-polig Druckfeder	2	
70	233 445	Zugfeder	2	
71 72	233 446 233 684	Druckfeder	1	
73	233 683	MONO/FA_AFC kpl. Kontektgehäuse mit Schieber und Taste TA/LW/MW/SW kpl.	2	
74	233 682	Kontaktgehäuse mit Schieber und Taste TB/FM kpl.	2	
75 76	233 681 233 680	Kontaktgehäuse mit Schieber und Taste STILL kpl.	1	
77	224 913	Kontaktgehäuse mit Schieber und Taste EIN—AUS Tastknopf	1 10	
78 79	234 976 232 342	Festsenderspeicher Buchsenleiste 2 pol.	1	
I 101	233 436 233 436	Integr. Schaltung TCA 420/A	2	
T 101	227 670	Integr. Schaltung TCA 420/A	2	
T 102	227 669	Transistor BF 256 A	1	
T 103	227 668 227 667	Transistor BF 241 Transistor BC 183 B	2 4	
106	227 667	Transistor BC 183 B	4	
101	233 438	Diode BB 104 grün	3	
102	233 438	Diode BB 104 grun	3	
103	233 438	Diode BB 104 grün Diode TD 1095	3 7	
107	221 046	Diode TD 1095	7	
101	216 264	Antennenübertrager	1	
102	233 469 233 469	Oszillator/Zwischenkreisspule UKW	2	
104	233 470	Oszillator/Zwischenkreisspule UKW	2 2	
. 105	233 429	Drossel 100 μH	5	
106	233 429 216 267	Drossel 100 µH	5	
108	216 268	Kollektorspule 10,7 MHz Kollektorspule 10,7 MHz	1 4	
. 109	216 268	Kollektorspule 10,7 MHz	4	
110	233 472 233 429	Kreisspule 10,7 MHz Drossel 100 μH	2	
113	233 429	Drossel 100 μH Drossel 100 μH	5 5	
114	233 471	Kreisspule 10,7 MHz	1	
115	216 268 216 268	Kollektorspule 10,7 MHz Kollektorspule 10,7 MHz	4	
117	233 472	Kollektorspule 10,7 MHz	4 2	
119	233 429	Drossel 100 µH	2	
120	233 473	Quadraturkreisspule 10,7 MHzQuadraturkreisspule 10,7 MHz	2 2	
R 127	227 664			
7 131	227 665	Einstellregler 1 kOhm lin. 0,1 W	1 3	
132	233 433	Einstellregler 10 kOhm lin. 0,1 W	1	
7 143	227 665 233 434	Einstellregler 4,7 kOhm lin. 0,1 W	3 3	
7 144			- 4	

Pos.	ArtNr.	Bezeichnung	Anzahl	-569
R 156 R 157	233 434 233 434	Einstellregler 100 kOhm lin. 0,1 W Einstellregler 100 kOhm lin. 0,1 W	3 3	
C 109 C 113 C 142	221 082 221 082 233 492	Trimmer 2,5 - 6 pF/160 V Trimmer 2,5 - 6 pF/160 V Elyt-Kondensator 4,7 μF/ 6,3 V	2 2 1	
C 167	233 441	Elyt-Kondensator 1 $\mu F/35$ V	2	
I 201	227 672	Integr. Schaltung TBA 570	1 2	
T 201 T 202 T 203	227 668 234 255 233 435	Transistor BF 241	5 1	
D 201/2 D 203/4 D 205	233 439 233 439 221 046	Diode MSD 6101	4 4 7	
F 201	233 468	Dreikreis-Hybridfilter 460 kHz	1	
L 201	233 428	Drossel 11 μH	2	
L 202 L 203	216 120 233 428	ZF-Saugkreisspule	1 2	
L 204	233 474	Vorkreisspule KW	1	
L 205 L 206	233 424 233 425	Vorkreisspule MW	1 1	
L 207	216 116	Vorkreisspule MW-FA	1	
L 208 L 209	227 652 233 426	Vorkreisspule LW-FA Oszillatorspule KW	1 1	
L 210	216 119	Oszillatorspule MW	1	
L 211	216 120	Oszillatorspule LW	1	
C 208	221 083 221 083	Trimmer 1,4 - 6,9 pF	3 3	
C 218	221 083	Trimmer 1,4 - 6,9 pF	3	
C 228 C 230	233 497 233 498	Elyt-Kondensator 33 μF/ 6,3 V	1	
C 235	233 494	Elyt-Kondensator 47 μr/ 3 V	5	
C 237	233 496	Elyt-Kondensator 22 μF/25 V	3	
T 301	234 255	Transistor BC 239 B	5 5	
T 302 T 303	234 255 234 255	Transistor BC 239 B	5	
T 304	234 255	Transistor BC 239 B	5	
D 301/2	233 439	Diode MSD 6101	8	
D 303/4 D 305	233 439 221 046	Diode MSD 6101	7	
D 306	221 046	Diode TD 1095	7 7	
D 307 D 308	221 046 221 046	Diode TD 1095	7	
C 309	233 494	Elyt-Kondensator 10 μF/20 V	- 5	
C 310	233 494	Elyt-Kondensator 10 μF/20 V	5	
C 311	233 494 233 494	Elyt-Kondensator 10 µF/20 V	5 5	
C 313	233 499	Elyt-Kondensator 100 μF/16 V	1	
C 314 C 315	233 496 233 496	Elyt-Kondensator 22 μF/25 V Elyt-Kondensator 22 μF/25 V	3 3	
I 701	233 437	Integr. Schaltung TCA 530	1	
D 703	227 676	Brücken-Gleichrichter B 30 C 160	1	
R 703	227 665	Einstellregler 4.7 kOhm lin. 0,1 W	3	
C 702	233 495	Elyt-Kondensator 10 μ F/63 V	1	
C 703	233 491	Elyt-Kondensator 2,2 μF/25 V	1	
C 704 C 705	233 493 233 441	Elyt-Kondensator 4,7 μ F/63 V	1 2	
C 706	233 500	Elyt-Kondensator 2200 μF/12 V	1	
I 901	227 671	Integr. Schaltung TBA 450 N	1	
T 901	227 667	Transistor BC 183 B	4	
T 902	227 667	Transistor BC 183 B	4	
L 901 L 902	227 653 233 427	Pilotspule Seitenbandspule 38 kHz	2	
L 904	227 653	Pilotspule	1	
L 905 L 906	227 655 227 656	Spule 38 kHz Filterspule 76 kHz	1 2	
L 907	227 656	Filterspule 76 kHz	2	
R 902	233 430	Einstellregler 470 Ohm lin	1	
R 908	233 431	Einstellregler 470 Ohm lin	1	

Pos.	ArtNr.	Bezeichnung	Anzahl	
C 901	233 440	Elyt-Kondensator 470 nF/35 V	1	204
		Pegelregler	188 81	
80	233 686	Pegelreglerplatte kpl	2	
P 1	229 540 231 339	Einfachdrehwiderstand 50 kOhm Einfachdrehwiderstand 50 kOhm	1	
R . 1 R 2	231 693 231 693	Einstellregler 50 kOhm/lin. Einstellregler 50 kOhm/lin.	2 2	
		Eingangsplatte	BET 5 1	
90 91 92	233 692 231 238 231 237	Eingangsplatte kpl. Schiebeumschalter Steckdose 5-polig	1 1 5	
T 100 T 101 T 102 T 103 T 104	209 863 209 863 209 863 209 863	Transistor BC 173 C	10 10 10 10	
R 100 R 101 R 102 R 103 R 104 R 105 R 106 R 107 R 108 R 109 R 110 R 111 R 112 R 113 R 115 R 116 R 117 R 118 R 119 R 119 R 119 R 110 R 111 R 112 R 113 R 114 R 115 R 116 R 117 R 118 R 117 R 118 R 119 R 119	209 863 223 216 223 258 223 218 223 257 223 260 223 258 223 218 223 219 224 059 229 914 223 259 223 211 223 260 223 211 223 260 223 212 226 481 227 263 223 212 226 481 227 263 223 212 226 481 227 263 223 212 226 481 227 263	Transistor BC 173 C Schicht-Widerstand 220 k Ω /0,30 W/5 % Schicht-Widerstand 82 k Ω /0,30 W/5 % Schicht-Widerstand 82 k Ω /0,30 W/5 % Schicht-Widerstand 150 k Ω /0,30 W/5 % Schicht-Widerstand 220 k Ω /0,30 W/5 % Schicht-Widerstand 220 k Ω /0,30 W/5 % Schicht-Widerstand 32 k Ω /0,30 W/5 % Schicht-Widerstand 1 M Ω /0,30 W/5 % Schicht-Widerstand 3 k Ω /0,30 W/5 % Schicht-Widerstand 3 k Ω /0,30 W/5 % Schicht-Widerstand 470 Ω /0,30 W/5 % Schicht-Widerstand 470 Ω /0,30 W/5 % Schicht-Widerstand 1,5 k Ω /0,30 W/5 % Schicht-Widerstand 560 k Ω /0,30 W/5 % Schicht-Widerstand 560 k Ω /0,30 W/5 % Schicht-Widerstand 270 k Ω /0,30 W/5 % Schicht-Widerstand 47 k Ω /0,30 W/5 % Schicht-Widerstand 560 k Ω /0,30 W/5 % Schicht-Widerstand 270 k Ω /0,30 W/5 % Schicht-Widerstand 47 k Ω /0,30 W/5 % Schicht-Widerstand 270 k Ω /0,30 W/5 %	10 4 4 4 4 2 2 1 1 1 2 4 4 4 6 6 6 6 6 6 6 6 1	City Arr Bot Off Tr Mode Sook Age Mode Mode Mode Mode Mode Mode Mode Mod
C 100 C 101 C 102 C 103 C 105 C 106 C 107 C 108 C 109 C 110 C 111 C 111	222 219 222 219 217 862 216 398 217 873 216 671 222 213 216 671 222 213 216 671 222 213 216 411	Elyt-Kondensator Elyt-Kondensator Keramik-Scheiben-Kondensator Folien-Kondensator	8 6 8 6 8 6	
100	233 689 231 673	Steuerverstärker Steuerverstärkerplatte kpl. Kammer-Schiebetaste 1-fach	1	
R 200 R 201 P 202 R 203 R 204 P 205 R 207 P 208 R 209 R 210 R 211	223 211 223 263 229 535 223 215 223 215 229 537 223 216 223 898 229 537 223 884 223 884 223 212	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 4 1 4 4 2 4	
C 200 C 201 C 202 C 203	228 496 222 499 228 704 228 704	Keramik-Scheiben-Kondensator 560 pF/500 V/10 % Folien-Kondensator 0,22 μF/100 V/5 % Folien-Kondensator 4,7 nF/63 V/5 % Folien-Kondensator 4,7 nF/63 V/5 %	4 4 8 8	

Pos.	ArtNr.	Bezeichnung	Anzahl	109.
C 204 C 205 C 206 C 207 C 208	229 529 216 664 216 664 216 664	Folien-Kondensator 68 nF/100 V/5 % Elyt-Kondensator 1 µF/ 35 V	4 5 5 5 5	188 D
C 209	216 664	Elyt-Kondensator 1 μF/ 35 V Endverstärker	5	
110	234 136	Endverstärker kpl. mit Kühlwinkel und Endtransi- storen ohne Module	1	
	222 199 222 189 222 200 227 197 227 470 227 244	Zylinderschraube AM 3,5 x 15 Isoliernippel Sechskantmutter BM 3,5 Distanzring Sechskantblechschraube 2,9 x 9,5 Zahnscheibe I 3,7	8 8 8 8 8	
111 112	213 287 230 029 210 369	Schmelzeinsatz Ť 1,6 A Thermoschalter Sechskantmutter M 5	8 1 1	
113 114 115	231 676 210 480 210 283	Distanzmutter Zylinderschraube 3 x 6 Linsenblechschraube mit Kreuzschlitz 2,9 x 6,5	3 6 2	
T 10 T 12	227 785 , 229 515	Transistor BD 607 kpl	4 4	
116 117	233 694 222 497	Endverstärkerplatte kpl. ohne Kühlwinkel, End- transistoren und ModuleAntiwärmescheibe	1 8	
T 300 T 301 T 302	209 862 224 277 224 278	Transistor BC 172 C Transistor 2 N 2218 A kpl. Transistor 2 N 2904 kpl.	4 4 4	
R 300 R 301 R 302 R 303 R 304 R 305 R 306 R 307 R 308	223 786 229 938 223 211 209 902 223 264 223 264 223 217 223 217 223 833	Einstellregler 25 kOhm/lin. Einstellregler 5 kOhm Schicht-Widerstand 1,5 kOhm/0,30 W/ 5 % Schicht-Widerstand 1 kOhm/0,30 W/ 5 % Schicht-Widerstand 1 kOhm/0,30 W/ 5 % Draht-Widerstand 0,33 Ohm/4 W/10 % Schicht-Widerstand 0,33 Ohm/4 W/10 % Schicht-Widerstand 10 Ohm/0,30 W/ 5 %	4 4 4 4 8 8 8 8	
C 300 C 301 C 302	216 389 216 664 216 664	Keramik—Scheiben—Kondensator 47 nF/50 V Elyt—Kondensator 1 μF/35 V Elyt—Kondensator 1 μF/35 V Elkoplatte	4 8 8	
120	233 688 210 472 231 684	Elkoplatte kpl. Zylinderschraube AM 3 x 4 Distanzmutter	1 2 2	
C 401 C 402 C 403 C 404	216 671 216 671 231 683 231 683	Folien-Kondensator 0,1 μF/100 V/20 % Folien-Kondensator 0,1 μF/100 V/20 % Elyt-Kondensator 10000 μF/ 25 V Elyt-Kondensator 10000 μF/ 25 V Multimatrix-Decoder	2 2 2 2	
73	232 462	Multimatrix-Decoder kpl	1	
T 600 T 601 T 602 T 603	209 863 209 863 216 042 209 863	Transistor BC 173 C Transistor BC 173 C Transistor BC 253 B Transistor BC 173 C	3 3 1 3	
R 600 R 601 R 602 R 603 R 604 R 605 R 606 R 607 R 608 R 609 R 611 R 611 R 612 R 614 R 615	227 263 223 260 227 262 227 256 227 253 227 253 227 256 227 260 227 260 227 260 227 260 227 260 227 252 227 252 223 884 223 258	Schicht-Widerstand 560 k0hm/0,30 W/5 % Schicht-Widerstand 150 k0hm/0,30 W/5 % Schicht-Widerstand 470 k0hm/0,30 W/5 % Schicht-Widerstand 10 k0hm/0,30 W/2 % Schicht-Widerstand 4,7 k0hm/0,30 W/2 % Schicht-Widerstand 4,7 k0hm/0,30 W/2 % Schicht-Widerstand 10 k0hm/0,30 W/2 % Schicht-Widerstand 150 k0hm/0,30 W/2 % Schicht-Widerstand 3,3 k0hm/0,30 W/2 % Schicht-Widerstand 3,9 k0hm/0,30 W/2 % Schicht-Widerstand 4,7 k0hm/0,30 W/2 % Schicht-Widerstand 4,7 k0hm/0,30 W/5 % Schicht-Widerstand 4,7 k0hm/0,30 W/5 %	1 2 2 1 2 2 2 2 4 4 4 4 1 1 1 2	

Pos.	ArtNr.	Bezeichnung	Anzahl	18 1865
C 600	222 213	Elyt-Kondensator 1 μF/50 V	6	
C 601	222 213	Elyt-Kondensator 1 μF/50 V	6	
602	222 213	Elyt-Kondensator 1 μF/50 V	6	
603	222 213	Elyt-Kondensator 1 μF/50 V	6	
604	222 213 222 213	Elyt-Kondensator 1 μF/50 V Elyt-Kondensator 1 μF/50 V	6 6	
, 003	222 213			
		<u>SQ-Decoder</u>		
140	232 461	SQ-Decoderplatte kpl	1	
5 620	229 516	Integrierte Schaltung X C 1312 P	1	
R 620	229 926	Schicht-Widerstand 7,5 k Ω /0,30 W/5 % Schicht-Widerstand 47 k Ω /0,30 W/5 %	1 1	
R 621	223 212 229 927	Schicht-Widerstand 47 $k\Omega/0,30$ W/5 % Schicht-Widerstand 3,9 $k\Omega/0,30$ W/5 %	4	
R 623	223 884	Schicht-Widerstand 4,7 kΩ/0,30 W/5 %	4	
R 624	229 927	Schicht-Widerstand 3,9 k $\Omega/0$,30 $W/5\%$	4	
R 625	223 884	Schicht-Widerstand 4,7 k Ω /0,30 W/5 % Schicht-Widerstand 4,7 k Ω /0,30 W/5 %	4 4	
R 626 R 627	223 884 223 884	Schicht-Widerstand 4,7 k Ω /0,30 W/5 %	4	
R 628	229 927	Schicht-Widerstand 3,9 kΩ/0,30 W/5 %	4	
R 629	229 927	Schicht-Widerstand 3,9 k Ω /0,30 W/5 %	4 4	
R 630	223 258	Schicht-Widerstand 220 k Ω /0,30 W/5 %		
C 620 C 621	216 402 229 530	Folien-Kondensator 68 nF/160 V/20 %	2 4	
622	229 530	Folien-Kondensator 39 nF/250 V/ 5 %	4	
623	222 499	Folien-Kondensator 0,22 μF/100 V/ 5 %	2	
C 624 C 625	229 929 229 929	Folien-Kondensator 6,8 nF/63 V/5 %	2 2	
C 626	229 530	Folien-Kondensator 39 nF/250 V/ 5 %	4	
627	229 530	Folien-Kondensator 39 nF/250 V/ 5 %	4	
628	222 499	Folien-Kondensator 0,22 μF/100 V/ 5 %	2	
C 629	229 923	Elyt-Kondensator 2,2 µF/ 50 V	4	
		IC-Verstärker	HIS B	
150	232 459	IC-Verstärkerplatte kpl	2	
680	223 308	Integrierte Schaltung 709	2	
R 680	223 897	Schicht-Widerstand 100 $k\Omega/0,30$ W/5 %	4	
R 681 R 682	223 261 223 211	Schicht-Widerstand 15 $k\Omega/0,30$ $W/5$ % Schicht-Widerstand 1,5 $k\Omega/0,30$ $W/5$ %	2 2	
R 683	223 897	Schicht-Widerstand 100 $k\Omega/0,30$ W/5 %	4	
C 680	222 213	Elyt-Kondensator 1 μF/ 50 V	2	
C 681	223 278	Keramik-Scheiben-Kondensator 330 pF/500 V/10 %	2	
C 682 C 683	216 406 217 862	Keramik-Scheiben-Kondensator 15 pF/500 V/10 % Keramik-Scheiben-Kondensator 22 pF/500 V/10 %	2 2	
C 684	222 219	Elyt-Kondensator 4,7 μ F/ 25 V	2	
685	216 664	Elvt-Kondensator 1 uF/ 35 V	2	
686	216 664	Elyt-Kondensator 1 μF/ 35 V	2	
		Klangregler	Dus Di	
160	233 054	Klangreglerplatte kpl	2	
5 700	231 566	Integrierte Schaltung 2748 DC	2	
R 700	223 897	Schicht-Widerstand 100 kΩ/0,30 W/5 %	2	
R 700	226 477	Schicht-Widerstand 220 Ω/0,30 W/5 %	2	
R 702	223 897	Schicht-Widerstand 100 k Ω /0,30 W/5 %	2 2	
703	223 264	Schicht-Widerstand 1 $k\Omega/0$, 30 $W/5$ %	2	
C 700	222 219	Elyt-Kondensator 4,7 μF/ 25 V	2	
701	223 279	Keramik-Scheiben-Kondensator 10 pF/500 V/10 %	2	
702	216 664 216 664	Elyt-Kondensator 1 $\mu F/35 V \dots$ Elyt-Kondensator 1 $\mu F/35 V \dots$	2 2	
704	222 219	Elyt-Kondensator 4,7 µF/ 25 V	2	
		Impedanzwandler	482 73	
170	232 457	Impedanzwandlerplatte kpl	2	
720	209 863	Transistor BC 173 C	2	
R 720	223 897		2	
R 721	227 256	Schicht-Widerstand 10 $k\Omega/0,30 \text{ W/2 \%}$	2	
722	223 258	Schicht-Widerstand 220 $k\Omega/0,30$ W/5 %	2	
723	223 211	Schicht-Widerstand 1,5 k Ω /0,30 W/5 %	2	

Pos.	ArtNr.	Bezeichnung	Anzahl	375	,809
C 720 C 721	222 213 222 213	Elyt—Kondensator 1 μF/50 V	4 4	15	
	118.53	Treiber	1 213		
180	232 452	Treiberplatte kpl	4	18	
T 800	223 223	Transistor BC 207 B	2		
T 801 T 802	223 223 224 582	Transistor BC 207 B	2		
1 002	222 497	Antiwärmescheibe	1	3	
D 800 D 801	223 906 223 906	Diode 1 N 4148	2 2	2	
R 800	223 211	Schicht-Widerstand 1,5 k Ω /0,30 W/5 %	2	3	
R 801 R 802	223 212 223 214	Schicht-Widerstand 47 $k\Omega/0,30$ $W/5$ % Schicht-Widerstand 2,7 $k\Omega/0,30$ $W/5$ %	2 2	2	
R 803	223 215	Schicht-Widerstand 22 $k\Omega/0,30$ W/5 %	1	5	
R 804 R 805	229 952 223 214	Schicht-Widerstand 820 $\Omega/0,30~\text{W/5}~\%$ Schicht-Widerstand 2,7 k $\Omega/0,30~\text{W/5}~\%$	1 2		
R 806 R 807	223 212 223 219	Schicht-Widerstand 47 k $\Omega/0,30$ W/5 % Schicht-Widerstand 22 $\Omega/0,30$ W/5 %	2	8	
R 808	223 211	Schicht-Widerstand 1,5 k $\Omega/0,30$ W/5 %	2	2	
C 800 C 801	222 213 223 221	Elyt-Kondensator 1 μF/ 50 V Keramik-Scheiben-Kondensator 150 pF/500 V/10 % .	1	8	
C 802	220 265	Elvt-Kondensator 47 μF/ 16 V	2	8	
C 803 C 804	213 498 217 862	Keramik-Scheiben-Kondensator 47 pF/500 V/10 % . Keramik-Scheiben-Kondensator 22 pF/500 V/10 % .	1	2	
C 805	220 265	Elyt-Kondensator 47 µF/ 16 V	2	18	
		Elektronische Sicherung	388 5		
190	232 451	Elektronische Sicherung	4	8	
T 820 T 821	220 609 229 511	Transistor BC 251 B	1		
D 820	223 906	Diode 1 N 4148	4		
D 821 D 822	223 906 223 906	Diode 1 N 4148	4	2	
D 823	223 906	Diode 1 N 4148	4	2	
R 820 R 821	226 480 223 267	Schicht-Widerstand 680 $\Omega/0,30$ W/5 % Schicht-Widerstand 12 k $\Omega/0,30$ W/5 %	2 2		
R 822 R 823	223 267 226 480	Schicht-Widerstand 12 k $\Omega/0,30$ W/5 %	2 2	8	
C 820	216 389	Keramik-Scheiben-Kondensator 47 nF/ 50 V	1	8	
C 821 C 822	203 474 203 474	Keramik-Scheiben-Kondensator 680 pF/ 50 V/20 % . Keramik-Scheiben-Kondensator 680 pF/ 50 V/20 % .	2 2	8	
	1 2 1	Stromversorgung	100 0	8	
200	233 687	Stromversorgungsplatte kpl	1	2	
	210 485 210 488	Zylinderschraube AM 3 x 7	1		
	210 361 210 586	Sechskantmutter M 3	2	2	
900	231 688	Integrierte Schaltung IC 741	1	8	
T 900	221 832	Transistor BD 137	- 1		
T 901 T 902	224 277 220 535	Transistor 2 N 2218 A kpl	1		
T 903	221 831	Transistor BD 138 kpl	1		
201	222 497	Antiwärmescheibe	1		
900	227 344 227 344	Diode 1 N 4001	7 7	3	
902	227 344 227 344	Diode 1 N 4001	7 7		
904	227 344	Diode 1 N 4001	7	8	
905 0 906	227 344 227 344	Diode 1 N 4001	7 7		
907	216 027 216 027	Diode BZX 62 Diode BZX 62	4	8	
909	216 027	Diode BZX 62	4	3	
910	216 027 226 444	Diode BZX 62 Diode BZX 83 C 6 V 8	4		
912 913	223 224 223 224	Z-Diode BZX 85 - C 15	3 3		
913	223 224	Z-Diode BZX 85 - C 15	3		

Pos.	ArtNr.	Bezeichnung	Anzah1
R 900 R 901 R 902 R 903 R 904 R 905 R 906 R 907 R 908 R 909 R 911 R 9112 R 913	231 687 223 214 223 211 229 940 230 834 220 157 226 490 226 486 226 498 223 211 226 490 229 940 229 940 229 741	Schicht-Widerstand 4,7 Ohm/O,25 W/5 % Schicht-Widerstand 2,7 Ohm/O,30 W/5 % Schicht-Widerstand 1,5 kOhm/O,30 W/5 % Schicht-Widerstand 3,3 kOhm/O,30 W/5 % Schicht-Widerstand 8,2 Ohm/O,25 W/2 % Schicht-Widerstand 47 Ohm/O,50 W/5 % Schicht-Widerstand 12 Ohm/O,30 W/5 % Schicht-Widerstand 330 kOhm/O,30 W/5 % Einstellregler 10 kOhm/lin Schicht-Widerstand 1,5 kOhm/O,30 W/5 % Schicht-Widerstand 1,5 kOhm/O,30 W/5 % Schicht-Widerstand 3,3 kOhm/O,30 W/5 % Schicht-Widerstand 6,8 kOhm/O,30 W/5 % Schicht-Widerstand 270 Ohm/O,30 W/5 %	1 1 2 2 1 1 2 1 1 2 2 2 2
C 900 C 901 C 902 C 903 C 904 C 905 C 906 C 907 C 908 C 909 C 911 C 911	216 414 229 943 229 943 216 412 216 334 226 449 216 396 223 900 223 900 226 586 229 944 220 533	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 1 1 1 1 2 2 1 1
	*		