PAM2600/2000

SERVICE MANUAL

ECLEREӨ
 AUDIO CREATIVE POWER

SERVICE MANUAL PAM2600/2000

INDEX

- BLOCK DIAGRAM
- FUNCTIONING DESCRIPTION
- SCHEMATICS
- COMPONENTS LOCATION SCHEMA
- TESTING AND QUALITY CONTROL
- TECHNICAL CHARACTERISTICS
- WIRING DIAGRAM
- CONFIGURATION DIAGRAM
- MECHANICAL DIAGRAM
- PACKING DIAGRAM

MODULE CIRCUIT 11.0504B OPERATION - DESCRIPTION

The control element is the operational NE5534. This is a very low noise operational, especially designed for very high quality applications in professional audio equipment, control equipment and telephony channel amplifiers.

The operational is internally compensated for a gain equal to or higher than three. Frequency response can be optimized with an external compensation capacity, for several applications (unity gain amplifier, capacitive load, slew-rate, low overshoot, etc...).

Characteristics:

Small-signal bandwidth: 10Mhz
Output drive capability: $600 \Omega 10 \mathrm{~V}(\mathrm{rms})$ at $\mathrm{Vs}= \pm 18 \mathrm{~V}$
Input noise voltage: $4 \mathrm{nV} / \mathrm{Hz}$
DC voltage gain: 100000 V
AC voltage gain: 6000 at 10 KHz
Power bandwidth: 200 KHz
Slew-rate: $13 \mathrm{~V} / \mu \mathrm{s}$
Supply voltage range: ± 3 to $\pm 20 \mathrm{~V}$
POWER SOURCE STRUCTURE

POWER SUPPLY

The BF871 and BF872 transistors are mounted in a common base configuration, in a current source structure. The current sources have a double function: polarizing the gate-source links in the MOSFETs to the limit of the conduction and moving the voltage variations at the operational output which are refered to ground to voltage variations refered to high voltage power supply. The polarization point is calculated so the voltage dropout in $\operatorname{Rc}(\mathrm{R} 112+\mathrm{R} 111)$ is the limit voltage of conduction of the MOSFETs (≈ 2 to 3 V), enough to carry the bias current. If we modulate in AC the base-emitter voltage, the Ic and VRc will vary proportionally. In our configuration, as the reference voltage Vref is constant (it is a part of the operational power supply), we add the operational output voltage to the transistors emitter through Re (R107-R108).

The Rc value fixes the source output impedance. We do not recommend to raise it higher than $1 \mathrm{~K} \Omega$ because of frequency response and slew rate reasons. This voltage circuit's gain is, as usual in a common base configuration with $\mathrm{Rc} / \mathrm{Re}$ emitter resistor, 0.45.

BIAS CURRENT ADJUST

The bias current adjust is performed through the variable resistor connected between the emitters of the current sources R110 ($5 \mathrm{~K} \Omega$). It delivers a supplementary current (it does not go through the operational) which simultaneously increases the voltage which falls in the Rc load resistors.

This is the easiest way of acting with just one adjust over both branches at the same time. In order to adjust the bias current the adjustable resistor must be varied until a current of about 80 mA circulates through each MOSFET. So, for instance, for a PAM2600 in which there are six MOSFETs it will be $80 \times 6=480 \mathrm{~mA}$. The bias current depends on the MOSFETs temperature and the stabilizing circuit transistors temperature.

fig. 2

TEMPERATURE STABILIZING CIRCUIT

Temperature affects MOSFETs conduction in two different ways: first, the conduction threshold voltage has a negative temperature coefficient; second, the drain-source conduction resistance increases with temperature. Depending on which of the two things is predominating the temperature coefficient of the drain can be positive or negative. In our case, in which the gate-source voltage in the MOSFETs is very low when they conduct, the temperature coefficient of drain current -which is positive- is predominating.

To avoid thermal runaway in the polarizing current we must decrease the gate-source voltage as the MOSFETs get hot. Temperature stabilization is performed by modifying the reference voltage of both sources. If the temperature increases the Vref must decrease so that Ic and VRc decrease and, as a consequence, the gate-source voltage also decreases.

The circuit used is shown in figure 3. The base-emitter Vbe temperature/voltage feature is used to obtain the final result we need. The main idea is adequately choosing R 1 and R 2 to obtain the right temperature coefficient.

TEMPERATURE STABILIZING CIRCUIT

SYMMETRY ADJUST

The threshold voltage varies much, even between MOSFETs of the same kind. When connecting them in parallel we must be careful that they all have the same conduction current if we want equal currents circulating in all of them. If the conduction voltage of P an N channels MOSFETs is not the same they will conduct different currents, even when we apply identical gate-source voltages. As the bias current of the N MOSFETs must be identical to the one of the P MOSFETs the feedback will correct the continuous voltage at the operational output to polarize the MOSFETs with different voltages until both conduct equal currents.

If the operational output is not 0 V its capacitity to give voltage and current is not the same in both senses. To avoid this we must put a symmetry adjust. It is just an adjust which allows to vary the collector resistance of one of the current sources (R111).

The symmetry adjust does not correct the asymmetrical clipping saturation of the power amplifier with real load. This happens because the conduction resistors (Ron) of the MOSFETs N and P are not equal. Channel P has a higher Ron than channel N. This characteristic depends on the MOSFET's physical construction.

SYMMETRY ADJUST AND DRIVER

POWER MOSFETs

The MOSFETs used are IRFP9240 (P) and IRFP240 (N). They are assembled in a common source configuration so they can be completely saturated.

This kind of configuration has two drawbacks compared to a common drain one: less stability (because of the configuration gain itself) and high output impedance in open loop.

The source resistances (0.22Ω) are needed for the MOSFETs to work in parallel. E.g.: Two MOSFETs excited by the same Vgs voltage (gate-source voltage) of 5 V . If they have different transconductance curves (Id function Vgs) they will conduct different drain currents; let's say 1A and 3A. The second one will dissipate more power and will get hotter.

The use of source resistances tends to match the current that each of the MOSFETs connected in parallel is conducting.

This resistance performs a negative feedback on the gate, lowering down the Vgs, relating to the drain current; like this:

The higher the Id, the lower the Vgs voltage. The gate is protected by a zener, preventing a possible overload during an unexpected change from overload to real clipping.

Given the high input impedance and the broad frequency response of the MOSFETs there is a high risk of self-oscillations if all gates are excited connected to the same node. Intercalating serial resistances and ferrite beads at the gate this possibility is minimized, because the Q of the LC network made by the inductances and gate-source capacity is reduced.

PROTECTION CIRCUIT

The protection circuit monitors the dissipated power at the MOSFETs stage. It has two basic parts:
MOSFET Id current detection.
MOSFET Vds voltage detection.
The goal is limiting the MOSFET so it works inside an area close to the SOA, as indicated in the figure. We chose channel N because, due to construction reasons, its SOA is lower.

ZONE A. This zone is for very low loads, around 0Ω. As the load voltage is very low, the voltage held by the MOSFET will always be high. The protections should be activated with very low current.

Fast protections and some of the slow ones are
 working in this zone. The circuit that configures the fast ones is made of: D120, D121, D123, R174, R175, R176, R177, R178, R179, C127, Q122 and Q123 for the N channel. There is also an equivalent circuit in the P channel. These start working when there is a sudden current variation because of a shortcircuit or a transitory. The reaction time -from the exact moment when these things occur to when the current stops circulating through the MOSFETs- is about $80 \mu \mathrm{~s}$.

The time constant is given by C127, R174 and R179 and the load circuit made by the LED diode of the IC104 (opto-coupler).

Please note that in order for the protection to be activated Q122 and Q123 must conduct simultaneously, through which R174 is linked to negative power supply, being $\mathrm{C} 127(1 \mu \mathrm{~F})$ loaded very quickly through this resistance, activating the LED of the opto-coupler, sending a pulse to the protection circuit, which will open the corresponding channel's relay, being this way the output from the power amplifier disconnected from the load (0Ω), in this case. Q122, together with the zeners and the base polarization resistances, configure the voltage detector (this group is in parallel with the Vds voltage of the N MOSFET).

Q123, together with the resistances which make the base divider, configure the current detector (this divider takes its voltage from one of the source resistances of a N MOSFET, which is proportional to the current circulating through itself).

The threshold separating zone A from zone B is determinated by the D125 zener. When this zener stops working and there is no current circulating through it because the Vds voltage is lower (let's remember this circuit is also in parallel with this voltage) or, what is the same, the load voltage grows because it is not 00 anymore and has a given value, like 0.5Ω to 1Ω, and the help given by D126 stops so more current will be needed for the shot. We have climbed the first stair of the stairway of the SOA graphic.

When the zeners D124 and D118 stop working because the load voltage goes on growing (values higher than 1Ω) or -what is the same- the Vds decreases, the Q125 transistor does not receive current anymore in its base and so it is shorted, allowing Q124 to enter conduction. This way R172 stays in parallel with the base-emitter of Q121, making up a voltage divider with R173. This divider will climb another stair of the stairway and enter the ZONE C.

The link between the module's protection circuit and the relays' control circuit is made through IC103 and IC104 which are, as mentioned earlier, opto-couplers, just to insulate the existing high voltages at the power amplifying module, $\pm 63 \mathrm{~V}$ in the case of the PAM2600, and the power supply voltage of the existing logic circuits in the relays' control card.

Once the pulse generated by the protections is detected, the control circuitry resident in the protection card, appart from opening the corresponding relay, returns the signal A.O. SUPPLY CONTROL to the module, which cuts by means of Q119, Q120 and IC102 the operational's power supply.

This is the way to insure a fast and safe cut of the Id current in the MOSFETs (around $80 \mu \mathrm{~s}$ time), because they stop receiving their respective reference voltages and, consequently, their Vgs polarization voltages so they are cut. The circuit is shown in figure 9 and its operation is very simple.

When the A.O. SUPPLY CONTROL (+10V) signal appears, the Q119 transistor starts conducting, shortcircuiting to ground the positive power supply of the operational. On the other hand, the signal is also applied to the IC102's LED (opto TIL112 (4N35)), which puts its internal transistor and Q120 into conduction, connecting the negative power supply of the operational to ground.

N CHANNEL FAST PROTECTIONS CIRCUIT

fig. 6

SLOW PROTECTIONS CIRCUIT
(B) STEP SOA DIAGRAM

fig. 7

fig. 8

OPERATIONAL AMPLIFIER POWER SUPPLY CONTROL

ZOBEL NETWORK

This circuit tries to get a constant load impedance for the power module, in spite of the amplifier's load and frequency, to avoid phase shifting of the feedback signal.

The values have been experimentally calculated through a study with square signal by trying to minimize the power amplifier's ringing with very capacitive loads $(2,2 \mu \mathrm{~F} / / 4 \Omega)$.

The Zobel Network eliminates possible oscillations of the MOSFETs between 5 MHz and 10 MHz , too. This is why it must be physically placed at the module's output, avoiding long wiring. Great care must be taken for the signal not to be too shifted at the output, because the feedback could turn negative.

FEEDBACK

The whole amplifier is compensated with just one capacity, which places the amplifier's general pole at:

$$
\begin{aligned}
& \mathrm{Fp}=\frac{1}{2^{*} \pi^{*} \mathrm{Rf}^{*} \mathrm{Cf}} \mathrm{C------140KHz} \\
& \mathrm{Rf}=\mathrm{R} 106 \quad \mathrm{Cf}=\mathrm{C} 109-\mathrm{C} 110
\end{aligned}
$$

PROTECTION CIRCUIT 11.0411 OPERATION - DESCRIPTION

The circuit is configured by:

- A POWER SUPPLY.
- A THERMAL PROBE DC AMPLIFIER.
- A TEMPERATURE DETECTOR.
- A DC OUT DETECTOR PER CHANNEL.
- A CLIP CIRCUIT PER CHANNEL.
- A RESET (TURN OFF/TURN ON) CIRCUIT.
- A BINARY COUNTER PER CHANNEL.
- TWO MONOSTABLE CIRCUITS PER CHANNEL.

The circuit power supply is performed through various sources: +V , module's power supply. This voltage feeds the relays circuit, manual reset circuit and part of the clip circuit. Alternate voltage from a transformer's secondary (manual reset circuit).

There is also a stabilized 10V power supply which feeds the card's circuitry, made of IC301 (7805) plus the zener D302 (Z4.7) $4.7+5 \approx 10 \mathrm{~V}$. We will also need a regulated power supply to get 14 Vmax at 0.7 A , which can be obtained with IC302 (7805) plus an auxiliary circuitry that will be analysed below.

The cooling fan speed is automatically regulated in relation to the power module's temperature, which is read by a thermal probe (LM35D), jointly linked to the heat sink.

This high sensitivity thermal probe gives variations of 10 mV for every ${ }^{\circ} \mathrm{C}$. This voltage is picked up and amplified by the IC305 (LM358). Of course, there is a probe for each L and R heatsink. The output of both amplifiers is linked through two diodes D304 and D305, making an O gate, whose cathodes go to the regulator, applying the DC of any of them to the regulator. This provides a variable voltage at its output which oscillates from a minimum of approximately 7 V for a temperature of $20^{\circ} \mathrm{C}$ (cold heatsink) to a maximum of 14 V for temperatures of $76^{\circ} \mathrm{C}$ or higher.

The gain of the amplifiers has been calculated for this temperatures window. The maximum voltage allowed by the heatsink in order to work properly is 14 V . This maximum is given by the zener D305 (Z9.1/1); as the regulator is a 7805 the voltage will be -as maximum- $9.1+5=14.1 \mathrm{~V}$. When the zener is not working (not enough voltage) the voltage on the fan will be the output amplifiers', less 0.6 V (diodes fall), plus the 5 V of the IC302.

Thermal
probe
I channel
Thermal
probe
r channel

TEMPERATURE DETECTOR

This circuit is calculated to operate over the output relay opening it if any of both modules' temperature excedes $90^{\circ} \mathrm{C}$, approximately. It is made with a comparator per channel (L-R), resident in the same IC306. Both share a reference voltage provided by D306 (TL431A), which gives excellent stability at that voltage $\pm 1 \%$. These comparators reveive, like the DC amplifiers, the signal from their probes, comparing them with the Vref.Once this voltage is surpassed by any of both probes, the output of the corresponding comparator is balanced to the power supply (+10V), acting through D307, R318, D308 and R319 over the respective bases of transistors Q301 y Q307, which makes the corresponding relay open. This output is also connected to the THERMAL LEDs, which light up as the relays are open.

Note that each time the relay is open through any of the variables which act upon it the PROTECT LED must light up. The circuit acting over this LED is made of R327, R328, R329, R4, R5 and Q303. When Q302 stops conducting (open relay), Q303 receives its base current through R327, R326, R6 and the relay's coil, putting this transistor into saturation. This way the LED is linked to the power supply $(+\mathrm{V})$ by means of the group of resistances R328, R329, R4 and R5.

TEMPERATURE DETECTOR CIRCUIT

DC OUT CIRCUIT

The circuit shown in the figure corresponds to the DC OUT of channel L. The goal of this circuit is protecting the loudspeakers when, because of a module fail, there is some DC appearing at the output. The voltages indicated in the figure correspond to rest state and they are given by the dividers made of R320-R322 and R332-R323.

The resistances R323-R322 are linked by their extreme to the leg 7(Q) of the monostable IC310 (4538), which has +10 V at rest state. On the other hand R320-R321 are linked by their extreme to the L output, which, in these conditions, has OV respect to ground. If we apply Ohm's Law to these dividers we will obtain the above mentioned voltages.

Let's remember briefly the function of a NOR gate like the HEF4001B.

A	B	C
0	0	1
0	1	0
1	0	0
1	1	0

Let's suppose there is a continuous voltage appearing at the module output, because of any malfunction.
This makes the voltage dividers lose balance, no matter if the above mentioned voltage is positive or negative, the gate goes to 0 V , the base Q302 loses the current stream and, as a consequence, the relay K301 opens. The aim of the zeners D309 and D310 is protecting the gates, avoiding the voltage in them to be higher than 8.2 V when the voltage is positive and lower than -0.6 V when it is negative; as you can see, the zener plays the role of a diode.

MODUL OUT

fig. 4

CLIP CIRCUIT

The other half of IC307(4001) is used in the clip circuit. Given that we have two gates more and we just need one for our purposes we will connect them in parallel for a higher output current and a more effective LED lighting up.

The clip threshold or point where we want the LED to light up is determined by the zener D313. In our case it is between 0.5 and 1 dB or, what is the same, when the output signal level over the load reaches a value close to that of the power supply (+V), exactly Vout $=\mathrm{V}-5.6$, moment in which Q304 loses the base-emitter voltage stopping conduction; this makes the zener D312 voltage disappear (0V) and the output from IC307 go to "1" logic (+10V), making the LED light up.

CLIP CIRCUIT

GENERAL RESET CIRCUIT (TURN OFF/TURN ON)

TURN OFF RESET. This circuit starts working when the AC current from the transformer secondary disappears or, what is the same, when we turn the power amplifier off by pushing the power off switch, actually disconnecting it from mains.

Circuit operation: The AC signal present at the anode D321 is rectified by this, attenuated and filtered by R13, R348, R347 and C322, apllying it to the base of Q306, which is conducting into saturation and, as a consequence, Q305 is cut. When this signal disappears Q306 is cut and then Q305 has its base feeded through R345, R346 and R14 from the +V power supply, which has begun to lose voltage -because we have just cut the mains- but, because of the high capacity value of the filter condensers, there is enough time to saturate Q305, which puts the resistances R15 and R344 (50) in parallel with the power supply (+10 V) of the logic circuitry, completely discharging the capacities of the circuit, leaving it ready for a new reset pulse -the connection one-, what warranties the new turn-on, even with very short time intervals (.1s) between turn-off and connection pulses.

10V FAST DESCHARGE CIRCUIT

fig. 6

CONNECTION RESET

This is made of C315, R336 and D314. It is the classical reset circuit, used in lots of applications.
In the exact connection moment the condenser C315 is not charged, with a high amount of current circulating through it, or a high voltage in R336. This current decreases as the condenser is charging until it disappears. At the same time, the voltage -in the extremes- of the resistance goes from maximal, in the beginning, to 0 V . This way we get a pulse whose duration depends on the time constant RC. The aim of the diode D314 is a fast discharging of C315 during disconnection.

BINARY COUNTER HEF4520

This is a 4-bit double binary counter. Configured in a way in which when there is the binary code equivalent to decimal number 5 at its output -so this is 100 - it is blocked in this position, until it receives a new MR reset pulse. The blocking action is performed by the NAND gate between legs Q2 and CP1. At this state Q2 becomes "H" one logical, the NAND changes its state putting the leg CP1 to "L" zero logical and -as you can see in the table of functions- the mode can not change in this conditions.

CPO	CP1	MR	MODE
\uparrow	H	L	counter advance
L	\downarrow	L	counter advance
\downarrow	X	L	no change
X	\uparrow	L	no change
\uparrow	L	L	no change
H	\downarrow	L	no change
X	X	H	Q0 to Q3=low

The general turn-on reset initializes the counter. Every time it receives a pulse from the module opto-couplers because of a protections shot it is counted. If during an interval of approximately 5 minutes it does not receive any other pulse, the counter will go back to the original zero state, because it receives a new MR reset pulse from the monostable IC311, whose time constant is approximately 5 minutes (R342,C319). This monostable begins counting from the very first pulse received by the counter, because both are linked to the PROTECT SIGNAL from the module and, consequently, activated at the same time.

If during this time interval (about 5 minutes) a minimum of 5 successive pulses are received, these will make the counter block at that position. This translates into a logical "1" at the Q2 leg of the counter, a " 0 " at the NAND (IC308) output; this zero makes a "1" at the output of the next NAND, giving a result of "0" at the collector of Q301, so Q302 is not conducting and the relay K301 remains open. It will stay this way until the reset from the monostable happens or there is a manual mains disconnection by pushing the power off button.

The reset circuit associated with the monostable is made of C320, D320, R339 and D318 (above we have always been refering to channel L). By means of diodes D317 and D318 we build an "O" gate, with which we apply any of the above mentioned reset pulses to the counter.

fig. 7

fig. 8

STANDBY MONOSTABLE

The only thing left is the function of the monostable made of IC310 (4538).
Like the counter and the monostable IC311 (4538), this circuit is connected to the PROTECT SIGNAL, too. Its output is " 1 " in rest state and becomes " 0 " during an approximate time of 1.3 seconds, which is given by the constant RC of the circuit R341 C316.

This leads to two situations: First, putting a "0" in one of the legs of the NAND (IC308) generates the immediate opening the relay, as we have seen before. On the other hand the voltage divider of the DC OUT circuit is put off balance. The monostable time is calculated to be long enough to unload the capacities of C312 and C313. This way we get a DC OUT circuit initialization as we had done a manual reset (disconnection from mains), causing the tipical turn-on STANDBY time for each of the disconnections of the relays because of the protections shooting. Let's take into account that the system is locked after the fifth disconnection.

STANDBY MONOSTABLE

$\begin{aligned} & \hline \text { TITLE: } \\ & \text { POWER CIRCUIT AND SH } \end{aligned}$	CIRCUIT PROTECTION	MODEL:			LABORATORIO DE ELECTRO-ACUSTICA BARCELONA ESPANA			
		SHEET	OF	6				
DRAWN: J.QUERALT	DATE: 17.10.95	REPLACES:			$\begin{array}{\|c\|} \hline \text { DRW. NO. } \\ 33.0130 R / \end{array}$		REV.	
CHECKED:	DATE:	REPLACED BY:						

PARTS LIST:	POWER CIRCUIT AND	SHORT CIRCUIT PROTECTION
MODEL:PAM2600	DRW .№ 33.0130PL	REV : A
DATE: 000621	SHEET 2 OF 4	REPLACED BY:
REFERENCE	VALUE	
IC103	4N35	
IC104	4N32	
IC105	LM35D	
J101	FASTON 6.3mm	
J102	FASTON 6.3mm	
J103	FASTON 6.3mm	
J104	B3P-VH	
J105	B3P-VH	
J107	B5B-XH	
J108	B5B-XH	
J109	2600-3TS	
Q101	BF871	
Q102	BF872	
Q103	MJE15031	
Q104	MJE15030	
Q105	IRFP240	
Q106	IRFP240	
Q107	IRFP240	
Q108	IRFP240	
Q109	IRFP240	
Q110	IRFP240	
Q111	IRFP9240	
Q112	IRFP9240	
Q113	IRFP9240	
Q114	IRFP9240	
Q115	IRFP9240	
Q116	IRFP9240	
Q117	2N5401	
Q118	2N5401	
Q119	BC337	
Q120	BC337	
Q121	2N5551	
Q122	2N5551	
Q123	2N5551	
Q124	BC547B	
Q125	BC547B	
Q126	BD437	
Q127	BD437	
R101	MF1k	
R102	MF47k5	
R103	MF1k00	
R104	680k	
R105	680k	
R106	MF38k3	
R107	1k5	
R108	1k5	
R109	1k/. 5	
R110	5k	
R111	500Ω	
R112	NF390 Ω /. 5	
R113	NF680 Ω /. 5	
R114	MF787 Ω	
R115	MF191 Ω	
R116	MF191 Ω	
R117	MF787 Ω	
R118	NF68 Ω /1	
R119	$10 \Omega / .5$	
R120	NF68 Ω /1	

PARTS LIST:
MODEL:PAM2600
DATE: 000621
REFERENCE

R121
R122
R123
R124
R125
R126
R127
R128
R129
R130
R131
R132
R133
R134
R135
R136
R137
R138
R139
R140
R141
R142
R143
R144
R145
R146
R147
R148
R149
R150
R151
R152
R153
R154
R155
R156
R157
R158
R159
R160
R161
R162
R163
R164
R165
R166
R167
R168
R169
R170
R171
R172
R173
R174
R175
R176
R177
R178

POWER CIRCUIT AND DRW.№ 33.0130PL SHEET 3 OF 4

SHORT CIRCUIT PROTECTION
REV : A
REPLACED BY:

VALUE
$10 \Omega / .5$
$1 \Omega / .5$
$1 \Omega / .5$
W. $22 \Omega / 5$
$330 \Omega / .5$
W. $22 \Omega / 5$

NF2.2 $\Omega / 2$
6.8Ω
6.8Ω
$10 \Omega / 2$
W1k5/7
W6.8 $\Omega / 5$
W1k5/7
MF1k00
MF487 Ω
5k6/. 5
8k2/. 5
1k8
22k
330k
10k
100Ω
3k3
820Ω
330k
5k6
5k6/. 5
1k8/. 5
MF3k65
10k/. 5
MF487 Ω
MF1k00
1k8
8k2/. 5
5k6/. 5
MF487 Ω
MF1k00

PARTS LIST:
MODEL:PAM2600
DATE: 000621
REFERENCE

R179
R180
R181
R182
PC 11.0504B
WIRE

POWER CIRCUIT AND SHORT CIRCUIT PROTECTION DRW.№ 33.0130PL REV : A SHEET 4 OF 4 REPLACED BY:

VALUE

22k
1k8
1 k 8
MF3k65
PRINTED CIRCUIT
BLACK 90mm whit TER.

PARTS LIST:
MODEL:PAM2600
DATE: 000621
REFERENCE

IC103
IC104
IC105
J101
J102
J103
J104
J105
J107
J108
J109
Q101
Q102
Q103
Q104
Q105
Q106
Q107
Q108
Q109
Q110
Q111
Q112
Q113
Q114
Q115
Q116
Q117
Q118
Q119
Q120
Q121
Q122
Q123
Q124
Q125
Q126
Q127
R101
R102
R103
R104
R105
R106
R107
R108
R109
R110
R111
R112
R113
R114
R115
R116
R117
R118
R119
R120

POWER CIRCUIT AND DRW.№ 33.0130PL REV : SHEET 2 OF 4 REPLACED BY:

VALUE
TIL112
4N32
LM35D
FASTON 6.3 mm
FASTON 6.3 mm
FASTON 6.3 mm
B3P-VH
B3P-VH
B5B-XH
B5B-XH
2600-3TS
BF871
BF872
MJE15031
MJE15030
IRFP240
IRFP240
IRFP240
IRFP240
IRFP240
IRFP240
IRFP9240
IRFP9240
IRFP9240
IRFP9240
IRFP9240
IRFP9240
2N5401
2N5401
BC337
BC337
2N5551
2N5551
2N5551
BC547B
BC547B
BD437
BD437
MF1k
MF47k5
MF1k00
680k
680k
MF38k3
1k5
1k5
$1 \mathrm{k} / .5$
5k
500Ω
NF390 $\Omega / .5$
NF680 Ω /. 5
MF787 Ω
MF191 Ω
MF191 Ω
MF787 Ω
NF68 $\Omega / 1$
$10 \Omega / .5$
NF68 $\Omega / 1$

PARTS LIST:
MODEL:PAM2600
DATE: 000621
REFERENCE

R121
R122
R123
R124
R125
R126
R127
R128
R129
R130
R131
R132
R133
R134
R135
R136
R137
R138
R139
R140
R141
R142
R143
R144
R145
R146
R147
R148
R149
R150
R151
R152
R153
R154
R155
R156
R157
R158
R159
R160
R161
R162
R163
R164
R165
R166
R167
R168
R169
R170
R171
R172
R173
R174
R175
R176
R177
R178

POWER CIRCUIT AND DRW.№ 33.0130PL REV : SHEET 3 OF 4 REPLACED BY:

VALUE
$10 \Omega / .5$
$1 \Omega / .5$
$1 \Omega / .5$
W. $22 \Omega / 5$
$330 \Omega / .5$
W. $22 \Omega / 5$

NF2.2 Ω /2
6.8Ω
6.8Ω
$10 \Omega / 2$
W1k5/7
W6.8 $\Omega / 5$
W1k5/7
MF1k00
MF487 Ω
5k6/. 5
8k2/. 5
1k8
22k
330k
10k
100Ω
3k3
820Ω
330k
5k6
5k6/. 5
1k8/. 5
MF3k65
10k/. 5
MF487 Ω
MF1k00
1k8
8k2/. 5
5k6/. 5
MF487 Ω
MF1k00

PARTS LIST:
MODEL:PAM2600
DATE: 000621
REFERENCE

R179
R180
R181
R182
PC 11.0504B
WIRE

POWER CIRCUIT AND SHORT CIRCUIT PROTECTION DRW.№ 33.0130PL REV :
SHEET 4 OF 4 REPLACED BY:
VALUE

22k
1k8
1 k 8
MF3k65
PRINTED CIRCUIT
BLACK 90mm whit TER.

PARTS LIST:
MODEL : PAM2600/2000
DATE: 050995

REFERENCE

J501
J502
J503
PC 11.0538

INPUT CIRCUIT
DRW. No 33.0127PL
REV:
SHEET 1 OF 1 REPLACES:
REPLACED BY:

VALUE

B4P-VH
YKF52-5003
YKF52-5005
PRINTED CIRCUIT

PARTS LIST:
MODEL : PAM2600/2000

DATE: 150295

REFERENCE

C201
C202
C203 C204
C205 C206
C207
C208
C209
C210
C211
C212
C213
C214
C215
C216
D201
D202
D203
D204
D205
D206
D207
D208
D209
D210
D211
D212
IC201
IC202
IC203
J201
J202
J203
J204
J205
J206
J207
L201
L202
L203
L204
R201
R202
R203
R204
R205
R206
R207
R208
R209
R210
R211
R212
R213
R214

POTENTIOMETERS CIRCUIT
DRW. No 33.0128PL
REV:
SHEET 1 OF 2 REPLACES:
REPLACED BY:
VALUE
220p
220p
C15p
C8p2
10 $\mu / 35$
220p
220p
C15p
C8p2
$10 \mu / 35$
$47 \mu / 25$
$47 \mu / 25$
C100n
C100n
C100n
C100n
1N4148
Z18/1
Z18/1
TL072
TL072
TL072
B4P-S-VH
B3P-S-VH
B4P-S-VH
B3P-S-VH
2600-7TR
B4P-S-VH
B4P-S-VH
$68 \mu \mathrm{H}$
$68 \mu \mathrm{H}$
$68 \mu \mathrm{H}$
$68 \mu \mathrm{H}$
MF1k00
MF23k7
MF23k7
MF1k00
MF340k
1k5
MF1k00
MF47k5
MF47k5
MF1k00
56Ω
10kA
MF47k5
MF47k5

PARTS LIST:
MODEL : PAM2600/2000 DATE: 150295

REFERENCE
R215
R216
R217
R218
R219
R220
R221
R222
R223
R224
R225
R226
R227
R228
R229
R230
R231
R232
PC 11.0546

POTENTIOMETERS CIRCUIT DRW. No 33.0128PL

REV:
SHEET 2 OF 2 REPLACES:
REPLACED BY:

VALUE
56Ω
W1k2/4
W1k2/4
MF1k00
MF23k7
MF23k7
MF1k00
MF340k
1k5
MF1k00
MF47k5
MF47k5
MF1k00
56Ω
10kA
MF47k5
MF47k5
56Ω
PRINTED CIRCUIT

mo man		

PARTS LIST:
MODEL : PAM2600/2000
DATE: 180595

REFERENCE

D701
D702
D703
D704
D705
D706
D707
D708
D709
D710
D711
D712
J701
J702
J703
R701
R702
R703
R704
PC 11.0537

LED CIRCUIT
DRW. No 33.0125PL
REV:
SHEET 1 OF 1 REPLACES:
REPLACED BY:

VALUE

RED
RED
1N4148
1N4148
YELLOW
RED
1N4148
RED
1N4148
YELLOW
GREEN
GREEN
B6P-VH
B6P-VH
B3P-VH
2k2
2k2
2k2
2k2
PRINTED CIRCUIT

PARTS LIST:
MODEL : PAM2600/2000 DATE: 050995

REFERENCE

C80
C802 C803 C804 C805 C806 C807
C808
C809
C810
D801
D802
D803
D804
F801
F802
F803
J801
J802
J804
J805
J806
J807
J808
J809
J810
J811
J812
J813
J814
J815
J816
J817
J818
J819
J820
J821
J822
J823
J824
J825
K801
K802
K803
K804
R801
R802
R803
R804
R805
R806
R807
R808
R809
R810
R811

SOFT START AND POWER CIRCUIT
DRW. No 33.0126PL
REV:
SHEET 1 OF 2 REPLACES:
REPLACED BY:

VALUE
$2 \mu 2 / 63$
$2 \mu 2 / 63$
$47 \mu / 100$
$47 \mu / 100$
$10 n 400 \mathrm{~V}$
$2 \mu 2 / 63$
$2 \mu 2 / 63$
$47 \mu / 100$
47 $\mu / 100$
10n 400V
1N4007
1N4007
1N4007
1N4007
TI 0.25A
TF117 ${ }^{\circ} \mathrm{C}$
TF117 ${ }^{\circ} \mathrm{C}$
FASTON 6.3
2JP+MJ
2JP+MJ
E3209 6000 Ω
E3209 6000 Ω
E3209 6000 Ω
E3209 6000 Ω
W4k7/5
6k8/2
6k8/2
2.2 $\Omega / 2$

W39 $/ 8$
W39 $/ 8$
W39 / $/ 8$
W4k7/5
6k8/2
6k8/2
$2.2 \Omega / 2$

PARTS LIST:
MODEL : PAM2600/2000
DATE: 050995
REFERENCE
R812
R813
R814
WIRE8
WIRE9
WIRE9
WIRE9

SOFT START AND POWER CIRCUIT DRW. No 33.0126PL

REV:
SHEET 2 OF 2 REPLACES:
REPLACED BY:
VALUE
W39 $/ 8$
W39 Ω /8
W39 ${ }^{2} / 8$
BLUE/430mm
BROWN/430mm
BROWN/430mm
BROWN/430mm

PARTS LIST:
MODEL : PAM2600/2000
DATE: 070795

REFERENCE

AC
AC
C301
C302
C303
C304
C305
C306
C307
C308
C309
C310
C311
C312
C313
C314
C315
C316
C317
C318
C319
C320
C321
C322
C323
C324
C325
C326
C327
C328
C329
C330
C331
D301
D302
D303
D304
D306
D307
D308
D309
D310
D311
D312
D313
D314
D315
D316
D317
D321
D322
D323
D324
D325
D326
D327

PROTECTIONS CIRCUIT
DRW. No 33.0123PL
REV:
SHEET 1 OF 4 REPLACES:
REPLACED BY:

VALUE

FAST.2.8
FAST.2.8
2200 $\mu / 35$
$10 \mu / 50$
$10 \mu / 50$
100n
$10 \mu / 50$
$10 \mu / 50$
100n
100n
470n
470n
$10 \mu / 50$
$10 \mu / 35$
$10 \mu / 35$
100n
$22 \mu / 35$
$2 \mu 2 / 35$
$10 \mu / 50$
$2 \mu 2 / 35$
220 $\mu / 25$
$10 \mu / 50$
$220 \mu / 25$
$47 \mu / 16$
100n
$10 \mu / 35$
$10 \mu / 35$
100n
100n
100n
100n
100n
100n
BAS16
Z4.7
Z10/1
BAV70
TL431
BAS16
BAS16
Z8. 2
Z8.2
1N4007
Z8.2
Z5.6
BAV99
BAS16
BAV99
BAV99
1N4007
Z8.2
Z8.2
1N4007
Z8.2
Z5.6
B250C1000

PARTS LIST:
MODEL : PAM2600/2000
DATE: 070795

REFERENCE

FAN
GND
IC301
IC302
IC305
IC306
IC307
IC308
IC309
IC310
IC311
IC312
INSULANT WASHER
INSULANT WASHER J302
J302
J303
J304
J305
J306
J309
J310
J311
K301
K302
MA301
MA302
MA303
MA304
NUT
NUT
PL.N. 1777
Q301
Q302
Q303
Q304
Q305
Q307
Q308
Q308
Q309
Q310
R1
R10
R11
R12
R13
R14
R15
R2
R3
R301
R302
R303
R304
R305

PROTECTIONS CIRCUIT
DRW. No 33.0123PL
REV:
SHEET 2 OF 4 REPLACES:
REPLACED BY:

VALUE

FAST.2.8
FAST.2.8
7805
7805
LM358D
LM358D
HEF4001B
HEF4011B
HEF4520B
HEF4538B
HEF4538B
HEF4001B
R19
R19
FAST.6.3
FAST.6.3
FAST.6.3
B6P-VH
B6P-VH
FAST.6.3
B3P-VH
B3P-VH
B3P-VH
E 3209/4000 Ω
E 3209/4000
MAGNET
MAGNET
MAGNET
MAGNET
M3
M3
HEAT SINK
BC847B
2N5551
2N5551
2N5401
BC817
BC847B
2N5551
2N5551
2N5551
2N5401
680Ω
100k
39K
100k
100k
68K
100Ω
100k
39K
2K2
680Ω
7K50
90K9
15K

PARTS LIST:
MODEL : PAM2600/2000
DATE: 070795

REFERENCE
R306
R307
R308
R309
R310
R311
R312
R313
R314
R315
R316
R317
R318
R319
R320
R321
R322
R323
R324
R325
R326
R327
R328
R329
R330
R331
R332
R333
R334
R335
R336
R337
R338
R339
R340
R341
R342
R343
R344
R345
R346
R347
R348
R349
R350
R351
R352
R353
R354
R355
R356
R357
R358
R359
R360
R361

PROTECTIONS CIRCUIT
DRW. No 33.0123PL
REV:
SHEET 3 OF 4 REPLACES:
REPLACED BY:

VALUE

7K50
90K9
15K
10K
1K
2K7
1k27
604Ω
10K
1K
2M2
2M2
5K6
5K6
332K
332K
590K
226K
5K6
5K6
0Ω
100k
6K8
6K8
560Ω
100K
100k
100k
10K
100k
5K6
10K
100k
10K
680K
680K
1M2
1M2
100Ω
100Ω
68K
47K
100k
100k
10K
5K6
0Ω
590K
332K
332K
226K
5K6
100k
6K8
6K8
560Ω

PARTS LIST:
MODEL : PAM2600/2000
DATE: 070795

REFERENCE

R362
R363
R364
R365
R366
R4
R5
R6
R7
R8
R9
SCREW
SCREW
WASHER
WASHER

PROTECTIONS CIRCUIT
DRW. No 33.0123PL
REV:
SHEET 4 OF 4 REPLACES:
REPLACED BY:

VALUE

100k
100k
100k
39K
39K
6K8
6K8
0Ω
0Ω
6K8
6K8
M3X8 DIN7985 NINE
M3X8 DIN7985 NINE
ADE M3
ADE M3

PROFESSIONAL PAM SERIES - TESTING RULES

PRELIMINARY

GROUND LINK Testing.

- Verify that when the switch is at the ON position there is continuity between the chassis ground and the speakers ground terminal and that the opposite happens at the OFF position. Leave it at ON.
- Put the power amplifier in stereo mode.
- We will need a 4000VA variac for our test purposes.
- Take off one of the fuses of the module in which the testing is being made and connect an ammeter (10A DC scale) in its place.
- Put the oscilloscope probe between TP-GND.

SET UP

- Unplug the fuses of the module that we are NOT setting up.
- Connect the power amplifier mains cable to the output of the variac. Set the variac output at OV.
- Switch the power amplifier on with no load or signal. Turn the variac up progressively step by step until 220 V . While mains voltage is growing up make sure the module's current does never exceed 0.8 A . Once the circuit is stable make sure the current is $480 \mathrm{~mA} / 400 \mathrm{~mA}$ respectively for PAM2600/ PAM2000 and the symmetry (measured up with the oscilloscope probe) is $\leq 50 \mathrm{mV}$. If your figures do not match these numbers adjust CURRENT (5K) and SYMMETRY (470Ω) untill you get the above mentioned numbers.
- Test the operational amplifier power supply $(\pm 18 \mathrm{~V}) \pm 1 \mathrm{~V}$.
- Put the fuse back in its place into the module (with the power amplifier turned off) and repeat the same procedure for the other channel.

CROSS DISTORTION

By using a signal generator introduce a level of 100 mV RMS at 1 kHz and make sure there is no cross distortion at the output (attenuators at 0dB position).

MOSFETS CONDUCTION

By using a signal generator introduce a level of 0.5 V at 1 kHz and load the amplifier with 4Ω Check that all MOSFETs are conducting approximately the same current level (measure this current with the oscilloscope probe by palcing it on the $0,22 \Omega$ source resistances). The maximum conduction difference between MOSFETs should be 100 mV . When making this test be sure the oscilloscope ground is not connected to any other place of the circuit when making the reading; just to the $0,22 \Omega$ resistance. If you do not follow this rule you could produce a shortcircuit between two points of the circuit and therefore a very important damage.

POWER

- Verify the amplifier's power at 8 and 4Ω.
- Maintain the mains voltage at 220 V by means of the variac.
- Check that your own figures match the following at close-to-clip point:

		PAM2600	PAM2000
Vin ≈ 1 VRMS/Vo 4Ω	\geq	70 Vrms	60.5 Vrms
Vin ≈ 1 VRMS $/$ Vo 8Ω	\geq	81 Vrms	68 Vrms

FREQUENCY RESPONSE

0.5 V input signal.

Verify frequency response at $20 \mathrm{~Hz} / 2 \mathrm{kHz} / 20 \mathrm{kHz}$. We must get the same signal output for the actual load at any of the frequencies. Set the frequency at 50 kHz ; the output level should not decrease more than 1 or 2 dB and there should not be any noticeable distortion.

CLIPPING AT 1 kHz

Introduce such a signal that the amplifier is just about to clip.Measure the voltage up at the output (with the actual load) and check that when the voltage decreases between 0.5 and 1 dB the clipping LEDs light down. Check each LED corresponds to its fader.

DC OUT

For this test you must disconnect the load from the amplifier.
Introduce a 1 V signal at $\leq 5 \mathrm{~Hz}$ with the generator. Turn the output of the generator up untill the protection relays open and close.

OVERHEATING PROTECTION

Disconnect the thermic sensor and shortcircuit the green and violet wires.Check that, first, the THERMAL led of the corresponding channel is lit; second, the fan is operating at maximum speed; and third, the two protection circuit relays are open.Connect again the connector.

Use a soldering iron to heat the thermic sensor lead and check that fan speed increases proportionally to the sensor temperature (do not heat excessively).

Remember that each module has two sensors.
Repeat the process for the other channel.

PROTECTIONS

Disconnect the amplifier from the load and introduce with the signal generator a level of approximately 100 mVRMS at 1 KHz . Leave the attenuators at 0 dB and shortcircuit the left channel output (just for a while) checking the PROTECT LED is lighting up and the relay opens the circuit (you can check this by placinf an oscilloscope probe at the amplifier's output and watching the signal disappear during the STAND BY time in which the protection circuit is working). Repeat the same process for the right channel.

PROFESSIONAL PAM SERIES - QUALITY CONTROL

We will use a mixer with balanced output -if possible- and a nominal output level of 1 V as the signal source for test purposes.

Connect the mixer outputs to the power amplifier inputs. Plug the power amplifier to mains (make sure its specified voltage matches that of mains) and make sure that PROTECT, ON and SIGNAL PRESENT LEDs all light up when you turn on the amplifier by pushing the ON button. Turn up the mixer output level untill the CLIP LEDs light up on the power amplifier. Turn down the mixer output and connect the loudspeakers.

Make an exhaustive test of:

- Sound quality (no distorsions or noises)
- Faders action (fader travel, signal cut at their low end, no scratching or clicking noises and correct stereo channel for each one).
- Cooling fan operation.
- While the power amplifier is working shake it or throw it a table to make sure the output sound goes on playing correctly.
- Shortcircuit the power amplifier output and make sure the corresponding channel's PROTECT LED lights up, the relay opens and the output signal is cut for a short period of time (STAND BY) and returned back into normal operation. Repeat the same procedure four times more and then the STAND BY time should be about 5 minutes. Repeat the same steps for the other channel.

Frequency response at max. power output.

Harmonic distortion+noise from 20 Hz to 20 kHz meas.band

Intermodulation distortion (SMPTE) using frequencies of 50 Hz and 7 kHz at $4: 1$ ratio, nominal power.

TIM 100

Signal noise ratio
from 20 Hz to 20 kHz Ref. $1 \mathrm{~W} / 4 \Omega$
To 4Ω nominal power.
Damping factor at $1 \mathrm{kHz} 8 \Omega$
Slewrate
Channel crosstalk at 1 kHz

Inputs balanced and provided with XLR3.
CLIP indicators at $-0,3 \mathrm{~dB}$
Outputs
Protections

Power requirements $110 \mathrm{~V}, 120 \mathrm{~V}$
$220 \mathrm{~V}, 230 \mathrm{~V}, 240 \mathrm{~V}$ AC 50/60Hz
Dimensions Front pannel
Chassis
3650 VA
2730 VA
$482,6 \times 132,5 \mathrm{~mm}$
$440 \times 132,5 \times 514 \mathrm{~mm}$
Weight
31.2 kg
30.5 kg

HE

PARTS LIST:
MODEL : PAM2600/2000
DATE: 060795

MECHANICAL DIAGRAM
DRW. No 30.0042PL
REV:
SHEET 1 OF 1 REPLACES:

QUANTITY VALUE

18 SCREW M4x6 SPANLO DIN7985
6 SCREW M4x20 ALLEN DIN912
8 SCREW M4x12 SPANLO DIN965
16 SCREW M3x9 SPANLO DIN7985
8 METAL WASHER $3.2 \times 6 \times 1$
4 INSULANT R19
2 CARDBOARD WD.03.0069
2 ASSEMBLED PRINTED CIRCUIT 11.504B
6 NUT M4
6 WASHER M4 ADE
1 HEAT SINK UPPER PART WD.00.2095
2 HEAT SINK WD. 2090
1 SUPPORT WD.00.2086
4 CLAMP WD.00.1915
2 COOLING GILLS WD.00.2096
4 INSULANT TO126
4 INSULANT TO220

1 CHASSIS WD.00.2063
8 WRAP-IT-TIES T-50-L
2 GROUND WD.00.2098
4 SCREW M5x10 DIN933E
4 METAL WASHER M5 ADE
1 GROUND WIRE7
4 CAPACITORS $22000 \mu / 100 \mathrm{~V}$ (PAM2600)
4 CAPACITORS $15000 \mu / 80 v$ (PAM2000)

PARTS LIST: ASSEMBLY RECTIFIERS AND SOFT START CIRCUIT
MODEL : PAM2600/2000
DATE: 140795

DRW. No 30.0044PL REV:
SHEET 1 OF 1 REPLACES: REPLACED BY:

QUANTITY VALUE
1 ASSEMBLED CHASSIS WD.00.2063
1 CHASSIS WD.00.2062
1 ASSEMBLED SOFT START CIRCUIT 11.0539B
6 MINIATURE SUPPORT MSP-4N
2 SCREW M4x20 DIN7985
2 METAL WASHER M4 SEG.
2 NUT M4 DIN934
4 SCREW M4x6 DIN7985
2 RECTIFIER FB5006 (PAM2600)
2 RECTIFIER FB3506 (PAM2000)

PARTS LIST:
MODEL : PAM2600/2000
DATE: 180795

MECHANICAL POWER SUPPLY DIAGRAM
DRW. No 30.0045PL
REV:
SHEET 1 OF 1 REPLACES:
REPLACED BY:

QUANTITY VALUE

1 ASSEMBLED CHASSIS 2063 AND CHASSIS 2062
12 SCREW M4x6 SPANLO DIN7985
4 METAL WASHER M4 ADE
2 TRANSFORMER 64AD211 (PAM2600)
2 TRANSFORMER 51AD180 (PAM2000)
2 TRANSFORMER ASSEMBLY KIT

PARTS LIST:
MODEL:PAM2600/2000
DATE: 200599

MECHANICAL DIAGRAM
DRW.№ 300046PL
SHEET 1 OF 1

REV: D
REPLACES:
REPLACED BY:

QUANTITY	DESCRIPT
8	SCREW 5.1x20 DIN CL81Z
43	SCREW M4x6 SPANLO DIN7985
8	SCREW M4x12 DIN965
4	SCREW M4x12 SPANLO DIN965
1	SCREW M4x12 DIN7985
10	SCREW M3x12 DIN966
10	SCREW 2.9x6.5 DIN7981
6	SCREW M4x8 ALLEN DIN912
1	WASHER M4 ADE
1	WASHER M4 SEG.
4	WASHER M3 ADE
3	WASHER M4 ADI
1	RIVET NUT M4
1	GND TERMINAL WD.00.1761
10	NUT M3 DIN934
6	SPACER WD.00.1636
4	METAL WASHER 4.2x9x1.5
6	METAL WASHER 4.2x7x0.5
4	NYLON RIVET 1303
6	SPACER 5mm
2	WHITE D15 CONTROL KNOB
2	REINFORCEMENT WD.00.2045
2	HANDLE ASSEMBLY WD.00.1966
1	ASSEMBLY PRINTED CIRCUIT 11.0537
1	LOWER FRONT PANEL WD.00.2099
1	UPPER FRONT PANEL WD.00.2059
1	SWITCH E120MG21J
4	BASE 11x25
2	SUPPORT WD.00.2222
1	SUPPORT WD.00.2078
2	ASSEMBLY AMPLIFIER MODULE
4	MINIATURE SUPPORT MSP 4N
1	ASSEMBLED PRINTED CIRCUIT 11.0546
1	BUSHING DM8
1	MAIN SUPPLY CABLE
1	CHASSIS WD.00.2061
2	REAR PROTECTING WD.00.1968
2	PAPST 4312 FAN
2	FAN GRILLE
2	FUSE HOLDER 06.52
2	FUSE T16A
2	ASSEMBLED PRINTED CIRCUIT 11.0625
1	ASSEMBLED PRINTED CIRCUIT 11.0538
1	SWITCH 17120
2	HANDLE 1578
6	CARDBOARD WASHER $3.2 \times 6 \times 0.5$

PARTS LIST:
MODEL:PAM2600/2000
DATE: 200599

MECHANICAL DIAGRAM
DRW.№ 300046PL
SHEET 1 OF 1

REV: C
REPLACES:
REPLACED BY:

QUANTITY	DESCRIPT
8	SCREW 5.1x20 DIN CL81Z
43	SCREW M4x6 SPANLO DIN7985
8	SCREW M4x12 DIN965
4	SCREW M4x12 SPANLO DIN965
1	SCREW M4x10 DIN7985
10	SCREW M3x12 DIN966
10	SCREW 2.9x6.5 DIN7981
6	SCREW M4x8 ALLEN DIN912
1	WASHER M4 ADE
1	WASHER M4 SEG.
4	WASHER M3 ADE
3	WASHER M4 ADI
1	RIVET NUT M4
1	GND TERMINAL WD.00.1761
10	NUT M3 DIN934
6	SPACER WD.00.1636
4	METAL WASHER 4.2x9x1.5
6	METAL WASHER 4.2x7x0.5
4	NYLON RIVET 1303
6	SPACER 5mm
2	WHITE D15 CONTROL KNOB
2	REINFORCEMENT WD.00.2045
2	HANDLE ASSEMBLY WD.00.1966
1	ASSEMBLY PRINTED CIRCUIT 11.0537
1	LOWER FRONT PANEL WD.00.2099
1	UPPER FRONT PANEL WD.00.2059
1	SWITCH E120MG21J
4	BASE 11x25
2	SUPPORT WD.00.2222
1	SUPPORT WD.00.2078
2	ASSEMBLY AMPLIFIER MODULE
4	MINIATURE SUPPORT MSP 4N
1	ASSEMBLED PRINTED CIRCUIT 11.0546
1	BUSHING DM8
1	MAIN SUPPLY CABLE
1	CHASSIS WD.00.2061
2	REAR PROTECTING WD.00.1968
2	PAPST 4312 FAN
2	FAN GRILLE
2	FUSE HOLDER 06.52
2	FUSE T16A
2	ASSEMBLED PRINTED CIRCUIT 11.0625
1	ASSEMBLED PRINTED CIRCUIT 11.0538
1	SWITCH 17120
2	HANDLE 1578
6	CARDBOARD WASHER $3.2 \times 6 \times 0.5$

MECHANICAL DIAGRAM
DRW. No 30.0046PL
REV:
SHEET 1 OF 1 REPLACES:

QUANTITY VALUE

8 SCREW 5.1x20 DIN CL81Z
43 SCREW M4x6 SPANLO DIN7985
8 SCREW M4x12 DIN965
4 SCREW M4x12 SPANLO DIN965
1 SCREW M4x12 DIN7985
4 SCREW M3x12 DIN966
10 SCREW 2.9x6.5 DIN7981
4 SCREW M5x10 DIN965
6 SCREW M4x8 ALLEN DIN912
1 WASHER M4 ADE
1 WASHER M4 SEG.
4 WASHER M3 ADE
3 WASHER M4 ADI
1 RIVET NUT M4
1 GND TERMINAL WD.00.1761
4 NUT M3 DIN934
4 NUT M5 DIN934
6 SPACER WD.00.1636
4 METAL WASHER $4.2 \times 9 \times 1.5$
6 METAL WASHER $4.2 \times 7 \times 0.5$
4 NYLON RIVET 1303
4 SPACER $5 \times 9.5 \times 6.35$
2 WHITE D15 CONTROL KNOB
2 REINFORCEMENT WD.00.2045
2 HANDLE ASSEMBLY WD.00.1966
1 ASSEMBLY PRINTED CIRCUIT 11.0537
1 LOWER FRONT PANEL WD.00.2099
1 UPPER FRONT PANEL WD.00.2059
1 SWITCH E120MG21J
4 BASE 11x25
2 SUPPORT WD.00.2079
1 SUPPORT WD.00.2078
2 ASSEMBLY AMPLIFIER MODULE
4 MINIATURE SUPPORT MSP 4N
1 ASSEMBLED PRINTED CIRCUIT 11.0546
1 BUSHING DM8
1 MAIN SUPPLY CABLE
1 CHASSIS WD.00.2061
2 REAR PROTECTING WD.00.1968
2 PAPST 4312 FAN
2 FAN GRILLE
2 FUSE HOLDER 06.52
2 FUSE T16A
2 ASSEMBLED PRINTED CIRCUIT 11.0411
1 ASSEMBLED PRINTED CIRCUIT 11.0538
1 SWITCH 17120
2 HANDLE 1578

4 METAL WASHER $5 \times 11.5 \times 0.8$
4 WASHER AT $5 \times 11.5 \times 3.5$ ABS BLACK
2 FUSE T16A
1 STANDARD BOX $528 \times 215 \times 623$
4 POLYURETHANE PROTECTING HALF (M940)
1 STANDARD BAG 650×740
1 BAG 60x80
4 SCREW M5x10 DIN965
2 HANDLE 1578
1 MANUAL
1 WARRANTY CARD

PARTS LIST:
MODEL:PAM2000
DATE: 000621
REFERENCE

IC105
J101
J102
J103
J104
J105
J107
J108
J109
Q101
Q102
Q103
Q104
Q106
Q107
Q108
Q109
Q110
Q112
Q113
Q114
Q115
Q116
Q117
Q118
Q119
Q120
Q121
Q122
Q123
Q124
Q125
Q126
Q127
R101
R102
R103 MF1k00
R104 680k
R105 680k
R106 MF33k2
R107
1k5
R108
R109
R110
R111
R112
R113
R114
R115
R116
R117
R118
R119
R120
R12
R122
R123
R125
VALUE
LM35D B3P-VH B3P-VH B5B-XH B5B-XH 2600-3TS BF871
BF872
MJE15031
MJE15030
IRFP240
IRFP240
IRFP240
IRFP240
IRFP240
IRFP9240
IRFP9240
IRFP9240
IRFP9240
IRFP9240
2N5401
2N5401
BC337
BC337
2N5551
2N5551
2N5551
BC547B
BC547B
BD437
BD437
MF1k
MF47k5

1 k 5
1k/. 5
5k
500Ω
NF390/. 5
NF680 Ω /. 5
MF787 Ω
MF191 Ω
MF191 Ω
MF787 Ω
NF68 $\Omega / 1$
$10 \Omega / .5$
NF68 $\Omega / 1$
$10 \Omega / .5$
$1 \Omega / .5$
$1 \Omega / .5$
W. $22 \Omega / 5$

POWER CIRCUIT AND DRW.№ 33.0129PL SHEET 2 OF 3

SHORT CIRCUIT PROTECTION
REV : A
REPLACED BY:

FASTON 6.3 mm
FASTON 6.3 mm FASTON 6.3 mm

PARTS LIST:
MODEL:PAM2000
DATE: 000621
REFERENCE

R126
R127
R128
R129
R131
R132
R133
R134
R135
R137
R138
R139
R140
R141
R143
R144
R145
R146
R147
R148
R149
R150
R151
R152
R153
R154
R155
R156
R157
R158
R159
R160
R161
R162
R163
R164
R165
R166
R167
R168
R169
R170
R171
R172
R173
R174
R175
R176
R177
R178
R179
R180
R181
R182
PC 11.0504B
WIRE

POWER CIRCUIT AND DRW.№ 33.0129PL SHEET 3 OF 3

SHORT CIRCUIT PROTECTION
REV : A
REPLACED BY:

VALUE
W. $22 \Omega / 5$
$330 \Omega / .5$
W. $22 \Omega / 5$

NF2.2 $\Omega / 2$
6.8Ω
6.8Ω
$10 \Omega / 2$
W1k5/7
W6.8 $\Omega / 5$
W1k5/7
MF1k00
MF487 Ω
5k6/. 5
8k2/. 5
1k8
22k
330k
10k
100Ω
3k3
820Ω
330k
5k6
5k6/. 5
1k8/. 5
MF3k65
10k/. 5
MF487 Ω
MF1k00
1k8
8k2/. 5
5k6/. 5
MF487 Ω
MF1k00
22k
1k8
1k8
MF3k65
PRINTED CIRCUIT
BLACK 90mm whit TER.

PARTS LIST:
MODEL:PAM2000
DATE: 000621
REFERENCE

IC105
J101
J102
J103
J104
J105
J107
J108
J109
Q101
Q102
Q103
Q104
Q106
Q107
Q108
Q109
Q110
Q112
Q113
Q114
Q115
Q116
Q117
Q118
Q119
Q120
Q121
Q122
Q123
Q124
Q125
Q126
Q127
R101
R102
R103 MF1k00
R104 680k
R105 680k
R106 MF33k2
R107
1k5
R108
R109
R110
R111
R112
R113
R114
R115
R116
R117
R118
R119
R120
R12
R122
R123
R125
VALUE
LM35D B3P-VH B3P-VH B5B-XH
B5B-XH
2600-3TS
BF871
BF872
MJE15031
MJE15030
IRFP240
IRFP240
IRFP240
IRFP240
IRFP240
IRFP9240
IRFP9240
IRFP9240
IRFP9240
IRFP9240
2N5401
2N5401
BC337
BC337
2N5551
2N5551
2N5551
BC547B
BC547B
BD437
BD437
MF1k
MF47k5

1k5
1k/. 5
5k
500Ω
NF390/. 5
NF680 Ω /. 5
MF787 Ω
MF191 Ω
MF191 Ω
MF787 Ω
NF68 $\Omega / 1$
$10 \Omega / .5$
NF68 $\Omega / 1$
$10 \Omega / .5$
$1 \Omega / .5$
$1 \Omega / .5$
W. $22 \Omega / 5$

POWER CIRCUIT AND DRW.№ 33.0129PL SHEET 2 OF 3 REPLACED BY:

REV :

SHORT CIRCUIT PROTECTION

FASTON 6.3 mm
FASTON 6.3 mm FASTON 6.3 mm

PARTS LIST:
MODEL:PAM2000
DATE: 000621

REFERENCE

R126
R127
R128
R129
R131
R132
R133
R134
R135
R137
R138
R139
R140
R141
R143
R144
R145
R146
R147
R148
R149
R150
R151
R152
R153
R154
R155
R156
R157
R158
R159
R160
R161
R162
R163
R164
R165
R166
R167
R168
R169
R170
R171
R172
R173
R174
R175
R176
R177
R178
R179
R180
R181
R182
PC 11.0504B
WIRE

POWER CIRCUIT AND DRW.№ 33.0129PL SHEET 3 OF 3 REPLACED BY:

SHORT CIRCUIT PROTECTION
REV :

VALUE
W. $22 \Omega / 5$
$330 \Omega / .5$
W. $22 \Omega / 5$

NF2.2 $\Omega / 2$
6.8Ω
6.8Ω
$10 \Omega / 2$
W1k5/7
W6.8 $\Omega / 5$
W1k5/7
MF1k00
MF487 Ω
5k6/. 5
8k2/. 5
1k8
22k
330k
10k
100Ω
3k3
820Ω
330k
5k6
5k6/. 5
1k8/. 5
MF3k65
10k/. 5
MF487 Ω
MF1k00
1k8
8k2/. 5
5k6/. 5
MF487 Ω
MF1k00
22k
1 k8
1k8
MF3k65
PRINTED CIRCUIT
BLACK 90mm whit TER.

