Service Manual

 THE FISHER.

 TUNER
 AMPLIFIER

FISHER RADIO CORPORATION • LONG ISLAND CITY 1 • NEW YORK

CAUTION: This is a FISHER precision high-fidelity instrument. It should be serviced only by qualified personnel trained in the repair of transistor equipment and printed circuitry.

EQUIPMENT AND TOOLS NEEDED

The following are needed to completely test and align modern high-fldelity instruments such as amplifiers, tuners and receivers.

Test Instruments

Vacuum-Tube Voltohmmeter DC VTVM
Audio (AC) Vacuum-Tube Voltmeter (AC VTVM)
Oscilloscope (Flat to 100 kc minimum)
Audio (Sine-wave) Generator
Intermodulation Anatyzer
Sweep (FM) Generator (88 to 108 mc) Marker Generator
Multiplex Generator (preferably with RF output FISHER Model 300 or equal).

Miscellaneous

Adjustable-Line-Voltage Transformer or line-voltage regulator
Load Resistors (2) - 8 -ohm, 50 -watt (or higher)
Stereo source (Turntable with stereo cartridge or Tape Deck)

Speakers (2) Full-range, for listening tests
Soldering iron (with small-diameter tip). Fully insulated from power line.

Many of the items below are included just as a reminder - they are normal procedures for experienced technicians. Shortcuts can be taken but often they cause additional damage - to transistors, circuit components or the printed-circuit board.
Soldering-A well-tinned, hot, clean soldering iron tip will make it easier to solder without damage to the printed-circuit board or the many many circuit components mounted on it. It is not the wattage of the iron that counts - it is the heat available at the tip. Low-wattage soldering irons will often take too long to heat a connection - pigtail leads will get too hot and damage the part. Too much heat, applied too long, will damage the printed-circuit board. Some 50 -watt irons reach temperatures of $1,000^{\circ} \mathrm{F}$ - others will hardly melt solder. Small-diameter tips should be used for single solder connections - larger pyramid and chisel tips are needed for larger areas.

- When removing defective resistors, capacitors, etc., the leads should be cut as close to the body of the circuit component as possible. (If the part is not being returned for in-warranty factory replacement it may be cut in half-with diagonal-cutting pliers - to make removal easier.)
- Special de-soldering tiplets are made for unsoldering multiple-terminal units like IF transformers and electrolytic capacitors. By unsoldering all terminals at the same time the part can be removed with little chance of breaking the printed-circuit board.
- Always disconnect the chassis from the power line when soldering. Turning the power switch OFF is not enough. Power-line leakage paths, through the heating element, can destroy transistors.

Transistors-Never attempt to do any work on the transistor amplifiers without first disconnecting the AC-power linecord-wait until the power supply filtercapacitors have discharged.

- Guard against shorts - it takes only an instant for a base-to-collector short to destroy that transistor and possibly others direct-coupled to it. In the time it takes for a dropped machine screw, washer or even the screwdriver, to glance off a pair of socket terminals (or between a terminal and the chassis) a transistor can be ruined.]
- DO NOT bias the base of any transistor to, or near, the same voltage applied to its collector.
- DO NOT use an ohmmeter for testing transistors. The voltage applied through the test probes may be higher than the base-emitter breakdown voltage of the transistor.

Output Stage and Driver-Replacements for output and driver transistors, if necessary, must be made from the same beta group as the original type. The beta group is indicated by a colored dot on the mounting flange of the transistor. Be sure to include this information, when ordering replacement transistors.

- If one output transistor burns out (open or shorts), always remove all output transistors in that channel and check the bias adjustment, the control and other parts in the network with an ohmmeter before inserting a new transistor. All output transistors in one channel will be destroyed if the base-biasing circuit is open on the emitter end.
- When mounting a replacement power transistor be sure the bottom of the flange, the mica insulator and the surface of the heat sink are free of foreign matter. Dust and grit can prevent perfect contact. This reduces heat transfer to the heat sink. Metallic particles can puncture the insulator and cause shorts - ruining the transistor.
- Silicone grease must be used between the transistor and the mica insulator and between the mica and the heat sink for best. heat conduction. Heat is the greatest enemy of electronic equipment. It can shorten the life of transistors, capacitors and resistors. (Use Dow-Corning DC-3 or C20194 or equivalent compounds made for power transistor heat conduction.)
- Use care when making connections to speakers and output terminals. Any frayed wire ends can cause shorts that may burn out the output transistors - they are direct-coupled to the speakers. There is no output transformer - nothing to limit current through the transistors except the fuses. To reduce the possibility of shorts at the speakers, lugs should be used on the exposed ends - at least the ends of the stranded wires should be tinned to prevent frayed wire ends. The current in the speakers and output circuitry is quite high. Any poor contact or small-size wire, can cause power losses in the speaker system. Use 14 of 16 AWG for long runs of speaker-connecting wiring.

DC-Voltage Measurements-These basic tests of the transistor circuitry are made without the signal generator. Without any signal input measure the circuit voltages - as indicated on the schematic. The voltage difference between the base and the emitter should be in the millivolt range-a sensitive DC meter is needed for these readings. A low-voltage range of 1 volt, full scale - or lower - is needed.

Audio-Voltage (gain) Measurements-The schematic and printed-circuit board layout diagrams are used. Input signals are injected at the proper points - found most quickly by using layout of the printed-circuit board instead of the schematic. An AUDIO (AC) VTVM connected to the test points should indicate voltages close to those values shown in the boxes on the schematic. Many of the signal levels in the input stages are only a few millivolts - they can not be read on the $A C$ ranges supplied on most Vacuum-Tube AC/DC Voltohmmeters (VTVMs). Even with a 1 -volt range a signal level of 100 millivolts (. 1 volt) will be the first $1 / 10$ of the mater scale. A reading of 1 millivolt (, 001 voit) will hardly even move the meter needle.

DIAL STRINGING PROCEDURE

- Hook one end of the spring over the bottom ear in the fronteend drivedrum (with the drum rotated to its extreme counterclockwise position).
- Siretch the fension spring until the loop on the free end sticks out of the slot in the edge of the drive-drum. Now insert a length of stiff wire, about l-inch long (a pieee of straighened-ous paper clip will de nicely) through the loop to keep the spring streiched while stringing the dial cord. Place the piece of stiff wire in the outer groove of the driveodrum; bridging the slot in the driveadrum.
- Tie a small, non-s lip, loop in the end of the dial eord.
- Thread the loop in the dial cord through the opening in the driverarum slot, uader the spring, and hook the loop over the top ear inside the drive drum.
- Wrop the dial cord around the drive edrum (counterclock. wise) about $3 / 4$ of a turn, in the inner groove, and then around the rop guide pulley.
- Siretch the dial cord to the lafs and of the dial, around the iwo guida pulleys and then back to the flyawheel drive sheft.
- Wind 3 full purns of dial cord around the drive shaft (as shown in the upper defail drowing).
- While keeping the dial cord rout rotate the driveedrum to
its extreme clockwise position and fit the dial cord into the remaining pulloy.
- Set the dial cord in the outer groove of the frontaend drivedrum and thread it through the loop in the and of the sension spring. (Sae defail drawing at lower right.)
- Pull all slack dial cord through the loop in the tension spring.
- Check all pulleys for proper threading of the dial cord.
- Tie a small knot in the dial cord to secure it to the loop in the tension spring. (Use a tweezer with a small tip to help tie the knop.) Keep dial eord as taut os possible while pying the knot.
- Apply a drop of quick-drying cement to the knot to prevent it from slipping or becaming undone.
- After the cement has dried complately pull oup the piece of stiff wire and gently let the spring controct poopply tension to the dial cord.
- Rotate the fronteend driveadrum to its extreme counter. elockwise position.
- Set the dial pointer to the zero (0) ealibration on the logo ging scale of the slidempule dial.
- Aftach othe pointer to the dial cord and cement it in place with a drop or two of quickedrying cement.

If replacement parts are out of stock, locally, they may be obtained directly from the Parts Department of FISHER Radio Corporation. They will be shipped "best way", either prepaid or C.O.D. unless otherwise specified.
For instrument-operation information and technical assistance write Richard Hamilton, Customer Service Department, FISHER Radio Corporation, Long Island City, New York 11101.

TROUBLESHOOTING GUIDE

When a defect occurs in on electronic circuit the first component suspected is usually the vacuum tube. Many of the inexpensive tube testers will not indicate all the passible internal faulis in a vacuum tube - slight defects often sneak past these testers. It is berter to substifute another tube of the some type.

Sometimes it is possible to switch (transpose) tubes from one circuit to another. This method of testing is most suitable when resting an individual stereo channel. When a good tube is switched with a defective one of the same type the symptom will be fransferred from one stereo channel to the other.

Abstract

When substituting fubes if is absolutely necessary to be certain the tube being inserted is good - a new tube, from a freshly opened carton, is not necessarily a perfect tube. Defeets ${ }^{\circ}$ an oceur from shipping and hendling.

If you have ony doubts about the quality of a tube try it in an identical eircuit that is operating properly. For example, a tube with heater-eathode leakage may operate normally in a circuit with its cathode grounded; transpose (switch) it with one in a circuit that has a cathode -bias resistor and it will cause a lat of hum.

Does not go on - (pilot or dial lamps do not light) in any posision of the SELECTOR switch.
Cheek: AC-interlock plug and sockep, power cord and plug, wall outlet.

- Automatic shut-off switch S1 (part of SELECTOR switch)
- Power switch SA.

Does not go on - (pilot or dial lamps do not light) only in PHONO positions of the SELECTOR switch.
Check: Automatic shutooff switch S1 (part of SELECTOR switch).

- 19 and its plug and the interconnecting cable and the turntable switch on the record player.

Distortion
(Both channels) in any position of she SELECTOR switch.
Hum, Weak or
No audio outpur
Check: SPKR switch position and its operation. -
Test or.substitute V1. Test for proper DC voltages at: CR2, C2, R3; R3, R6, C3B; R6, R7, C3C; R7, C3D.

Hum - in any position of the SELECTOR swisch.
Check: Setting of HUM ADJUST CONTROL (R2).

- 295-volt DC power supply filier (C3A, B, C, D),
- Bias supply (CR3 and C4) for AC ripple.

Distortion (LEFT channel only) SELECTOR in PHONO nad FM positions.
Hum, Weak or
No cudio output
Hum or
No audio output
(RIGHT channel only) SELECTOR in PHONO and FM positions.
Test (filament leakage for hum) or substitute V1, V4, V5.
Hum or
No audio out̂put
SELECTOR in PHONO positions only
Check: $\quad 13,17,19$ and their plugs and interconnecting cables to the record player.

- Clean and tighten all ground connections.
- Reverse AC line-cord plug in wall outlet
- Reverse AC line-cord plug from record pleyer in $J 18$ (on chassis) if used.

Hum or
SELECTOR in FM position only.
No audio output

- Try other stations
- Reverse AC lineacord plug in wall outlet.

Check: Antenne connections and antenna (outdoor)
Test (filament leakage for hum) or substifute V11, V12, V13, V14.
Hum- SELECTOR in FM STEREO position only
No oudio output
Distortion Check: Balanced modulator D401 and C409, C410; C407, C412; L401, L402.
Test (filament leakage for hum) or subs pitute V401, V402.
STEREOSCAN indicator inoperative
Check: 15, Y402, C406, R433, R434, R435, CR402, CR401.

- Alignment of Z421.

MIGUEE B. Lissaious pattern for MPX Osctilutor allgament.

MGURE 2. Multiplexalligmment coupling notwork etrsuli.

ALIGNMENT INSTRUCTIONS • MULTIPLEX SECTION

GENERAL
The proforred alignment procedure, in table 1 below, uses a multiplex genorator with an $R \mathcal{F}$ output, like the FISHER Model 300 . Optimum parfiermance will be obtained only when the multiplex decoder is connected to plox docodor operation.
TEST EQUIPMENT REQUIRED: MULTIPLEX GENERATOR, AUDIO (AC) VTVM, $100 \mathrm{KC} \mathrm{OSCILLOSCOPE} \mathrm{WITH} \mathrm{EX-}$ TERNAL SWEEP JACKS, ALIGNMENT TOOL

stups	generator			indicapor	Allonmint	
	conmicrion	modulation	pevition	conniction	adust	indication
1	Multiplex generator ar ouput to antanno refminala	${ }^{19} \mathrm{kc}$ pillor	$\pm 7.5 \mathrm{kc}$	vivm to TP 421		Meximum reading on VTVM
2		-	\square	Verrical innut of osecllile 	22	
3	Same as Stap 1	Composite MPX; left channel only len	$\pm 75 \mathrm{kc}$	VTVM and oscilloscop vertical input ôo right [terminal 1R]	21 top	Maximum reading on VivM, cleon 1000 cps Sine wove on occlioscope
4	Same as Stap 1	$\begin{aligned} & \text { Composise MPX; } \\ & 1000 \text { eps on } \\ & \text { right channel only } \end{aligned}$	$\pm 75 \mathrm{kc}$	Someas Step 3		Minimum reading on VTVM should be of least 33 db bolow reading af least 33 ath balow reading obtained in Step 3
5	Somo as Stup 1	Sams as Stop 4	$\pm 75 \mathrm{kc}$	VTVM and oscilloscope vertical input tolright channel output lug (terminal 15)	-	Some VTVM reading as chirained in Step 3 ± 2 db, clean 1000 cps sine cillegcopp
6	Same as step 1	$\begin{aligned} & \text { Composite MPX; } \\ & 1000 \text { cps on } \\ & \text { left channel only } \end{aligned}$	$\pm 75 \mathrm{kc}$	Same os Stop 5	APX separaîion control (R4) if necessary	Minimum reading on VTVA should be at least 33 db below reading be at least 33 db below reading obtained in Step 5

ALTERNTE ALIGNMENT PROCEDURE

 For multiplex generators without an RF outpuiWhon using this alignment procedure, it is necessary to disconnoct the retio defector from the multiplex decode the point where the generator is connected. Unsolder point IT carofully. The generator input must be through
simple low-pass filter-a 12 K resisfor between the multiplex generator and the MPX input with a 180 pF capao citor from the MPX input end of the resistor to ground (Figure 2, on schematic).
TEST EQUIPMENT REQUIRED: MULTIPLEX GENERATOR, AUDIO (AC) VTVM, 100 KC OSCILLOSCOPE WITH EXTERNAL SWEEP JACKS, ALIGNMENT TOOL.

staps	eenerator			indicator	allignment	
	conmetion	aubio	Levis	TYPE AND CONECTION	ADJust	inolcation
1	Composite output of MPx genarato fio demaduitior (Point)	19 kcpilot	(100 mV. PMS		21 top and bottom	Maximum reading on VTVM
2		-	-	Onilloscopa verical	22	
3	Same as Step 1	(1000 cpit on			21 top	
4	Same as Stap !			Same os Step 3		Minimum reading on VTVM should be at least 33 db below reading obtained in Siep 3
5	Same as Step 1	Soms as Step 4	0.7VRMS $1.92 \vee P \cdot P)$	VTVM and oscilloscop vertical input to right (terminal is)	-	Same VTVM reading as obtained in tep $3 \pm 2 \mathrm{db}_{\text {; clean }} 1000 \mathrm{cps}$ sine on oscilloscope
6	Same as Step 1		0.7 V RMs $(3.92 \mathrm{VPP.P)}$	Some os Step 5	MPX separation control (R4) control (R4), if necessary*	$\begin{aligned} & \text { Minimum reading on VTVM should } \\ & \text { be af lecst } 3 \text { gd below reacifing } \\ & \text { obtained in Step 5. } \end{aligned}$

awaser

AMPLIFIER • PARTS DESCRIPTION LIST

In ohms, 5% tolerance, $1 / 3 \mathrm{~W}$ unless otherwise noted. $K=$ Kilohms, $M=$ Mogohms.		
symbol	Deseription	Pare No.
Ri	Composition, $220 \mathrm{~K}, 10 \%$,	
R2	Pot., Wirowound, 500, Hum	
	mposition,	
RS	Composi ition, 470	RC20BF474J
86	Composition, $1.8 \mathrm{k}, 10 \%$, YW	${ }^{\text {RC208F182K }}$
R7	Composition, $3.3 \mathrm{~K}, 10$	RC208F332K
R8, 9	Dop. Carbon, 820K	R33DC824J
R10, 11	Dop. Carbon, 8.2 M	R33DC825J
R12, 13	Composition, 18M, 10\%, 1/2W	RC208F186K
R14, 15		C102J
${ }^{816}$	Dep. Carbon, 100K	R33DC104J
19A, B'	Pot., 500K, Dual, Bass, Tre	R50160-138

miscellaneous

Symbol	Description	Part No.	$\mathrm{PCl}_{51} 2$	Printod Circuit, Tone Control	${ }^{\text {PCF5018799 }}$
CRI, 2	Diode, silicon Rectifier	SR50472	S2, 3	Swith, Slide	${ }_{5} 502000-5$
CR3	Diode, Silicen Reetifier	V.1112	71	Transformer, Powor	T1078.115
11	Pllot Bulb, 11847	${ }_{150009.7}$	T2	Transformer, Outpur	71078-117-2
JII	Phono Jack	J8480. 20.1	T3	Tran	T1078-117-1

10% tolerance for all fixed eapacitors, unless otherwise noted or marked GMV (guaranteed minimum value). All capacitors not marked uF are pF (uuF).			$\begin{gathered} \mathrm{Cl17} \\ \text { che } \end{gathered}$	Ceramic, 5000, $+80-20 \%$, 500 V Ceramic, 2700, 1000 V	C50089.6 C50072-17 c50089
Symbol	Doseription	Port No.	c20	Caramic, 02 uF , GMV, 1	6
Cl_{1}	Coramic, 21, 5%, N750, 1000 V	C50070.32	C21	Electrolytic, 2, 2-soction	C50180.76
	Coramic, 1000 , GMV, 1000 V	C50071.2		B-20uF, 350 V	
C 4		${ }_{\text {CC20C }}$	c22	Coramic, $5000,+80-20 \%, 500 \mathrm{~V}$	C50089\%
cs	Coramic, $10 . \pm .5 \mathrm{pF}, \mathrm{N150,500V}$	CC20P J1000 S	${ }^{23}$	Coramic, 2700, 1000 V	C50072.17
C6, 7	Ceramic, Trim	C662-123	$\mathrm{C} 24^{4}$	Ceramic, 5000, $+80-20 \%$, 500 V	C50089-5
csa,	Variable, FM	C818-116	${ }^{23}$	Coramic, 2700, 1000 V	c50072017
C9	Ceramic, 8 , \pm,	CC20CJ080D5		Coraime, 5000, $+80-20 \%$, 500V	CS0089-6
${ }^{\text {c11 }}$		${ }_{\text {C55007702 }}$		Co	
C12	Ceramic, 24, 59%, N150\%, 1000 V	C50070.8		Electrolyric, 8uF, 50 V .	C6290138
Cl^{13}	Coramic, $47,5 \%$, N750, 1000 V	C50070.29			
${ }_{\text {C14 }}$		${ }^{\text {C 5 50070.19 }}$	33	Ceramic, $5000,+80 \mathrm{O}-20 \%, 500 \mathrm{~V}$	
C16	Ceramic, $1000,1000 \mathrm{~V}$	${ }_{\text {C50072-3 }}$	${ }_{C 35}$	Coromic, $5000,+80-20 \%, 500 \mathrm{~V}$	C50089.6

Composition, in ohms, 10% tolerance, $1 / 1 /$ Wott, unlessotherwiso notod. $K=$ Kilohm, M M Me gohm.			$\begin{aligned} & \mathrm{R} 13 \\ & \mathrm{R} 14 \\ & \mathrm{R} 14 \end{aligned}$	Glass, 560, 10\%, 3W 150	RPG3WE61K RC20BF151
Symbol	Description	Part No.	816	1 k	RC20BF102K
R1, 2	100K	RC20BF104K	R17	47 K	RC20BF473\%
R3	470	RC20BF471K	$R 18$	56 K	RC208F563k
R4	820	RC20BF821K	$R 19$	1 K	RC20BF 102 K
R5	150K	RC20BP154K	$R 20$	270	RC208F271\%
R6, 7	1 K	RC20日F102K	R21	1.5 K	RC208F152\%
88	150	RC20BF151K	${ }^{222}$	1 K	RC208Frozk
${ }^{R 10}$	${ }_{100 \mathrm{~K}}^{27}$	RC203F2273K RC208FI04K	R23 R24	${ }_{1}^{15 \mathrm{~K}} \mathrm{M}$	
R11	1 k	RC20BFIO2K	$\mathrm{R}^{2} 2$	Diop. Carbon, 470K, 5\%, 1/8W	R12DC4743
R12	Glass, 3.3K, 10\%, 7 W	RPG7W332K	R26, 27	Dop. Carbon, $330 \mathrm{~K}, 5 \%, 1 / \mathrm{BW}$	${ }_{\text {R12DC334J }}$

1131-2 MULTIPLEX - SCHEMATIC

CHASSIS LAYOUT • TUNER

ALIGNMENT INSTRUCTIONS

Read these instructions very carefully before attempting alignment.
jet the SELECTOR switch to the MONO position. Set tuning dial to the extreme low-frequency position.
Dial pointer should line up with the calibration mark it the low-frequency ond of the dial scale. Reset the tial pointer if necessary.)
Narm up the chassis and the test equipment for at least minuo

STEP	DIAL	signal generator			dC vtvm	ADJust	indication
1	Set dial pointer for extreme low-frequency position.	generator coupling	Freq.	MOD.	Tost Point 3*	T1, T2, T3, T4, and T5 top and bottom	Maximum negative voltage (below 20 volts)
		Ungrounded łube shield of V2	10.7 MC	None			
2		Ungrounded tube shield of V2	10.7 MC	None	Hot loud of DC VTVM \%o TEST POINT 4. Ground load of DC VTVM to iunction of two series-connected (47K 5%), wired be twoen TEST POINT 3 and ground.	T5 top	Zero indication on zoroocontar dial.
3	90 MC	Two 120-ohm earbon resistors in series with generator leads oino antenna torminals(Figure 1).	90 MC	$\pm 22.5 \mathrm{KC}$ at 400 cps .	Through 100K resistor to Test Point 2	L5 and L4	Adjusi for maximum negative volrage and choek for sinusoidal waveform, with scope, at LEFT or RIGHT oulput.
4	106 MC		106 MC	$\pm 22.5 \mathrm{KC}$ deviation at 400_{cps}.	Through 100K resistor to Tesp Point 2	C7 and C6	
5	98 MC		98 MC	$\pm 22.5 \mathrm{KC}$ deviation 400 eps.	Through 100K resistor to T.ast Point 2	4	

igure 1. Method of connecting resistors in serias ith generator leads.

Figure 2. Typical swoep-alignment response curves obtained

with properly alignod IF amplifier.

Adiust line voltage (power input to chassis) for 117 volts AC 50 to 60 eycles.
(Use only the proper, fully insulated, alignment tools.) Reduce signal generator output during alignment to koep
VTVM reading below that spocified for step 1.
Repeat steps 4 and 5 to obtain proper dial calibratio and maximum sensitivity.

|wsies B

CHASSIS LAYOUT • AMPLIFER

FISHER RADIO CORPORATION. NEW YORK

