JVC SERVICE MANUAL PORTABLE CD SYSTEM

RC-BX33SL

Area Suffix UX---Saudi and relative U---Except ux

IMPORTANT

PLEASE TAKE NOTE BEFORE ORDERING

- 1. Order all service parts through JVC Asia Pte Ltd.- Customer Satisfaction Dept.
- 2. Two orders are available: Initial order and last order (Before End Of Line)
- 3. Minimum order quantity: 100pcs
- 4. Delivery term: Minimum 2 months upon confirmation of order.

Contents

Safety precautions	1-2
Preventing static electricity	1-3
Disassembly method	1-4
Adjustment method	1-7
Description of major IC	1-13

Safety precautions

- 1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorised in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
- 2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
- 3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by () on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
- 4. The leads in the products are routed and dressed with ties, clamps, tubing's, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after re-assembling.
- 5. Leakage current check (Electrical Shock hazard testing) After re-assembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock. Do not use a line isolation transformer during this check.
 - Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly and exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed 0.5mA AC (r.m.s.)
 - · Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a $1,500\Omega$ 10W resistor paralleled by a 0.15µF AC-type capacitor between an exposed

metal part and a known good earth ground. Measure the AC voltage across the resistor with the AC voltmeter.

Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and measure the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. voltage measured Any must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5 mA AC (r.m.s.).

Warning

- 1. This equipment has been designed and manufactured to meet international safety standards.
- 2. It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
- 3. Repairs must be made in accordance with the relevant safety standards.
- 4. It is essential that safety critical components are replaced by approved parts.
- 5. If mains voltage selector is provided, check setting for local voltage.

▲ CAUTION Burrs formed during moulding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of performing repair of this system.

Preventing static electricity

Electrostatic discharge (ESD), which occurs when static electricity stored in the body, fabric, etc. is discharged, can destroy the laser diode in the traverse unit (optical pickup). Take care to prevent this when performing repairs.

1.1. Grounding to prevent damage by static electricity

Static electricity in the work area can destroy the optical pickup (laser diode) in devices such as DVD players. Be careful to use proper grounding in the area where repairs are being performed.

1.1.1. Ground the workbench

1. Ground the workbench by laying conductive material (such as a conductive sheet) or an iron plate over it before placing the traverse unit (optical pickup) on it.

1.1.2. Ground yourself

1. Use an anti-static wrist strap to release any static electricity built up in your body.

1.1.3. Handling the optical pickup

- 1. In order to maintain quality during transport and before installation, both sides of the laser diode on the replacement optical pickup are shorted. After replacement, return the shorted parts to their original condition. (Refer to the text.)
- 2. Do not use a tester to check the condition of the laser diode in the optical pickup. The tester's internal power source can easily destroy the laser diode.

1.2. Handling the traverse unit (optical pickup)

- 1. Do not subject the traverse unit (optical pickup) to strong shocks, as it is a sensitive, complex unit.
- 2. Cut off the shorted part of the flexible cable using nippers, etc. after replacing the optical pickup. For specific details, refer to the replacement procedure in the text. Remove the anti-static pin when replacing the traverse unit. Be careful not to take too long a time when attaching it to the connector.
- 3. Handle the flexible cable carefully as it may break when subjected to strong force.
- 4. It is not possible to adjust the semi-fixed resistor that adjusts the laser power. Do not turn it.

Disassembly method

- Removing the rear panel
- 1. From behind the body, remove the Five screws **A** retaining the rear panel.
- 2. Open the Battery door, then remove One Screw **B** retaining in the battery compartment bottom side.
- 3 Then remove the Two screws **C** retaining the bottom of rear panel.
- 4 Take out the rear panel from the body. And disconnect the CN302 on the main board right side. **Note:**

Be careful of the FM antenna white wire, it is connection with the tuner PCB up side. You can directly take out from the tuner PCB.

When you re-assembly the product, plug the FM antenna white wire into the Tuner PCB'S "FM ANT" position.

- Removing the Main Board PCB (1)
- 1. Open & remove the rear panel
- 2. Remove the Two Screws **D** on the Black Backet, then take out the black backet on the front panel.

Screws D.

3 Remove the Two Screws E retaining on the left of front panel. Screws E.

4 Remove the One Screw **F** retaining on the right of front panel.

- Removing the Main Board PCB (2)
- 5 Disconnect the CN201, CN202 & C301 on the top of the Main Board PCB.

- 6 Then, take out the top panel from the front panel.
- 7 Remove the nine screws **G** from the Main Board PCB.

8 Take out the Main Board PCB from the front panel, & disconnect the CN901 & CN903 on the Main Board PCB.

Adjustment method

- Measurement instruments required for adjustment
- 1 Low frequency oscillator This oscillator should have a capacity to output 0dB to 600 at an oscillation frequency of 50Hz-20KHz
- 2 Electronic voltmeter
- 3 Distortion meter
- 4 Frequency counter
- 5 Wow & flutter meter
- 6 Test tape
 - TCC-112: Tape speed and running unevenness (3KHz) TCC-140: Reference level (1KHz)
 - TCC-182A: Head angle (8KHz), playback frequency characteristics (1KHz) and dubbing frequency characteristics (125Hz and 8KHz)
- 7 Blank tape TYPE I : TDK-D60
- 8 Torque gauge : For play and back tension FWD(CT-120m), and FF/REW(CT-F)
- Measurement conditions

Power supply voltage ------ AC120V (60Hz) Reference output ----- Speaker : 0.63V/8 Headphone : 0.245V/32

Input for confirming recording and ----- CD : -10dB playback characteristics Measurement output terminal ------ Speaker CN301 * Load resistance ----- 8

Radio Input signal

AM	frequency 400Hz
AM	modulation 30%
FM	frequency 1 KHz
FM	frequency deviation 22.5KHz

• Tuner section

Reference measurement ----- 26.1mV(0.63/8) output

Input positions ----- AM : Standard loop antenna FM : TP1 (hot) and TP2 (GND)

Precautions for measurement

1 Direct connect to the IF sweeper output side and 1UF and 22 Kohm connect to the sweeper input side. Same as FIG1.

- 2 The IF sweeper output level should be made as low as possible within the adjustable range.
- 3 Since the IF sweeper is a fixed device, there is no to adjust this sweeper.
- 4 Since a ceramic oscillator is used, there is no need to perform any MIX adjustment.
- 5 Since a fixed coil is used, there is no need to adjustment the FM tracking.
- 6 The input and output earth systems are separated. In case of simultaneously measuring the voltage in both of the input and output systmes with and electronic voltmeter for two channels, therefore, the earth should be connected particularly carefully.
- 7 For connecting a dummy resistor when measuring the output, use the wire with a greater code size.
- 8 Whenever any mixed tape is used, use the band pass filter (DV-12V).

TAPE DECK ADJUSTMENTS

1 HEAD AZIMUTH ADJUSTMET

- (1) Load the test tape TCC-182A 8KHz for azimuth adjustment.
- (2) Press the PLAY button. Use a cross-tip screwdriver to turn the screw for azimuth
- (${\bf 3}$) adjustment so that the left and right output are maximized
- (4) Press the STOP button
- (5) After completion of the adjustment. Use thread lock(TB-1401B) to secure the azimuth-adjustment screw.

2 AC BIAS FREQUENCY ADJUSTMENTS

- (1) Connect frequency counter to CN201(BS);
- (2) R/P swith in recording state;
- (3) Adjusting T201 use a plastic screwdriver, AC bias frepuency;62+-1KHZ..

3 TAPE SPEED ADJUSTMENT

- (1) Insert the test tape(MTT-111N,3,000 HZ)
- (2) Press the PLAY button.
- (3) Use a flat-tip screwdriver to turn the MOTOR VR

adjust MOTOR VR so that the frequency counter become $3{,}000\text{Hz}$

CASSETTE MECHANISM SECTION

CASS DECK

Tape recorder section

Items	Measurement	Measurement method		Adjusting
	conditions		Values	positions
Confirmation	Test tape	1 Playback the test tape TCC-182A (8KHz)	Maximum	Adjust the head
of head angle	:TCC-182A(8KHz)	2 With the recording & playback mechanism,	output	azimuth screw
	Measurement output	adjust the head azimuth screw so that the		only
	terminal	left and right output levers become		
	:Speaker terminal	maximum, After adjustment, lock the		
	Sparker R	head azimuth at least by half turn.		
	(Load resistance:8)			
	:Headphone terminal			
Confirmation	Test tape	Adjust VR401 so that the frequency counter	Tape speed	MOTOR VR
of tape speed	:TCC-112(3KHz)	reading becomes 3,010Hz +/-15Hz when	of deck	
	Measurement output	playing back the test tape TCC-112 (3KHz)	:3,010Hz	
	terminal	with playback and recording mechanism	+/-15Hz	
	:Headphone terminal	after ending forward winding of the tape.		

Reference Values for Confirmation Items

ITEMS	MS Measurement Measurement method		Standard	Adjusting]
	conditions		Values	positions
Wow & flutter	Test tape	When the test tape TCC-112 (3KHz) has been	0.25% or	
	:TCC-112(3KHz)	played back with the recording and playback	less	
		mechanism at the beginning of forward	(WRMS)	
	Measurement output	winding, the frequency counter reading of		
	terminal	wow & flutter should be 0.25% or less		
	:Headphone terminal	(WRMS).		

Electrical Performance

ITEMS	Measurement	Measurement method	Standard	Adjusting
	conditions		Values	positions
Adjustment of	* Mode: PB mode	1 With the recording and playback mechanism,		
recording bias	* Recording mode	load the test tapes TDK-D60, and set the	TDK-D60	
current	* Test tape: TDK-D60	mechanism to the recording and pausing	4.5 A	
(Reference		condition in advance .	+/-0.5 A	
Value)	* Measurement output			
	terminal	2 After connecting 100ohms in series to the		
	:Both recording and	recorder head, measure the bias current		
	headphone terminals	with a valve voltmeter at both of the		
		terminals		
Adjustment of	* Reference frequency	1 with the recording and playback mechanism,	Output	
recording and	:1KHz and 8KHz	load the test tapes (TDK-D60) and set the	deviation	
playback	(REF.:- 10dB)	mechanism to the recording and pausing	between	
frequency	* Test tape: TDK-D60	condition in advance.	1KHz and	
characteristics			8KHz	
	* Measurement input	2 While repetitively inputting the reference	:-1dB +/-2dB	
	terminal: OSC IN	frequency signal of 1KHz and 8KHz from		
		OSC IN, record and playback the tape.		
		3 While receding and playback the test tape		
		Lch and Rch so that the output		
		deviation between 1KHz and 8KHz becomes		
		-1dB +/-2dB		

Reference Values for Electrical Function Confirmation Items

Items	Measurement conditions	Measurement method	Standard Values	Adjusting] positions
Recording	* Playback	1 While changing over to and form BIAS 1	62KHz	T201
bias frequency	* Test tape: TDK-D60	and 2, confirm that the frequency is changed	+/-6KHz	
	* Measurement terminal : BIAS TP on P.C. board	 2 With the recording and playback mechanism, load the test tape. (TDK-D60), and set the mechanism to the recording and pausing condition in advance. 3 Confirm that the BIAS TP frequency on the P.C. board is 62KHz +/-6KHz 		

Flow of functional operation until TOC read

RC-BX33SL

TUNER ADJUSTMENTS

use a plastic screw driver for adjustments.

Adjust the intermediate frequency of AM and FM to the frequency of ceramic filter

Supply voltage :					
Speaker impedance :					
Function switch :					

DC 12.0 V 8 OHMS RADIO -TP1 0 TP2 T102 0 0 0 PVC3 0 PVC2 L103 PVC1 L104 PVC4 T104 TP8 TP4 T106 TP3 T105

tment	В
-------	---

BAND SELECT SWITCH : AM

a.	AM Adjustment BAND SELECT SWITCH : AM							
ste	Adjusting	Tuning	Input Cor	Input Connection		Output Connection		Oscilloscope
	circuit	Frequency	Measurement	input	Measurement	output	parts	
1	IF	1000 KHz	AM Sweep	Loop		TP4(H)	T105	\wedge
	(455 / 465KHz)		Generior	ANT	Oscilloscope	TP8(E)		
								(Non-adjustment)
2	Tuning	520KHz				TP4(H)	T102	
3	Coverage	1640/1740 KHz			Oscilloscope	TP8(E)	PVC4	
4		600 KHz	AM Signal	Loop		TP4(H)	MW COIL	
5		1400 KHz	Generior	ANT	Oscilloscope	TP8(E)	PVC3	Maximum

b. FM Adjustment

BAND SELECT SWITCH : FM FM Dummy Antenna : 75 ohm unbalance

ste	Adjusting	Tuning	Input Connection		Input Connection Output Connection		Adjustment	Oscilloscope
	circuit	Frequency	Measurement	input	Measurement	output	parts	
1	IF		FM Sweep	TP4(H)		TP4(H)	T104	\frown
	(10.7 MHz)	98.0 MHz	Generator	TP3(E)	Oscilloscope	TP8(E)	T106	
								(Non-adjustment)
2	Tuning	87.4 MHz				TP4(H)	L104	
3	Coverage	108.3 MHz		FM ANT.	Oscilloscope	TP8(E)	PVC2	
4		90.0 MHz	FM Signal	FM ANT		TP4(H)	L103	Confirm with being
5	Tracking	106.0 MHz	Generator	TP1 (E)	Oscilloscope	TP8(E)	PVC1	near by effective
				TP2(H)				sensitivity

Major ICs Description

LA1824

Pin No.	Function	Pin No.	Function	Pin No.	Function
1	AM-RF Input	9	AM-IF output		R output
2	Reg	10	FM-IF Input		MPX input
3	AM-OSC	11	AM-IF input		AM/FM detector output
4	VCC1	12	AM-AGC	20	FM-OSC
5	FM-MIX output	13	FM-DET	21	VCC2
6	GND1	14	Pilot detector filter	22	FM-RF output
7	AM-MIX output	15	AM/FM Switch	23	GND2
8	Tuning in dicator	16	L output	24	FM-RF Input

LA4227

1	STANDBY	7	PRE GND
2	OUT2	8	IN1
3	BS2	9	NF1
4	NF2	10	BS1
5	IN2	11	OUT1
6	DC(FILTER)	12	VCC

TA2092N

1	PW GND	9	OUT(+)2	17	VIN3
2	OUT(-)1	10	PVCC2	18	SGND
3	PVCC1	11	OUT(-)2	19	SVCC1
4	OUT(+)1	12	PW GND	20	VIN4
5	VIN1	13	PW GND	21	OUT(+)4
6	Vr1	14	OUT(-)3	22	PVCC4
7	Vc1	15	PVCC3	23	OUT(-)4
8	VIN2	16	OUT(-)3	24	PW GND

TA2153FN

Pin No.	Function								
1	vcc	7	TNI	13	TEN	19	VRO	25	RFGO
2	RFGC	8	MDI	14	TEO	20	RFRP	26	GVSW
3	GMAD	9	LDO	15	SBAD	21	BTC	27	AGCIN
4	FNI	10	SEL	16	FEO	22	RFCT	28	RFO
5	FPI	11	TEB	17	FEN	23	РКС	29	GND
6	ТРІ	12	2VRO	18	SEB	24	RFRPIN	30	RFN2

JVC SERVICE MANUAL PORTABLE CD SYSTEM

RC-BX33SL

Area Suffix UX---Saudi and relative U---Except UX

IMPORTANT

PLEASE TAKE NOTE BEFORE ORDERING

- 1. Order all service parts through JVC Asia Pte Ltd.- Customer Satisfaction Dept.
- 2. Two orders are available: Initial order and last order (Before End Of Line)
- 3. Minimum order quantity: 100pcs
- 4. Delivery term: Minimum 2 months upon confirmation of order.

Contents

Block diagram	2-2
Wiring diagram	2-3
Schematic diagram	2-4
Printed circuit boards	2-6

BLOCK DIAGRAM

Wiring Diagram

Circuit Diagram -1

RC-BX33SL

Printed Circuit Boards

