## JVC

## SERVICE MANUAL

## HOME THEATER DVD-AUDIO/VIDEO RECEIVER

## RX-DV31SL



TABLE OF CONTENTS
1 PRECAUTION ..... 1-3
2 SPECIFIC SERVICE INSTRUCTIONS ..... 1-5
3 DISASSEMBLY ..... 1-6
4 ADJUSTMENT ..... 1-21
5 TROUBLE SHOOTING ..... 1-22
6 DESCRIPTION OF MAJOR ICS ..... 1-23

## SPECIFICATION

| Amplifier | Output Power |  | At Stereo operation | Front channels | 100 W per channel, min. RMS, driven into $8 \Omega, 40 \mathrm{~Hz}$ to 20 kHz with no more than $0.8 \%$ total harmonic distortion. |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | At Surround operation | Front channels | 100 W per channel, min. RMS, driven into $8 \Omega$ at 1 kHz , with no more than $0.8 \%$ total harmonic distortion. |
|  |  |  | Center channel | 100 W , min. RMS, driven into $8 \Omega$ at 1 kHz , with no more than $0.8 \%$ total harmonic distortion. |
|  |  |  | Surround channels | 100 W per channel, min. RMS, driven into $8 \Omega$ at 1 kHz , with no more than $0.8 \%$ total harmonic distortion. |
| Audio | Audio Input Sensitivity/ Impedance (1 kHz) |  |  | TV, TAPE/CDR, DBS, VCR |  | $240 \mathrm{mV} / 47 \mathrm{k} \Omega$ |
|  | Audio Input (DIGITAL IN)* |  |  | Coaxial | DIGITAL 1 (DBS) | $0.5 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  |  |  | Optical | DIGITAL 2 (TV) | -21 dBm to -15 dBm (660 nm $\pm 30 \mathrm{~nm}$ ) |
|  |  |  | * Corresponding to Linear PCM, Dolby Digital, and DTS Digital Surround (with sampling frequency- $32 \mathrm{kHz}, 44.1 \mathrm{kHz}, 48 \mathrm{kHz}$ ). |  |  |
|  | Signal-to-Noise Ratio ('66 IHF/'78 IHF) |  | TV, TAPE/CDR, DBS, VCR |  | $87 \mathrm{~dB} / 67 \mathrm{~dB}$ |
|  | Frequency Response (8 $\Omega$ ) |  | TV, TAPE/CDR, DBS, VCR |  | 20 Hz to $20 \mathrm{kHz}( \pm 1 \mathrm{~dB})$ |
|  | Tone Control |  | Bass (100 Hz) | $\pm 10 \mathrm{~dB} \pm 2 \mathrm{~dB}$ |  |
|  |  |  | Treble (10 kHz) | $\pm 10 \mathrm{~dB} \pm 2 \mathrm{~dB}$ |  |
| Video | Video Input Sensitivity/ Impedance (1 kHz) | Composite video | DBS IN, VCR IN |  | $1 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  |  | S-video | DBS IN, VCR IN | (Y:luminance) | $1 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  |  |  |  | (C:chrominance) | $0.286 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  | Video Output Level/Impedance ( 1 kHz ) | Composite video | VCR OUT, MONITOR OUT |  | $1 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  |  | S-video | VCR OUT, MONITOR OUT | (Y:luminance) | $1 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  |  |  |  | (C:chrominance) | $0.286 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  |  | Component | DVD COMPONENT VIDEO OUT | (Component-Y) | $1.0 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  |  |  |  | (Component-PB/PR) | $0.7 \mathrm{~V}(\mathrm{p}-\mathrm{p}) / 75 \Omega$ |
|  |  | Color System | NTSC |  |  |
|  |  | Horizontal Resolution | 500 lines |  |  |
|  |  | Signal-toNoise Ratio (S/N) | 63 dB |  |  |
|  |  | Synchronize | Negative |  |  |
| FM tuner (IHF) | Tuning Range | 87.5 MHz to 108.0 MHz |  |  |  |
| AM tuner | Tuning Range | 530 kHz to 1710 kHz |  |  |  |
| General | Power <br> Requirements | AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$ |  |  |  |
|  | Power Consumption | 200 W/255 VA (in operation) <br> 2 W (in standby mode) |  |  |  |
|  | Dimensions $(\mathrm{W} \times \mathrm{H} \times \mathrm{D})$ | $\begin{aligned} & \hline 435 \mathrm{~mm} \times 100 \mathrm{~mm} \times 403.5 \mathrm{~mm} \\ & (173 / 16 \mathrm{in} . \times 315 / 16 \mathrm{in} . \times 1515 / 16 \mathrm{in} .) \end{aligned}$ |  |  |  |
|  | Mass | 8.4 kg (18.5 lbs) |  |  |  |

## SECTION 1 PRECAUTION

### 1.1 Safety Precautions

(1) This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
(2) Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturers warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
(3) Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by ( $\mathbb{\Delta}$ ) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
(4) The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after reassembling.
(5) Leakage shock hazard testing

After reassembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.Do not use a line isolation transformer during this check.

- Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed $0.5 \mathrm{~mA} A C$ (r.m.s.).
- Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, $1,000 \Omega$ per volt or more sensitivity in the following manner. Connect a $1,500 \Omega 10 \mathrm{~W}$ resistor paralleled by a $0.15 \mu \mathrm{~F}$ AC-type capacitor between an exposed metal part and a known good earth ground.
Measure the AC voltage across the resistor with the AC
voltmeter.
Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and measure the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. Voltage measured any must not exceed 0.75 V AC (r.m.s.). This corresponds to $0.5 \mu$ mA AC (r.m.s.).


### 1.2 Warning

(1) This equipment has been designed and manufactured to meet international safety standards.
(2) It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
(3) Repairs must be made in accordance with the relevant safety standards.
(4) It is essential that safety critical components are replaced by approved parts.
(5) If mains voltage selector is provided, check setting for local voltage.

### 1.3 Caution

## Burrs formed during molding may be left over on some parts

 of the chassis.Therefore, pay attention to such burrs in the case of preforming repair of this system.

### 1.4 Critical parts for safety

In regard with component parts appearing on the silk-screen printed side (parts side) of the PWB diagrams, the parts that are printed over with black such as the resistor ( ) , diode ( ) and ICP ( ) or identified by the " $\mathbb{\triangle}$ " mark nearby are critical for safety. When replacing them, be sure to use the parts of the same type and rating as specified by the manufacturer.
(This regulation dose not Except the J and C version)

### 1.5 Importance administering poin on the safety



Main board (Forward side)


For USA and Canada / pour États - Unis d' Amérique et Canada


Caution: For continued protection against risk of fire, replace only with same type 5A/125V for F101, 2A/125V for F131 and F132.
This symbol specifies type of fast operating fuse.
Précaution: Pour eviter risques de feux, remplacez le fusible de sureté de F101 comme le meme type que $5 \mathrm{~A} / 125 \mathrm{~V}$, et $2 \mathrm{~A} / 125 \mathrm{~V}$ pour F131 et F132.
Ce sont des fusibles sûretes qui functionnes rapide.

## SECTION 2 SPECIFIC SERVICE INSTRUCTIONS

This service manual does not describe SPECIFIC SERVICE INSTRUCTIONS.

# SECTION 3 <br> DISASSEMBLY 

### 3.1 Main body section

### 3.1.1 Removing the top cover

 (See Fig.1)(1) From the both sides of the main body, remove the four screws A attaching the top cover.
(2) From the back side of the main body, remove the three screws B attaching the top cover.
(3) Remove the top cover in the direction of the arrow 2 while extending the lower sections of the top cover in the direction of the arrow 1.

### 3.1.2 Removing the front panel assembly

## (See Figs. 2 to 4)

- Prior to performing the following procedures, remove the top cover.
(1) From the top side of the main body, disconnect the card wire from the connector CN114 on the main board. (See Fig.2.)
(2) Remove the screw $\mathbf{C}$ attaching the earth wire and sub trans. Board. (See Fig.2.)
(3) From the bottom side of the main body, remove the five screws D attaching the front panel assembly. (See Fig.3.)
(4) From the both side of the main body, release the two joints a using a flat-bladed screwdriver and remove the front panel assembly in the direction of the arrow. (See Fig.4.)


Fig. 1


Fig. 2


Fig. 3


Fig. 4

### 3.1.3 Removing the rear panel (See Fig.5)

- Prior to performing the following procedures, remove the top cover.
(1) From the back side of the main body, remove the strain relief from the rear panel in the direction of the arrow.
(2) Remove the twenty three screws $\mathbf{E}$ attaching the each board to the rear panel.
(3) Remove the four screws $\mathbf{F}$ attaching the rear panel.


### 3.1.4 Removing the DSP board (See Figs. 6 and 7)

- Prior to performing the following procedures, remove the top cover.
(1) From the back side of the main body, remove the four screws $\mathbf{G}$ attaching the DSP board to the rear panel. (See Fig.6.)
(2) From the top side of the main body, disconnect the DSP board from the connector CN611 on the DSP connector board. (See Fig.7.)
(3) From the left side of the main body, lift the DSP board in the direction of the arrow and disconnect the card wire from the connector CN602 on the DSP board. (See Fig.7.)
(4) Take out the DSP board.


### 3.1.5 Removing the video jack board

 (See Figs. 6 and 7)- Prior to performing the following procedures, remove the top cover and DSP board.
(1) From the back side of the main body, remove the four screws H attaching the video jack board. (See Fig.6.)
(2) Disconnect the card wire from the connector CN402 on the video jack board and take out the video jack board. (See Fig.7.)


Fig. 5


Fig. 6


Fig. 7

### 3.1.6 Removing the tuner (See Figs. 8 and 9)

- Prior to performing the following procedures, remove the top cover, DSP board and video jack board.
(1) From the back side of the main body, remove the two screws $\mathbf{J}$ attaching the tuner. (See Fig.8.)
(2) From the top side of the main body, disconnect the card wire from the connector CN1 on the tuner. (See Fig.9.)
(3) Take out the tuner.


Fig. 8


Fig. 9


Fig. 10

### 3.1.8 Removing the amp. board <br> (See Fig.11)

- Prior to performing the following procedures, remove the top cover and rear panel.
(1) From the top side of the main body, disconnect the wire from the connector CN201 on the amp. board.
(2) Remove the screw $\mathbf{K}$ attaching the earth wire to the heat sink barcket.
(3) Remove the four screws $\mathbf{L}$ attaching the amp. board.
(4) Disconnect the connector CN202 on the amp. board.
(5) Lift the amp. board and disconnect the wire from the connector CN231 on the main board.
(6) Disconnect the parallel wire from the connector CN241 on the main board and take out the amp. board.


### 3.1.9 Removing the heat sink

 (See Fig.12)- Prior to performing the following procedures, remove the top cover, rear panel and amp. board.
(1) Remove the screw $\mathbf{M}$ attaching the H.sensor board.
(2) Remove the five screws $\mathbf{N}$ attaching the IC bracket, heat sink bracket and heat sink.


### 3.1.10 Removing the power ICs

(See Fig.13)

- Prior to performing the following procedures, remove the top cover, rear panel, amp. board and heat sink.
(1) From the reverse side of the amp. board, remove the solders from the soldered points $\mathbf{b}$ attaching the power ICs to the amp. board.


Fig. 11


Fig. 12


Powe
Fig. 13

### 3.1.11 Removing the amp. sub(a) board and amp. sub(b) board

 (See Fig.14)- Prior to performing the following procedures, remove the top cover, rear panel and amp. board.
(1) From the forward side of the amp. board, disconnect the amp. sub(a) board from the connector CN203 on the amp board.
(2) Disconnect the amp. sub(b) board from the connector CN204 on the amp. board.


### 3.1.12 Removing the DVD mechanism assembly (See Fig.15)

- Prior to performing the following procedures, remove the top cover and front panel assembly.
(1) From the top side of the main body, remove the screw $\mathbf{P}$ and two screws $\mathbf{Q}$ attaching the DVD mechanism assembly.


## Reference:

- When attaching the screw $\mathbf{P}$, attach the thrust spring together with it.
- When attaching the screw $\mathbf{Q}$, attach the earth wires together with them.
(2) Disconnect the DVD mechanism assembly from the connectors CN512 and CN513 on the main board.
(3) Take out the DVD mechanism assembly.


Fig. 14


Fig. 15


Fig. 16

### 3.1.14 Removing the sub trans. Board

## (See Fig.17)

- Prior to performing the following procedures, remove the top cover and front panel assembly.
(1) From the top side of the main body, remove the tie band bundling the wires.
(2) Disconnect the card wire from the connector CN115 on the sub trans. board.
(3) Disconnect the wire from the connector CN111 on the sub trans. board.
(4) Disconnect the wire from the connector CN201 on the amp. board.
(5) Remove the three screws $\mathbf{S}$ attaching the sub trans. board.
(6) From the reverse side of the sub trans. board, remove the solders from the soldered points $\mathbf{c}$ attaching the wires.


### 3.1.15 Removing the fan motor

(See Figs. 17 and 18)

- Prior to performing the following procedures, remove the top cover and front panel assembly.
(1) From the top side of the main body, remove the tie band bundling the wires. (See Fig.17.)
(2) Disconnect the fan motor wire from the connector CN122 on the main board. (See Fig.17.)
(3) From the front side of the main body, remove the four screws $\mathbf{T}$ attaching the fan motor to the fan bracket. (See Fig.18.)
(4) Take out the fan motor in the direction of the arrow. (See Fig.18.)
Reference:
- When attaching the screws $\mathbf{T}$, attach the wire holder and wire clamp together with them. (See Fig.18.)
- After attaching the fan motor, bundle the wires using the wire clamp. (See Fig.18.)


Fig. 17


Fig. 18

### 3.1.16 Removing the power board

## (See Fig.19)

- Prior to performing the following procedures, remove the top cover.
(1) From the top side of the main body, disconnect the wire from the connector CN101 on the power board.


## Reference:

Remove the tie bands as required.
(2) Remove the solders from the soldered points $\mathbf{d}$ attaching the power cord.
(3) Remove the two screws $\mathbf{U}$ attaching the power board.
(4) From the reverse side of the power board, remove the solders from the soldered point $\mathbf{e}$ attaching the wires.

### 3.1.17 Removing the power trans. former

 (See Figs. 19 and 20)- Prior to performing the following procedures, remove the top cover.
(1) From the top side of the main body, remove the tie bands and wire clamps bundling the wires. (See Fig.20.)
(2) Disconnect the wire from the connector CN121 on the main board. (See Fig.20.)
(3) Disconnect the wires from the connector CN111 on the sub trans. board. (See Fog.20.)
(4) Remove the two screws $\mathbf{U}$ attaching the power board and then turn over the power board. (See Fig.19.)
(5) Remove the solders from the soldered points e attaching the wires. (See Fig.19.)
(6) Remove the four screws $\mathbf{V}$ attaching the power trans. former. (See Fig.19.)
(7) Take out the power trans. former.


### 3.1.18 Removing the headphone board (See Fig.20)

- Prior to performing the following procedures, remove the top cover and front panel assembly.
(1) From the top side of the main body, disconnect the parallel wire from the connector CN291 on the main board.
(2) Remove the three screws $\boldsymbol{S}$ attaching the sub trans. board.


## Reference:

It is not necessary to remove the wire from the sub trans. board.
(3) Remove the screw W attaching the headphone board while lifting the sub trans. board slightly.


Fig. 19


### 3.2 Front panel assembly section

### 3.2.1 Removing the FL board

 (See Figs. 21 and 22)- Prior to performing the following procedures, remove the top cover and front panel assembly.
(1) From the front side of the front panel assembly, pull out the volume knob assembly in the direction of the arrow. (See Fig.21.)
(2) From the back side of the front panel assembly, remove the eight screws $\mathbf{X}$ attaching the FL board. (See Fig.22.)
(3) Disconnect the wire from the connector CN703 on the FL board while lifting the FL board slightly. (See Fig.22.)
(4) Remove the solders from the soldered points $\mathbf{f}$ and $g$ attaching the parallel wires while lifting the FL board. (See Fig.22.)
(5) Take out the FL board from the front panel assembly.


## Reference:

Remove the parallel wires as required.


Fig. 21


Fig. 22

### 3.2.2 Removing the control board (See Fig.23)

- Prior to performing the following procedures, remove the top cover, front panel assembly and FL board.


## Reference:

It is not necessary to remove the parallel wires from the FL board.
(1) Remove the three screws $\mathbf{Y}$ attaching the control board.
(2) Remove the solders from the soldered points $\mathbf{h}$ attaching the parallel wire while lifting the control board.

## Reference:

Remove the parallel wire as required.

### 3.2.3 Removing the indicator board

## (See Fig.23)

- Prior to performing the following procedures, remove the top cover and front panel assembly.
(1) From the back side of the front panel assembly, remove the two screws $\mathbf{Z}$ attaching the lens holder.
(2) Remove the solders from the soldered points $\mathbf{i}$ on the FL board attaching the parallel wire.
(3) Remove the solders from the soldered points $\boldsymbol{j}$ on the power switch board attaching the parallel wire.


## Reference:

Remove the parallel wires as required.

### 3.2.4 Removing the power switch board

 (See Fig.24)- Prior to performing the following procedures, remove the top cover and front panel assembly.
(1) From the back side of the front panel assembly, remove the two screws AA attaching the power switch board.
(2) Remove the solders from the soldered points $\boldsymbol{j}$ on the power switch board attaching the parallel wire.


## Reference:

Remove the parallel wire as required.

### 3.2.5 Removing the speaker SW. board (See Fig.24)

- Prior to performing the following procedures, remove the top cover and front panel assembly.
(1) From the back side of the front panel assembly, remove the three screws $\mathbf{A B}$ attaching the speaker SW. board.
(2) Disconnect the wire from the connector CN703 on the FL board.


Soldered
Fig. 23


Fig. 24

### 3.3 DVD mechanism section

- Remove the top cover.
- Remove the front panel assembly.
- Remove the DVD mechanism assembly.


### 3.3.1 Removing the tray

(See Figs. 1 and 2)
(1) From the left side of the DVD mechanism assembly, push the slide cam in the direction of the arrow 1 and then pull out the tray in the direction of the arrow 2. (See Fig.1.)
(2) Push the tray stoppers a in the direction of the arrow 3, pull out the tray in the direction of the arrow 4. (See Fig.2.)

### 3.3.2 Attaching the tray

 (See Fig.2)When attaching the tray, insert the tray to the rail of the DVD mechanism assembly and then push the tray in the DVD mechanism assembly.

### 3.3.3 Removing the tray

## (See Fig.3)

(1) From the bottom side of the DVD mechanism assembly, disconnect the card wires from the connectors CN201 and CN202 on the DVD servo board.

## Caution:

Be sure to solder the short land sections $\mathbf{b}$ on the flexible wire before disconnecting the flexible wire from connector CN101 on the DVD servo board.
If the flexible wire is disconnected without attaching solder, the DVD pickup unit may be destroyed by static electricity.
(2) Release the locks of the connector CN101 on the DVD servo board in the direction of the arrow 1 , disconnect the flexible wire.

## Caution:

In the assembly, be sure to remove solders from the short land sections bafter connecting the flexible wire to the connector CN101 on the DVD servo board.
(3) While pushing the claws $\mathbf{c}$ of the DVD mechanism assembly in the direction of the arrow 2, remove the DVD servo board in an upward direction.


Fig. 1


DVD mechanism assembly
Fig. 2


Fig. 3

### 3.3.4 Removing the clamper base

## (See Fig.4)

(1) From the top side of the DVD mechanism assembly, remove the four screws $\mathbf{A}$ attaching the clamper base.
(2) Remove the clamper base from the bosses $d$ of the loading base in an upward direction, remove the clamper base from the sections $\mathbf{e}$ while sliding it in the direction of the arrow.

### 3.3.5 Removing the tray drive board

 (See Fig.5)- Remove the clamper base.
(1) From the bottom side of the DVD mechanism assembly, disconnect the card wire from the connector on the tray drive board.
(2) Remove the solders from the soldered sections $\mathbf{f}$ on the tray drive board.
(3) Remove the screw $\mathbf{B}$ attaching the tray drive board to the DVD mechanism assembly.


Fig. 4


Fig. 5

### 3.3.6 Removing the motor <br> (See Fig.6)

- Remove the clamper base.
- Remove the tray drive board.
(1) From the top side of the DVD mechanism assembly, remove the belt of the pulley gear.


## Note:

Take care not to attach grease on the belt.
(2) Remove the screw $\mathbf{C}$ attaching the motor to the DVD mechanism assembly.

### 3.3.7 Removing the DVD traverse mechanism assembly (See Figs.7)

- Remove the DVD servo board.
- Remove the clamper base.
(1) From the top side of the DVD mechanism assembly, remove the four screws $\mathbf{D}$ attaching the DVD traverse mechanism assembly to the loading base.
(2) Take out the DVD traverse mechanism assembly from the loading base.


Fig. 6


Fig. 7

### 3.3.8 Removing the DVD pickup unit (See Figs. 8 to 10)

- Remove the DVD servo board.
- Remove the clamper base.
- Remove the DVD traverse mechanism assembly.
(1) From the top side of the DVD traverse mechanism assembly, remove the screw $\mathbf{E}$ attaching the plate and torsion spring. (See Fig.8.)
(2) Remove the shaft from the section $\mathbf{g}$ and then remove the shaft from the section $\mathbf{h}$. (See Fig.9.)
(3) Disengage the section $\boldsymbol{i}$ of the DVD pickup unit and then remove the DVD pickup unit with the shaft. (See Fig.9.)
(4) Pull the shaft out of the DVD pickup unit. (See Fig.10.)
(5) Remove the two screws F attaching the SW. actuator. (See Fig.10.)


### 3.3.9 Attaching the DVD pickup unit (See Figs.8, 10 to 12)

## Reference:

Refer to the explanation of "Removing the DVD pickup unit" on the preceding page.
(1) Attach the SW. actuator and shaft to the DVD pickup unit. (See Fig.10.)
(2) Engage the section $\mathbf{i}$ of the DVD pickup unit to the shaft of the DVD traverse mechanism assembly first, and set the both ends of the shaft of the DVD pickup unit in the sections $\mathbf{g}$ and h of the DVD traverse mechanism assembly. (See Fig.11.)
(3) Slide the DVD pickup unit all the way in the direction of the arrow. (See Fig.12.)
(4) Mesh the lead screw to the section $\mathbf{j}$ of DVD pickup unit and then set the end of the lead screw to the section $\mathbf{k}$. (See Fig.12.)
(5) Attach the torsion spring. (See Fig.8.)
(6) Attach the plate. (See Fig.8.)


Fig. 8


Fig. 10


Fig. 11


### 3.3.10 Removing the spindle motor board <br> (See Figs. 13 and 14)

- Remove the DVD servo board.
- Remove the clamper base.
- Remove the DVD traverse mechanism assembly.
(1) From the top side of the DVD traverse mechanism assembly, remove the feed motor wire that is soldered to the spindle motor board. (See Fig.13.)
(2) From the bottom side of the DVD traverse mechanism assembly, remove the three screws $\mathbf{G}$ attaching the spindle motor board. (See Fig.14.)


DVD traverse mechanism assembly
Fig. 13


Fig. 14

### 3.3.11 Removing the feed motor

## (See Figs. 15 to 17)

- Remove the DVD servo board.
- Remove the clamper base.
- Remove the DVD traverse mechanism assembly.
(1) From the top side of the DVD traverse mechanism assembly, remove the feed motor wire that is soldered to the spindle motor board. (See Fig.15.)
(2) Remove the two screws $\mathbf{H}$ attaching the feed holder assembly and then take out the feed holder assembly. (See Fig.15.)
(3) Remove the screw $\mathbf{J}$ attaching the thrust spring. (See Fig.16.)
(4) Remove the feed gear and lead screw in the direction of the arrow. (See Fig.16.)
(5) Remove the two screws $\mathbf{K}$ attaching the feed motor. (See Fig.17.)


DVD traverse mechanism assembly
Fig. 15


Fig. 16


Fig. 17

## SECTION 4 <br> ADJUSTMENT

### 4.1 TEST mode (See Fig.1)

(1) Before executing the test mode, press the DVD button on the remote control unit to set the main unit to the DVD mode.
(2) This model is provided with a test mode for use in production control, servicing and repair.
(3) The test mode includes the following four submodes, which are switched over every time the CHOICE button on the remote control unit is pressed.
(4) The test mode is exited when the power is switched on or off.
(5) While holding the STOP and DVD buttons on the main unit, plug the power cord into the wall power outlet.
(6) The opening screen showing the version number is displayed.

The FL display shows "TEST **". **: Destination type symbol.

(1) Press the button once: Microcomputer version display mode / The FL display shows the version numbers of the microcomputers in use.
Displayed information: [System MICON] [Front-end (FE) MICON] [Back-end (BE) MICON]
(2) Press the button twice: Display check mode / All FL and LED segments light up.
(3) Press the button three times: Mechanism check mode / The FL display shows "CHECK".
(4) Press the button four times: Front-end check mode / The FL display shows "EXPERT".

## SECTION 5 <br> TROUBLE SHOOTING

This service manual does not describe TROUBLE SHOOTING.

## SECTION 6 <br> DESCRIPTION OF MAJOR ICS

### 6.1 74LCX32MTC-X (IC522) : OR gate

- Pin layout \& Block diagram

- Truth table

| INPUTS |  | OUTPUT |
| :---: | :---: | :---: |
| $A$ | $B$ | $Y$ |
| $L$ | $L$ | $L$ |
| $L$ | $H$ | $H$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $H$ |

### 6.2 74LCX373MTC-X (IC512,IC513) : Latch

- Pin layout

- Pin function

| Symbol | Description |
| :---: | :--- |
| D0~D7 | Data inputs |
| LE | Latch enable input |
| $\overline{\text { OE }}$ | Output enable input |
| O0~O7 | 3-State latch outputs |

### 6.3 TC74HC4072AF-X (IC611) : OR gate

- Block diagram

- Truth table

| $A$ | $B$ | $C$ | $D$ | Y |
| :---: | :---: | :---: | :---: | :---: |
| $H$ | $X$ | $X$ | $X$ | $H$ |
| $X$ | $H$ | $X$ | $X$ | $H$ |
| $X$ | $X$ | $H$ | $X$ | $H$ |
| $X$ | $X$ | $X$ | $H$ | $H$ |
| $L$ | L | L | L | L |

X : Don't care

### 6.4 AK4527BVQP (IC601): A/D, D/A converter

- Pin layout

- Pin function

| No. | Symbol | I/O |  |
| :---: | :---: | :---: | :--- |
| 1 | SDOS | I | SDTO Source Select Pin (Note 1) <br> "L" : Internal ADC output "H" : DAUX input |
| 2 | OSKS | I | Control Mode Select Pin <br> "L" : 3-wire Serial "H" : I2C Bus |
| 3 | MIS | - | Soft Mute Pin (Note 1) Connect to GND <br> When this pin goes to "H" soft mute cycle is initialized. <br> When returning to "L" the output mute releases. |
| 4 | BICK | I | Audio Serial Data Clock Pin |
| 5 | LRCK | I/O | Input Channel Clock Pin |
| 6 | SDTI1 | I | DAC1 Audio Serial Data Input Pin |
| 7 | SDTI2 | I | DAC2 Audio Serial Data Input Pin |
| 8 | SDTI3 | I | DAC3 Audio Serial Data Input Pin |
| 9 | SDTO | O | Audio Serial Data Output Pin |
| 10 | D,AUX | - | Sub Audio Serial Data Input Pin Connect to GND |
| 11 | DFS | - | Double Speed Sampling Mode Pin (Note 1) <br> "L" : Normal Speed "H" : Double Speed |
| 12 | DEMI | - | Connect to GND <br> No internal bonding. |
| 13 | DEMO | - | Zero Input Detect Enable Pin Connect to GND <br> "L" : mode 7 (disable) at parallel mode |
| 14 | CAD1 | - | Chip Address 1 Pin Connect to GND |
| 15 | DVDD | Ine detect mode is selectable by DZFM2-0 bits at serial mode. |  |
| 17 | DVSS : mode 0 (DZF is AND of all six channels) |  |  |


| No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 22 | CAD0 | O | Chip Address 0 Pin Connect to GND |
| 23 | LOUT3 | O | DAC3 Lch Analog Output Pin |
| 24 | ROUT3 | O | DAC3 Rch Analog Output Pin |
| 25 | LOUT2 | O | DAC2 Lch Analog Output Pin |
| 26 | ROUT2 | O | DAC2 Rch Analog Output Pin |
| 27 | LOUT1 | O | DAC1 Lch Analog Output Pin |
| 28 | ROUT1 | O | DAC1 Rch Analog Output Pin |
| 29 | LIN- | 1 | Lch Analog Negative Input Pin |
| 30 | LIN+ | 1 | Lch Analog Positive Input Pin |
| 31 | RIN- | 1 | Rch Analog Negative Input Pin |
| 32 | RIN+ | 1 | Rch Analog Positive Input Pin |
| 33 | VREFL | - | Zero Input Detect 2 Pin (Note 2) Non Connect <br> When the input data of the group 1 follow total $8192 L R C K$ cycles with " 0 " input data this pin goes to "H". |
|  | OVF | 0 | Analog Input Overflow Detect Pin (Note 3) This pin goes to " H " if the analog input of Lch or Rch is overflows. |
| 34 | VCOM | O | Common Voltage Output PinAVDD/2 <br> Large external capacitor around 2.2 uF is used to reduce power-supply noise. |
| 35 | VREFH | - | Positive Voltage Reference Input PinAVDD |
| 36 | AVDD | - | Analog Power Supply Pin4.5V 5.5V |
| 37 | AVSS | - | Analog Ground Pin0V |
| 38 | XTI | - | Zero Input Detect 1 Pin (Note 2) Non connect <br> When the input data of the group 1 follow total 8192 LRCK cycles with "0" input data this pin goes to "H". |
| 39 | XTO | 1 | Master Clock Input Pin |
| 40 | P1S | - | Parallel / Serial Select Pin <br> "L" : Serial control mode "H" : Parallel control mode |
| 41 | $\overline{\mathrm{CS}}$ | I | Audio Data Interface Format 0 Pin in parallel mode |
|  | CSN | 1 | Chip select pin in 3-wire serial control mode This pin should be connected to DVDD at I2C bus control mode |
| 42 | DIF1 | 1 | Audio Data Interface Format 1 Pin in parallel mode |
|  | SCL/CCLK | I | Control Data Clock Pin in serial control mode I2C = "L" : CCLK(3-wire Serial) I2C = "H" : SCL(I2CBus) |
| 43 | LOOP0 | 1 | Loopback Mode 0 Pin in parallel control mode Enables digital loop-back from ADC to 3 DACs. |
|  | SAD/CDTI | I/O | Control Data Input Pin in serial control mode I2C = "L" : CDTI(3-wire Serial) I2C = "H" : SDA(I2CBus) |
| 44 | CDTD | I | Loopback Mode 1 Pin (Note 1) Enable all 3 DAC channels to be input from SDTII. |

## Note:

(1) SDOS, SMUTE, DFS, and LOOP1 pins are ORed with register data if P/S = "L".
(2) The group 1 and 2 can be selected by DZFM2-0 bit if $\mathrm{P} / \mathrm{S}=$ "L" and DZFME = "L".
(3) This pin becomes OVF pin if OVFE bit is set to "1" at serial control mode.
(4) All input pins should not be left floating.

### 6.5 AN8703FH-V (IC101) : Frontend processor for DVD

- Pin layout



## - Block diagram



- Pin function

| Pin No. | Symbol | Function |
| :---: | :---: | :---: |
| 1 | LPC1 | Laser pin input (DVD head) |
| 2 | LPCO1 | Laser drive output (DVD head) |
| 3 | LPC2 | Laser in input (CD head) |
| 4 | LPCO2 | Laser drive output (CD head) |
| 5 | VFOSHORT | VFOSHORT control |
| 6 | TBAL | Tracking balance control |
| 7 | FBAL | Focus balance control |
| 8 | POFLT | Track detection threshold level |
| 9 | DTRD | Data slice data read signal input (for RAM) |
| 10 | IDGT | Data slice address gate signal input (for RAM) |
| 11 | STANBY | Standby mode control |
| 12 | SEN | SEN (serial data input) |
| 13 | SCK | SCK(serial data input) |
| 14 | STDI | STDI(serial data I/O) |
| 15 | RSCL | Reference current setting |
| 16 | JLINE | $J$-line vurrent setting |
| 17 | TEN | Tracking error amplifier inverted input |
| 18 | TEOUT | Tracking error signal output |
| 19 | AGCBAL | Offset adjustment for DRC-1 |
| 20 | ASOUT | Full addition signal output |
| 21 | FEN | Focus error amplifier inverted input |
| 22 | FEOUT | Focus error signal output |
| 23 | AGCOFST | Offeset adjustment for DRC-2 |
| 24 | MON | Monitor |
| 25 | AGCLVL | Output amplitude adjustment for DRC |
| 26 | GND2 | Ground 2 |
| 27 | VREF2 | VREF2 voltage output |
| 28 | VCC2 | Power supply 2 (5V) |
| 29 | VHALF | VHALF voltage output |
| 30 | DFLTON | Filter amplifier inverted output |
| 31 | DFLTOP | Filter amplifier positive output |
| 32 | DCFLT | Filter output capacitance connection |
| 33 | GND3 | Groud 3 |
| 34 | RFDIFO | Raidal differntial output |
| 35 | RFOUT | RF full-addition amplifier output |
| 36 | VCC3 | Power supply 3 (3.3V) |
| 37 | RFC | Filter for RF-group delay correction amplifier |
| 38 | DCRF | DC-cut filter for RF full-addition amplifier |
| 39 | OFTR | OFTR output |
| 40 | BDO | BDO output |
| 41 | RFENV | RF envelope output |
| 42 | BOTTOM | Bottom envelope detection filter |
| 43 | PEAK | Peak envelope detection filter |
| 44 | AGCG | AGC amplifier again control |
| 45 | AGCO | AGC amplifier level control |


| Pin No. | Symbol |  |
| :---: | :---: | :--- |
| 46 | TESTSG | TEST signal input |
| 47 | REFINP | RF signal positive input |
| 48 | RFINN | RE signal inverterd input |
| 49 | VIN5 | Internal four-partition (CD) RF input 1 |
| 50 | VIN6 | Internal four-partition (CD) RF input 2 |
| 51 | VIN7 | Internal four-partition (CD) RF input 3 |
| 52 | VIN8 | Internal four-partition (CD) RF input 4 |
| 53 | VIN9 | Internal four-partition (DVD) RF input 2 |
| 54 | VIN10 | Internal four-partition (DVD) RF input 1 |
| 55 | VCC1 | Power supply 1 (5V) |
| 56 | VREF1 | VREF1 voltage output |
| 57 | VIN1 | Internal four-partition (DVD) RF input 1 |
| 58 | VIN2 | Internal four-partition (DVD) RF input 2 |
| 59 | VIN3 | Internal four-partition (DVD) RF input 3 |
| 60 | VIN4 | Internal four-partition (DVD) RF input 4 |
| 61 | GND1 | Groud 1 |
| 62 | VIN11 | 3-deam sub (CD) input 2 |
| 63 | VIN12 | 3-deam sub (CD) input 1 |
| 64 | HDTYPE | HD type selection |

### 6.6 BA15218F-XE (IC303,IC602,IC603,IC651,IC652,IC661,IC671,IC672) : Dual operation amplifier

- Pin layout

- Block diagram



### 6.7 BA5983FM-X (IC201) : 4ch driver

- Pin layout \& Block diagram

- Pin function

| Pin No | Symbol |  |
| :---: | :---: | :--- |
| 1 | BIAS IN | NC |
| 2 | OPIN1(+) | Output3 for motor |
| 3 | OPIN1(-) | NC |
| 4 | OPOUT1 | Output2 for motor |
| 5 | OPIN2(+) | NC |
| 6 | OPIN2(-) | NC |
| 7 | OPOUT2 | Output1 for motor |
| 8 | GND | GND |
| 9 | STBY1 | Positive input for hall input Amp1. |
| 10 | PowVCC1 | Negative input for hall input Amp1. |
| 11 | VO2(-) | Positive input for hall input Amp2. |
| 12 | VO2(+) | Negative input for hall input Amp2. |
| 13 | VO1(-) | Positive input for hall input Amp3. |
| 14 | VO1(+) | Negative input for hall input Amp3. |
| 15 | VO4(-) | Hall bias terminal |
| 16 | VO4(+) | Brake Mode terminal |
| 17 | VO3(-) | Capacitor connection pin for phase compensation |
| 18 | VO3(+) | Short brake terminal |
| 19 | PowVCC2 | 3Phase synthesized FG signal output termnal |
| 20 | STBY2 | Rotation detect signal output terminal |
| 21 | GND | Torque control standard voltage input terminal |
| 22 | OPOUT3 | Torque control voltage input terminal |
| 23 | OPIN3(-) | START/STOP switch |
| 24 | OPIN3(+) | FG signal output terminal |
| 25 | OPOUT4 | Power supply for driver division |
| 26 | OPIN4(-) | Gain switch |
| 27 | OPIN4(+) | Power supply for driver division |
| 28 | PreVCC | Resistance connection pin for output current sense |
|  |  |  |

### 6.8 BA6664FM-X (IC251) : Motor driver

- Pin layout \& Block diagram

- Pin function

| Pin No. | Symbol |  |
| :---: | :---: | :--- |
| 1 | NC | NC |
| 2 | A3 | Output3 for motor |
| 3 | NC | NC |
| 4 | A3 | Output2 for motor |
| 5 | NC | NC |
| 6 | NC | NC |
| 7 | A1 | Output1 for motor |
| 8 | GND | GND |
| 9 | H1+ | Positive input for hall input Amp1. |
| 10 | H1- | Negative input for hall input Amp1. |
| 11 | H2+ | Positive input for hall input Amp2. |
| 12 | H2- | Negative input for hall input Amp2. |
| 13 | H3+ | Positive input for hall input Amp3. |
| 14 | H3- | Negative input for hall input Amp3. |
| 15 | VH | Hall bias terminal |
| 16 | BR | Brake Mode terminal |
| 17 | CNF | Capacitor connection pin for phase compensation |
| 18 | SB | Short brake terminal |
| 19 | FG2 | 3Phase synthesized FG signal output termnal |
| 20 | FR | Rotation detect signal output terminal |
| 21 | ECR | Torque control standard voltage input terminal |
| 22 | EC | Torque control voltage input terminal |
| 23 | PS | START/STOP switch |
| 24 | FG | FG signal output terminal |
| 25 | VCC | Power supply for driver division |
| 26 | GSW | Gain switch |
| 27 | VM | Power supply for driver division |
| 28 | RNF | Resistance connection pin for output current sense |
| FIN | FIN | GND |

### 6.9 GP1UM281X (IC702) : Dual operation amplifier


6.10 IC-PST9139-T(IC763) : Regulator

- Terminal layout

- Block diagram

6.11 JCV8007 (IC201) : 2 channel AF power amplifier
- Pin Layout

- Block Diagram



### 6.12 JCV8008 (IC202) : 3 channel AF power amplifier

- Pin Layout

- Block Diagram



### 6.13 AK93C65AF-X (IC510) : EEPROM

- Pin layout

- Block diagram

- Pin function

| Pin no. | Symbol | Function |
| :---: | :---: | :--- |
| 1 | PE | Program enable (With built-in pull-up resistor) |
| 2 | VCC | Power supply |
| 3 | CS | Chip selection |
| 4 | SK | Cereal clock input |
| 5 | DI | Cereal data input |
| 6 | DO | Cereal data output |
| 7 | GND | Ground |
| 8 | NC | No connection |

NOTE :
The pull-up resistor of the PE pin is about $2.5 \mathrm{Mohm}(\mathrm{VCC}=5 \mathrm{~V})$

### 6.14 K4S643232E-TC60 (IC505) : 512K x 32 bit x 4 banks synchronous DRAM

- Pin layout

- Block diagram

- Pin function

| Pin No. | Symbol |  |
| :---: | :---: | :--- |
| 1 | VDD | Power for the input buffers and core logic. |
| 2 | DQ0 | Data input/output are multiplexed on the same pin. |
| 3 | VDDQ | Isolated power supply for the output buffers to provide improved noise immunity. |
| 4,5 | DQ1,DQ2 | Data inputs/outputs are multiplexed on the same pins. |
| 6 | VSSQ | Isolated ground for the output buffers to provide improved noise immunity. |
| 7,8 | DQ3,DQ4 | Data inputs/outputs are multiplexed on the same pins. |
| 9 | VDDQ | Isolated power supply for the output buffers to provide improved noise immunity. |
| 10,11 | DQ5,DQ6 | Data inputs/outputs are multiplexed on the same pins. |
| 12 | VSSQ | Isolated ground for the output buffers to provide improved noise immunity. |
| 13 | DQ7 | Data input/output are multiplexed on the same pin. |
| 14 | N.C | This pin is recommended to be left no connection on the device. |
| 15 | VDD | Power for the input buffers and core logic. |
| 16 | DQM0 | Makes data output Hi-Z, tSHZ after the clock and masks the output. <br> Blocks data input when DQM active. |
| 17 | $\overline{\text { WE }}$ | Enables write operation and row precharge. <br> Latches data in starting from CAS, WE active. |
| 18 | $\overline{\text { CAS }}$ | Latches column addresses on the positive going edge of the CLK with CAS low. <br> Enables column access. |
| 19 | $\overline{\text { RAS }}$ | Latches row addresses on the positive going edge of the CLK with RAS low. <br> Enables row access \& precharge. |
| 20 | $\overline{\text { CS }}$ | Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM. |
| 21 | N.C | This pin is recommended to be left no connection on the device. |
| 22,23 | BA0,BA1 | Selects bank to be activated during row address latch time. <br> Selects bank for read/write during column address latch time. |


| Pin No. | Symbol | Function |
| :---: | :---: | :---: |
| 24,25~27 | A10,A0-A2 | Row/column addresses are multiplexed on the same pins. Row address : RA0 ~ RA10, Column address : CA0 ~ CA7 |
| 28 | DQM2 | Makes data output Hi-Z, tSHZ after the clock and masks the output. Blocks data input when DQM active. |
| 29 | VDD | Power for the input buffers and core logic. |
| 30 | N.C | This pin is recommended to be left no connection on the device. |
| 31 | DQ16 | Data input/output are multiplexed on the same pin. |
| 32 | VSSQ | Isolated ground for the output buffers to provide improved noise immunity. |
| 33,34 | DQ17,DQ18 | Data inputs/outputs are multiplexed on the same pins. |
| 35 | VDDQ | Isolated power supply for the output buffers to provide improved noise immunity. |
| 36,37 | DQ19,DQ20 | Data inputs/outputs are multiplexed on the same pins. |
| 38 | VSSQ | Isolated ground for the output buffers to provide improved noise immunity. |
| 39,40 | DQ21,DQ22 | Data inputs/outputs are multiplexed on the same pins. |
| 41 | VDDQ | Isolated power supply for the output buffers to provide improved noise immunity. |
| 42 | DQ23 | Data input/output are multiplexed on the same pin. |
| 43 | VDD | Power for the input buffers and core logic. |
| 44 | VSS | Ground for the input buffers and core logic. |
| 45 | DQ24 | Data input/output are multiplexed on the same pin. |
| 46 | VSSQ | Isolated ground for the output buffers to provide improved noise immunity. |
| 47,48 | DQ25,DQ26 | Data inputs/outputs are multiplexed on the same pins. |
| 49 | VDDQ | Isolated power supply for the output buffers to provide improved noise immunity. |
| 50,51 | DQ27,DQ28 | Data inputs/outputs are multiplexed on the same pins. |
| 52 | VSSQ | Isolated ground for the output buffers to provide improved noise immunity. |
| 53,54 | DQ29,DQ30 | Data inputs/outputs are multiplexed on the same pins. |
| 55 | VDDQ | Isolated power supply for the output buffers to provide improved noise immunity. |
| 56 | DQ31 | Data input/output are multiplexed on the same pin. |
| 57 | N.C | This pin is recommended to be left no connection on the device. |
| 58 | VSS | Ground for the input buffers and core logic. |
| 59 | DQM3 | Makes data output Hi-Z, tSHZ after the clock and masks the output. Blocks data input when DQM active. |
| 60~66 | A3-A9 | Row/column addresses are multiplexed on the same pins. Row address : RA0-RA10, Column address : CA0-CA7 |
| 67 | CKE | Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disables input buffers for power down mode. |
| 68 | CLK | Active on the positive going edge to sample all inputs. |
| 69,70 | N.C | This pin is recommended to be left no connection on the device. |
| 71 | DQM1 | Makes data output $\mathrm{Hi}-\mathrm{Z}, \mathrm{tSHZ}$ after the clock and masks the output. Blocks data input when DQM active. |
| 72 | VSS | Ground for the input buffers and core logic. |
| 73 | N.C | This pin is recommended to be left no connection on the device. |
| 74 | DQ8 | Data input/output are multiplexed on the same pin. |
| 75 | VDDQ | Isolated power supply for the output buffers to provide improved noise immunity. |
| 76,77 | DQ9,DQ10 | Data inputs/outputs are multiplexed on the same pins. |
| 78 | VSSQ | Isolated ground for the output buffers to provide improved noise immunity. |
| 79,80 | DQ11,DQ12 | Data inputs/outputs are multiplexed on the same pins. |
| 81 | VDDQ | Isolated power supply for the output buffers to provide improved noise immunity. |
| 82,83 | DQ13,DQ14 | Data inputs/outputs are multiplexed on the same pins. |
| 84 | VSSQ | Isolated ground for the output buffers to provide improved noise immunity. |
| 85 | DQ15 | Data input/output are multiplexed on the same pin. |
| 86 | VSS | Ground for the input buffers and core logic. |

### 6.15 LA73054-X (IC401) : Video driver

- Pin layout \& Block diagram

- Pin function

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 1 | VCC1 | - | VCC except for 750hm driver |
| 2 | COMPOSITE.IN | 1 | Input composite |
| 3 | SQUEEZE.SW | 1 | Selecting squeeze mode |
| 4 | LETTER-BOX.SW | 1 | Selecting letter-box mode |
| 5 | MUTE-SW-1 | I | Composite/S signal mute selection |
| 6 | C-IN | 1 | Input Chroma signal |
| 7 | GND11 | - | Composite/S GND except for 750hm driver |
| 8 | Y-IN-1 | 1 | Input Y signal |
| 9 | YC-MIX.SW | 1 | Selecting of doing Y/C-MIX or not |
| 10 | SIGNAL-IN.SW | 1 | Selection of a kind of signal |
| 11 | Y-IN-2 | , | Input component Y or baseband signal |
| 12 | MUTE-SW-2 | I | Component signal mute selection |
| 13 | LPF.SW | I | Selection of a kind of component LPF |
| 14 | CB.IN | I | Input component or baseband signal |
| 15 | AMP.SW-2 | 1 | Selecting amplifier gain for component signal |
| 16 | CR.IN | I | Input component or baseband signal |
| 17 | GND12 | - | Component GND except for 750hm driver |
| 18 | REG | O | Capacitor terminal for regulator |
| 19 | DRIVE.SW-2 | 1 | 2drive/1drive select for component signal |
| 20 | GND26 | - | CR-GND for 750hm driver |
| 21 | CR.OUT | O | 750hm driver output of pin16 input |
| 22 | GND25 | - | CB-OUT for 750 hm driver |
| 23 | CB.OUT | O | 750hm driver output of pin14 input |
| 24 | VCC22 | - | Component Vcc for 750hm driver |
| 25 | Y-OUT-2 | O | 750hm driver output of pin11 input |
| 26 | GND24 | - | Component Y out for 750hm driver |
| 27 | GND23 | - | Y out for 750hm driver |
| 28 | Y-OUT-1 | O | 750hm driver output of pin8 input |
| 29 | GND22 | - | Chroma out for 750hm driver |
| 30 | C-DC.OUT | O | DC voltage output for S1,S2 |
| 31 | C-OUT | O | 750hm driver output of pin6 input |
| 32 | GND21 | - | Composite out for 750hm driver |
| 33 | COMPOSITE-OUT | O | 750hm driver output of pin2 input |
| 34 | VCC21 | - | Composite/S Vcc for 750hm driver |
| 35 | DRIVE.SW-1 | 1 | 2drive/1drive select for composite/S signal |
| 36 | AMP.SW-1 | I | Selecting amplifier gain for composite/S signal |

- Pin layout

- Block diagram

- Block diagram

- Pin function

| SYMBOL | DESCRIPTION |
| :---: | :--- |
| A0 - A16 | Address Input |
| I/O1 - I/O8 | Data Input/Output |
| $\overline{\mathrm{CS1}}, \mathrm{CS} 2$ | Chip Select Inputs |
| $\overline{\mathrm{WE}}$ | Write Enable Input |
| $\overline{\mathrm{OE}}$ | Output Enable Input |
| VDD | Power Supply |
| Vss | Ground |
| NC | No Connection |

### 6.18M61516FP (IC301) : Sound controller

- Pin layout \& Block diagram

- Pin function

| Pin No. | Symbol | Function |
| :---: | :---: | :---: |
| 1~3 | INLH,INLI,INLJ | Lch input |
| 4~7 | REC L1,REC L2,REC L3,REC L4 | REC output |
| 8 | VOLGND1 | Analog GND for vol. |
| 9~12 | FLIN1,SLIN1,SBLIN1,CIN1 | FLch,SLch,SBLch,Cch input |
| 13~16 | SWIN1,SBRIN1,SRIN1,FRIN1 | SWch,SBRch,SRch,FRch input |
| 17,18 | BASS L1,BASS L2 | Tone path frequency characteristic setup |
| 19 | TRE L | Treble frequency characteristic setup |
| 20 | TONEOUT L | Tone output |
| 21 | FLVIN | FL vol. input |
| 22 | VOLGND2 | Analog GND for vol. |
| 23 | TIM1 | Timer setup |
| 24 | DVDD | Internal logic circuit Power supply terminal |
| 25,26,27 | LATCH,DATA,CLOCK | Latch, Data,Clock input for serial data transmission |
| 28 | DGND | Internal logic circuit GND terminal |
| 29 | AVCC | Internal analog cicuit power supply terminal ( + ) |
| 30 | OUTGND | analog GND |
| 31~34 | FLOUT,SLOUT,SBLOUT,COUT | FLch,SLch,SBLch,Cch output |
| 35~38 | SWOUT,SBROUT,SROUT,FROUT | SWch,SBRch,SRch,FRch output |
| 39 | FRVIN | FR vol.input |
| 40 | TONEOUT R | Tone output |
| 41 | TRE R | Treble frequency characteristic setup |
| 42,43 | BASS R1,BASS R2 | Tone path frequency characteristic setup |
| 44~47 | FRIN2,SRIN2,SBRIN2,SWIN2 | FRch,SRch,SBRch,SWch input |
| 48~51 | CIN2,SBLIN2,SLIN2,FLIN2 | Cch,SBLch,SLch,FLch input |
| 52,53 | VOLGND3,VOLGND4 | Analog GND for vol. |
| 54 | BALANCE L/+ | Lch balance output for ADC |
| 55 | BALANCE L/- LOUD L | Lch loudness frequency setup |
| 56 | INGND | Analog GND |
| 57 | BALANCE R/+ | Rch balance output for ADC |
| 58 | BALANCE R/- LOUD R | Rch loudness frequency setup |
| 59~62 | REC R1,REC R2,REC R3,REC R4 | REC input |
| 63~66 | INRJ,INRI,INRH,INRG | Rch input |
| 67~70 | INRF,INRE,INRD,INRC | Rch input |
| 71,72 | INRB,INRA | Rch input |
| 73 | AVEE | Internal analog circuit power supply terminal (-) |
| 74~77 | INLA,INLB,INLC,INLD | Lch input |
| 78~80 | INLE,INLF,INLG | Lch input |

### 6.19MM1563DF-X (IC615) : Regulator

- Pin layout

- Block diagram

- Pin function

| Pin No. | Symbol | Function |  |
| :---: | :---: | :---: | :---: |
| 1 | Vo | Output pin |  |
| 2 | NC | Not connect |  |
| 3 | GND | Ground |  |
| 4 | Cn | Noise decrease pin |  |
| 5 | CONT | Control pin |  |
|  |  | CONT | Output |
|  |  | H | ON |
|  |  | L | OFF |
| 6 | Sub | Substrate pin, The 6pin must be connected to GND. |  |
| 7 | VIN | Input pin |  |

### 6.20 MM74HCU04SJ-X (IC621) : Inverter



- Truth table

| $A$ | $Y$ |
| :---: | :---: |
| $L$ | $H$ |
| $H$ | $L$ |

- Pin layout

- Block diagram

- Pin function

| Pin No. | Symbol | Function |  |
| :---: | :---: | :---: | :---: |
| 1 | Cont | ON/OFF Control pin |  |
|  |  | Cont | Vo |
|  |  | H | ON |
|  |  | L | OFF |
|  |  | Cont pin must be connected with VIN pin, if it is not used. |  |
| 2 | GND | Ground |  |
| 3 | Cn | Noise decrease pin, Connecting 0.01uF capacitor can decrease output noise. |  |
| 4 | Vout | If the noise decrease capacitor is not connected, the pin may be influenced by outside noise. Output pin, The capacitor must be connected with output pin more than 1uF. |  |
| 5 | Vin | Input pin <br> The capacitor is required to connect with input pin more than $1 u F$. |  |

### 6.22 MM74HC08SJ-X (IC612) : Quad. 2-input AND gates

- Pin layout \& Block diagram



### 6.23 MM74HCT32MTC-X (IC521) : OR gate

- Pin layout \& Block diagram

- Truth table

| INPUTS |  | OUTPUT |
| :---: | :---: | :---: |
| $A$ | $B$ | $Y$ |
| $L$ | $L$ | L |
| $L$ | $H$ | $H$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $H$ |

### 6.24 MN103S26EGA (IC301) : Optical disc controller

- Pin layout

- Pin function

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 1 | NINTO | O | System control interruption 0 |
| 2 | NINT1 | 0 | System control interruption 1 |
| 3 | VDD3 | - | Power supply (3.3V) |
| 4 | VSS | - | Ground |
| 5 | NINT2 | O | System control interruption 2 |
| 6 | WAITODC | 0 | System control wait control |
| 7 | NMRST | - | System control reset (Not connect.) |
| 8 | DASPST | - | DASP signal initializing |
| 9~17 | CPUADR17-9 | 1 | System control address |
| 18 | VDD18 | - | Power supply (1.8V) |
| 19 | VSS | - | Ground |
| 20 | DRAMVDD18 | - | Connect to VDD18 |
| 21 | DRAMVSS | - | Connect to VSS |
| 22~30 | CPUADR8-0 | 1 | System control address |
| 31 | VDD3 | - | Power supply (3.3V) |
| 32 | VSS | - | Ground |
| 33 | DRAMVDD3 | - | Connect to VDD3 |
| 34 | NCS | 1 | System control chip select |
| 35 | NWR | 1 | System control write |
| 36 | NRD | 1 | System control read |
| 37~44 | CPUDT7-0 | I/O | System control data |
| 45 | CLKOUT1 | - | Not connect. |
| 46 | MMOD | 1 | Connect to VSS |
| 47 | NRST | 1 | System reset |
| 48 | MSTPOL | 1 | Master terminal polarity switch input (Connect to VSS.) |
| 49 | SCLOCK | - | Not connect. |
| 50 | SDATA | - | Not connect. |
| 51 | OFTR | 1 | Off track signal input |
| 52 | BDO | 1 | RF dropout/BCA data of making to binary |
| 53~56 | PWM1-4 | - | Not connect. |
| 57 | VDD3 | - | Power supply (3.3V) |
| 58 | DRAMVDD18 | - | Connect to VDD18 |
| 59 | DRAMVSS | - | Connect to VSS |
| 60 | VSS | - | Ground |
| 61~64 | PWM5-8 | - | Not connect. |
| 65 | TBAL | 0 | Tracking balance adjustment output |
| 66 | FBAL | 0 | Focus balance adjustment output |
| 67 | TRSDRV | 0 | Traverse drive output |
| 68 | SPDRV | O | Spindle drive output |
| 69 | FG | 1 | Motor FG input |
| 70 | TILTP | - | Not connect. |


| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 71 | TILT | - | Not connect. |
| 72 | TILTN | - | Not connect. |
| 73 | TX | - | Not connect. |
| 74 | DTRD | - | Not connect. |
| 75 | IDGT | - | Not connect. |
| 76 | VDD18 | - | Power supply (1.8V) |
| 77 | VSS | - | Ground |
| 78 | VDD3 | - | Power supply (1.8V) |
| 79 | OSCI1 | 1 | 16.9MHz clock input |
| 80 | OSCO1 | - | Not connect. |
| 81 | VSS | - | Ground |
| 82 | TSTSG | O | Calibration signal |
| 83 | VFOSHORT | O | VFO short output |
| 84 | JLINE | O | J-line setting output |
| 85 | AVSS | - | Analog ground |
| 86 | ROUT | - | Not connect. |
| 87 | LOUT | - | Not connect. |
| 88 | AVDD | - | Analog power supply |
| 89 | VCOF | 1 | JFVCO control voltage |
| 90 | TRCRS | 1 | Input signal for track cross formation |
| 91 | CMPIN | - | Not connect. |
| 92 | LPFOUT | - | Not connect. |
| 93 | LPFIN | 1 | Pull-up to VHALF |
| 94 | AVSS | - | Analog ground |
| 95 | HPFOUT | - | Not connect. |
| 96 | HPFIN | 1 | HPF input |
| 97 | CSLFLT | 1 | Pull-up to VHALF |
| 98 | RFOIF | - | Not connect. |
| 99 | AVDD | - | Analog power supply |
| 100 | PLFLT2 | 1 | Connect to capacitor 2 for PLL |
| 101 | PLFLT1 | 1 | Connect to capacitor 1 for PLL |
| 102 | AVSS | - | Analog ground |
| 103 | RVI | 1 | Connect to resistor for VREF reference current source |
| 104 | VREFH | 1 | Reference voltage input (2.2V) |
| 105 | PLPG | - | Not connect. |
| 106 | VHALF | 1 | Reference voltage input (1.65V) |
| 107 | DSLF2 | 1 | Connect to capacitor 2 for DSL |
| 108 | DSLF1 | 1 | Connect to capacitor 1 for DSL |
| 109 | AVDD | - | Analog power supply |
| 110 | NARF | 1 | Equivalence RF- |
| 111 | ARF | 1 | Equivalence RF+ |
| 112 | JITOUT | O | Output for jitter signal monitor |
| 113 | AVSS | - | Analog ground |
| 114 | DAC0 | O | Tracking drive output |
| 115 | DAC1 | O | Focus drive output |
| 116 | AVDD | - | Analog power supply |
| 117 | ADO | 1 | Focus error input |
| 118 | AD1 | 1 | Phase difference/3 beams tracking error |


| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 119 | AD2 | I | AS: Full adder signal |
| 120 | AD3 | 1 | RF envelope input |
| 121 | AD4 | 1 | DVD laser current control terminal |
| 122 | AD5 | 1 | Tracking drive IC input offset |
| 123 | AD6 | 1 | CD laser current control terminal |
| 124 | TECAPA | - | Not connect. |
| 125 | VDD3 | - | Power supply (3.3V) |
| 126 | VSS | - | Ground |
| 127~130 | MONIO-3 | O | Internal goods title monitor (Connect to TP306-TP309) |
| 131 | NEJECT | 1 | Eject detection |
| 132 | NTRYCTL | 1 | Tray close detection |
| 133 | NDASP | I/O | ATAPI drive active / Slave connection I/O |
| 134 | NCS3FX | 1 | ATAPI host chip select (Not connect.) |
| 135 | NCS1FX | 1 | ATAPI host chip select (Not connect.) |
| 136 | DA2 | I/O | ATAPI host address |
| 137 | DA0 | I/O | ATAPI host address (Not connect.) |
| 138 | NPDIAG | I/O | ATAPI slave master diagnosis input |
| 139 | DA1 | I/O | ATAPI host address (Not connect.) |
| 140 | NIOCS16 | - | ATAPI output of selection of host data bus width (Not connect.) |
| 141 | INTRQ | O | ATAPI host interruption output |
| 142 | NDMACK | 1 | ATAPI host DMA response (Not connect.) |
| 143 | VDD3 | - | Power supply (3.3V) |
| 144 | VSS | - | Ground |
| 145 | IORDI | - | ATAPI host ready output (Not connect.) |
| 146 | NIORD | 1 | ATAPI host read (Not connect.) |
| 147 | NIOWR | I/O | ATAPI host write |
| 148 | DMARQ | - | ATAPI host DMA request (Not connect.) |
| 149~151 | HDD15,HDD0,HDD14 | I/O | ATAPI host data 15,0,14 |
| 152 | VDD18 | - | Power supply (1.8V) |
| 153 | PO | - | Connect to ground |
| 154 | UATASEL | 1 | Connect to VSS |
| 155 | VSS | - | Ground |
| 156 | VDD3 | - | Power supply (3.3V) |
| 157~159 | HDD1,HDD13,HDD2 | I/O | ATAPI data 1,13,2 |
| 160161 | HDD12,HDD3 | I/O | ATAPI data 12,3 |
| 162 | VDD3 | - | Power supply (3.3V) |
| 163 | VSS | - | Ground |
| 164~166 | HDD11,HDD4,HDD10 | I/O | ATAPI data 11,4,10 |
| 167168 | HDD5,HDD9 | I/O | ATAPI data 5,9 |
| 169 | VDD3 | - | Power supply (3.3V) |
| 170 | VSS | - | Ground |
| 171~173 | HDD6,HDD8,HDD7 | I/O | ATAPI data 6,8,7 |
| 174 | VDDH | - | Reference power supply for ATAPI (5.0V) |
| 175 | NRESET | 1 | ATAPI host reset |
| 176 | MASTER | I/O | ATAPI master / Slave selection |

### 6.25 MN35505-X (IC901,IC931,IC961) : DAC

- Terminal layout
$28 ~$

- Pin function

| Pin No. | Symbol | I/O |  |
| :---: | :---: | :---: | :--- |
| 1 | M5 | I | Control signal for DAC |
| 2 | DIN | I | Digital data input |
| 3 | LRCK | I | L and R clock for DAC |
| 4 | BCK | I | Bit clock for DAC |
| 5 | M3 | I | Control signal for DAC |
| 6 | DVDD2 | - | Power supply |
| 7 | CKO | - | Non connect |
| 8 | DVSS2 | - | Connect to ground |
| 9 | M2 | I | Control signal for DAC |
| 10 | M1 | I | Control signal for DAC |
| 11 | OUT1C | O | Analog output 1 |
| 12 | AVDD1 | - | Power supply |
| 13 | OUT1D | O | Analog output 1 |
| 14 | AVSS1 | - | Connect to GND |
| 15 | AVSS2 | - | Connect to GND |
| 16 | OUT2D | O | Analog output 2 |
| 17 | AVDD2 | - | Power supply |
| 18 | OUT2C | O | Analog output 2 |
| 19 | M9 | I | Control signal for DAC |
| 20 | DVSS2 | - | Connect to GND |
| 21 | XOUT | - | Non connect |
| 22 | XIN | - | Non connect |
| 23 | VCOF | I | VCO Frequency |
| 24 | DVDD1 | - | Power supply D+5V |
| 25 | M7 | - | Connect to GND |
| 26 | M8 | - | Connect to GND |
| 27 | M4 | I | Control signal for DAC |
| 28 | M6 | I | Clock for control signal |

6.26 NC7ST32P5-X (IC683) : 2-Input OR Gate

- Pin layout \& Block diagram

- Truth table

| INPUTS |  | OUTPUT |
| :---: | :---: | :---: |
| A | B | Y |
| L | L | L |
| L | $H$ | $H$ |
| $H$ | $L$ | $H$ |
| $H$ | $H$ | $H$ |

H: HIGH logic level L : LOW logic level
6.27 NC7SZ125P5-X (IC523) : Bus buffer gate with 3-state output

- Pin layout \& Block diagram

- Truth table

| INPUTS |  | OUTPUT |
| :---: | :---: | :---: |
| $\overline{\mathrm{OE}}$ | B | Y |
| L | H | H |
| L | L | L |
| H | X | Z | | $\mathrm{X}:$ Don't care |
| :--- |
| $\mathrm{Z}:$ : High impedance |

### 6.28 MN102L62GLF3 (IC401) : Unit CPU

- Pin layout

| $100 \sim 76$ |  |  |
| :---: | :---: | :---: |
| 1 |  | 75 |
| 2 |  | $\imath$ |
| 25 |  | 51 |
|  | $26 \sim 50$ |  |

- Pin function

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 1 | WAIT | 1 | Micro computer wait signal input |
| 2 | RE | 0 | Read enable |
| 3 | /SPMUTE | O | Spindle muting output to IC251 |
| 4 | WEN | O | Write enable |
| 5 | /LMMUTE | - | Not connect |
| 6 | CS1 | O | Chip select for ODC |
| 7 | CS2 | - | Chip select for ZIVA (Not connect.) |
| 8 | HDTYPE | 0 | HD TYPE selection |
| 9 | /DRVMUTE | 0 | Driver mute |
| 10 | SBRK | 0 | SP motor brake control |
| 11 | LSIRST | O | LSI reset |
| 12 | WOR0 | O | Bus selection input |
| 13-16 | A0-A3 | O | Address bus (0-3) for CPU |
| 17 | VDD | - | Power supply |
| 18 | SYSCLK | - | System clock signal output (Not connect.) |
| 19 | VSS | - | Ground |
| 20 | XI | - | Not use (Connect to VSS) |
| 21 | XO | - | Not connect |
| 22 | VDD | - | Power supply |
| 23 | OSCI | 1 | Clock signal input (13.5MHz) |
| 24 | OSCO | O | Clock signal output ( 13.5 MHz ) (Not connect.) |
| 25 | MODE | 1 | CPU mode selection input |
| 26-33 | A4-A11 | 0 | Address bus (4-11) for CPU |
| 34 | VDD | - | Power supply |
| 35-40 | A12-A17 | O | Address bus (12-17) for CPU |
| 41 | A18 | - | Address bus 18 for CPU (Not connect.) |
| 42 | A19 | - | Address bus 19 for CPU (Not connect.) |
| 43 | VSS | - | Ground |
| 44 | A20 | - | Address bus 20 for CPU ( Not connect.) |
| 45 | DISCSTP | 0 | DISC STOP control |
| 46 | HAGUP | O | H/A gain control |
| 47 | TCLOSE | - | Not connect. |
| 48 | WOBBLEFIL | - | Not connect. |
| 49 | /HFMON | I | HF monitor |
| 50 | TRVSW | 1 | Detection switch of traverse inside |


| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 51 | SWUPDN | - | Not connect. |
| 52 | MECHA_H/V | 1 | Disc detection |
| 53 | DISCSET | 0 | Serial enable signal for ADSC |
| 54 | VDD | - | Power supply |
| 55 | FEPEN | 0 | Serial enable signal for FEP |
| 56 | SLEEP | O | Standby signal for FEP |
| 57 | BUSY | - | Not connect. |
| 58 | REQ | O | Communication request |
| 59 |  | - | Connect to TP405 (REQ) |
| 60 |  | - | Not connect. |
| 61 | VSS | - | Ground |
| 62 | EPCS | 0 | EEPROM chip select |
| 63 | EPSK | O | EEPROM clock |
| 64 | EPDI | 1 | EEPROM data input |
| 65 | EPDO | O | EEPROM data output |
| 66 | VDD | - | Power supply |
| 67 | SCLKO | 1 | Communication clock |
| 68 | S2UTD | 1 | Communication input data |
| 69 | U2SDT | 0 | Communication output data |
| 70 | CPSCK | O | Clock for ADSC serial |
| 71 | P74/SBI1 | - | Connect to VSS |
| 72 | SDOUT | O | ADSC serial data output |
| 73 |  | - | Not use. (Pull-up to power supply) |
| 74 |  | - | Not use. <br> (Pull-up to power supply) |
| 75 | NMI | - | Not use. (Pull-up to power supply) |
| 76 | ADSCIRQ | 1 | Interrupt input of ADSC |
| 77 | ODCIRQ | 1 | Interrupt input of ODC |
| 78 | DECIRQ | I | Interrupt input of ZIVA |
| 79 | CSSIRQ | 1 | Interrupt input of SODC |
| 80 | ODCIRQ2 | 1 | Interruption of system control |
| 81 | ADSEP | 1 | Address data selection input (Pull-up to power supply) |
| 82 | RST | I | Reset input |
| 83 | VDD | - | Power supply |
| 84-91 | TEST1-TEST 8 | 1 | Test signal (1-8) input (Not connect.) |
| 92 | VSS | - | Ground |
| 93-100 | D0-7 | I/O | Data bus (0-7) of CPU |

### 6.29 NDV8611VWA (IC501) : Pantera

- Pin Layout

- Block Diagram

- Pin function

| Pin No. | Symbol | I/O |  |
| :---: | :---: | :---: | :--- |
| 1 | VDDIO |  | I/O pad power $=3.3 \mathrm{~V}$ |
| 2,3 | MD | I/O | SDRAM data bus |
| 4 | VDD |  | Core power $=1.8 \mathrm{~V}$ |
| 5 | MD | I/O | SDRAM data bus |
| 6 | VSSIO |  | I/O pad ground |
| $7,8,9$ | MD | I/O | SDRAM data bus |
| 10 | VDDIO |  | I/O pad power $=3.3 \mathrm{~V}$ |
| 11 | DQM | O | SDRAM data byte enables |
| 12,13 | MA | O | SDRAM address bus |
| 14 | VSSIO |  | I/O pad ground |
| 15,16 | MA | O | SDRAM address bus |
| 17 | VSS |  | Core and Ring ground |
| 18 | MA | O | SDRAM address bus |
| 19 | VDDIO |  | I/O pad power $=3.3 \mathrm{~V}$ |
| 20,21 | MA | O | SDRAM address bus |
| 22 | MCLK | O | SDRAM clock |
| 23 | VSSIO |  | I/O pad ground |
| 24 | CKE | O | SDRAM clock enable |
| 25,26 | MA | O | SDRAM address bus |
| 27 | VDDIO |  | I/O pad power $=3.3 V$ |
| $28-30$ | MA | O | SDRAM address bus |


| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 31 | VSSIO |  | I/O pad ground |
| 32, 33 | MA | O | SDRAM address bus, reserved for pin compatibility with 64Mb SDRAM |
| 34 | VDD |  | Core power $=1.8 \mathrm{~V}$ |
| 35 | CS0 | O | SDRAM primary bank chip select |
| 36 | VDDIO |  | I/O pad power =3.3V |
| 37 | RAS | 0 | SDRAM command bit |
| 38 | CAS | 0 | SDRAM command bit |
| 39 | WE | 0 | SDRAM command bit |
| 40 | VSSIO |  | I/O pad ground |
| 41, 42 | DQM | 0 | SDRAM data byte enables |
| 43 | MD | I/O | SDRAM data bus |
| 44 | VDDIO |  | I/O pad power =3.3V |
| 45, 46 | MD | I/O | SDRAM data bus |
| 47 | VSS |  | Core and Ring ground |
| 48 | MD | I/O | SDRAM data bus |
| 49 | VSSIO |  | I/O pad ground |
| 50-52 | MD | I/O | SDRAM data bus |
| 53 | VDDIO |  | I/O pad power =3.3 |
| 54, 55 | MD | I/O | VSDRAM data bus |
| 56 | MD | I/O | SDRAM data bus |
| 57 | VSSIO |  | I/O pad ground |
| 58-61 | MD | I/O | SDRAM data bus |
| 62 | VDDIO |  | I/O pad power =3.3V |
| 63, 64 | MD | I/O | SDRAM data bus |
| 65 | DQM | 0 | SDRAM data byte enables |
| 66 | CS1 | O | SDRAM extension bank chip select |
| 67 | VSSIO |  | I/O pad ground |
| 68 | SPDIF | 0 | S/PDIF digital audio output |
| 69 | VSS |  | Core and Ring ground |
| 70 | AIN | 1 | Digital audio input for digital micro |
| 71 | AOUT3 | 0 | Serial audio output data to audio DAC for Lch and Rch for down-mixed stereo |
| 72 | AOUT2 | 0 | Serial audio output data to audio DAC for SLch and SRch |
| 73 | AOUT1 | 0 | Serial audio output data to audio DAC for Cch and LFEch |
| 74 | AOUT0 | O | Serial audio output data to audio DAC for Lch and Rch |
| 75 | VDDIO |  | I/O pad power $=3.3 \mathrm{~V}$ |
| 76 | PCMCLK | O | Audio DAC PCM sampling click frequency, common clock for DACs and ADC |
| 77 | VDD |  | Core power $=1.8 \mathrm{~V}$ |
| 78 | ACLK | O | Audio interface serial data clock, common clock for DACs and ADC |
| 79 | LRCLK | O | L/R channel clock, common clock for DACs and ADC |
| 80 | SRST | O | Active low RESET signal for peripheral reset |
| 81 | RSTP | 1 | RESET input pin form system |
| 82 | VSSIO |  | I/O pad ground |
| 83 | RXD1 | 1 | UART1 serial data input from external serial devise |
| 84 | SSPIN1/BAUD1 | I/O | SSP1 data in or 16X clock for USART function in UART1 |
| 85 | VSS |  | Core and Ring ground |
| 86 | SSPOUT1/DTR1 | I/O | SSP1data out or UART1 data-terminal-ready signal |
| 87 | SSPCLK1/CTS1 | I/O | SSP1clock or UART1 clear-to-send signal |
| 88 | SSPCLK0/RTS1 | I/O | SSP0 clock or request-to-send function in UART1 |
| 89 | VDD |  | Core power $=1.8 \mathrm{~V}$ |
| 90 | SSPIN0/BAUD0 | I/O | SSP0 data in or 16X clock for USART function in UART0 |
| 91 | VDDIO |  | I/O pad power $=3.3 \mathrm{~V}$ |


| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 92 | SSPOUT0/DTR0 | I/O | SSP0 data out or UART0 data-terminal-ready signal |
| 93 | TXD0 | I/O | UART0 serial data output to an external serial device |
| 94 | RXD0 | I | UART0 serial data input from external serial device |
| 95 | CTSO | I/O | UART0 clear-to-send signal |
| 96 | RTS0 | I/O | UART0 request-to-send signal |
| 97 | VSSIO |  | I/O pad ground |
| 98 | CXI | 1 | Crystal input pin for on-chip oscillator or system input clock |
| 99 | CXO | 0 | Crystal output pin for on-chip oscillator |
| 100 | OSCVSS |  | Oscillator ground |
| 101 | OSCVDD |  | Oscillator power |
| 102 | MVCKVDD |  | Main and video clock PLL power |
| 103 | SCEN | 1 | Scan chain test enable |
| 104 | MVCKVSS |  | Main and video clock PLL ground |
| 105 | ACLKVSS |  | Audio clock PLL ground |
| 106 | SCMD | 1 | Scan chain test mode |
| 107 | ACLKVDD |  | Audio clock PLL power |
| 108 | VDDDAC |  | DAC digital power |
| 109 | VSSDAC |  | DAC digital ground |
| 110 | DAC3 | 0 | Video DAC3 output |
| 111 | IOM | 0 | Cascaded DAC differential output used to dump current into external resistor for power |
| 112 | DAC2 | 0 | Video DAC2 output |
| 113 | VAA3 |  | DAC analog power |
| 114 | DAC1 | $\bigcirc$ | Video DAC1 output |
| 115 | VSSA |  | DAC analog ground |
| 116 | VREF | I | Input voltage reference for output DACs |
| 117 | NC |  | Unused |
| 118 | DAC0 | 0 | Video DAC output |
| 119 | RSET | 0 | Current setting resistor of output DACs |
| 120 | COMP | 0 | Compensation capacitor connection |
| 121 | VSS |  | Core and Ring ground |
| 122 | VIOCLK | I/O | VCLK input/output for video I/O port function |
| 123 | VSYNC | I/O | Bi-directional VSYNC signal for devices |
| 124 | HSYNC | 1/0 | Bi-directional HSYNC signal for devices |
| 125 | VDDIO |  | I/O pad power =3.3V |
| 126-131 | VIO | I/O | Bi-directional digital video port data bus |
| 132 | VSSIO |  | I/O pad ground |
| 133, 134 | VIO | I/O | Bi-directional digital video port data bus |
| 135 | VDD |  | Core power $=1.8 \mathrm{~V}$ |
| 136-139 | AD | I/O | Multipleced address/data bus |
| 140 | VDDIO |  | I/O pad power =3.3V |
| 141-144 | AD | 1/0 | Multipleced address/data bus |
| 145 | PWE | 1/0 | Byte write enable for FLASH, EEPROM, SRAM or peripherals |
| 146 | AD | I/O | Multipleced address/data bus |
| 147 | VSSIO |  | I/O pad ground |
| 148-153 | AD | I/O | Multipleced address/data bus |
| 154 | VDDIO |  | I/O pad power =3.3V |
| 155 | AD | I/O | Multipleced address/data bus |
| 156 | PWE | I/O | Byte write enable for FLASH, EEPROM, SRAM or peripherals |
| 157, 158 | AD | I/O | Multipleced address/data bus |
| 159 | VDD |  | Core power =1.8V |
| 160 | SCLK | 0 | External bus clock used for programmable host bus peripherals |


| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 161 | ACK | I/O | Programmable WAIT-/ACK-/RDY- control |
| 162 | VSSIO |  | I/O pad ground |
| 163-168 | AD | I/O | Multipleced address/data bus |
| 169 | VDDIO |  | I/O pad power =3.3V |
| 170 | PWE | I/O | Byte write enable for FLASH, EEPROM, SRAM or peripherals |
| 171 | VSS |  | Core and Ring ground |
| 172-176 | AD | I/O | Multipleced address/data bus |
| 177 | VSSIO |  | I/O pad ground |
| 178-180 | AD | I/O | Multipleced address/data bus |
| 181 | VDDIO |  | I/O pad power =3.3V |
| 182 | PWE | I/O | Byte write enable for FLASH, EEPROM, SRAM or peripherals |
| 183 | ALE | I/O | Address latch enable |
| 184-187 | LA | I/O | Latched address |
| 188 | VSSIO |  | I/O pad ground |
| 189 | RD | I/O | Read |
| 190 | LHLDA | O | Bus hold acknowledge in slave mode |
| 191 | LHLD | I | Bus hold request from external master in slave mode |
| 192 | VDD |  | Core power $=1.8 \mathrm{~V}$ |
| 193 | PCS0 | O | Peripheral chip select 0 |
| 195 | XIO | I/O | External input/output |
| 196 | VDDIO |  | I/O pad power =3.3V |
| 197-200 | XIO | I/O | External input/output |
| 201 | VSS |  | Core and Ring ground |
| 202-203 | XIO | I/O | External input/output |
| 204 | VSSIO |  | I/O pad ground |
| 205-209 | XIO | I/O | External input/output |
| 210 | VDDIO |  | I/O pad power =3.3V |
| 211 | XIO | I/O | External input/output |
| 212 | VDD |  | Core power $=1.8 \mathrm{~V}$ |
| 213 | DSYNC | 1 | DVD parallel mode Sector Sync |
| 214 | DRQE | O | DVD parallel mode Data Request |
| 215 | DCLK | I | Data sampling clock |
| 216 | DSTB | 1 | Parallel mode Data valid, serial mode left/ right clock |
| 217 | DVD | I | DVD drive parallel data port |
| 218 | VSSIO |  | I/O pad ground |
| 219-223 | DVD | 1 | DVD drive parallel data port |
| 224 | VDDIO |  | I/O pad power =3.3V |
| 225 | DVD | 1 | DVD drive parallel data port |
| 226 | DVD | 1 | DVD drive parallel data port |
| 227 | MD | I/O | SDRAM data bus |
| 228 | VSSIO |  | I/O pad ground |
| 229 | MD | I/O | SDRAM data bus |
| 230 | VSS |  | Core and Ring ground |
| 231, 232 | MD | I/O | SDRAM data bus |
| 233 | VDDIO |  | I/O pad power =3.3V |
| 234-236 | MD | I/O | SDRAM data bus |
| 237 | VSSIO |  | I/O pad ground |
| 238-240 | MD | I/O | SDRAM data bus |

### 6.30 NJM2279M-W (IC402,IC403,IC404) : 3-input 2-output video switch

- Pin Layout

- Pin function

| 1 | Vin3 | 8 | V+ |
| :---: | :---: | :---: | :---: |
| 2 | SW1 | 9 | N.C. |
| 3 | Vin2 | 10 | Vout1 |
| 4 | MUTE2 | 11 | MUTE1 |
| 5 | Vout2 | 12 | Vin1 |
| 6 | GND2 | 13 | SW2 |
| 7 | GND1 | 14 | V- |

- Block Diagram



### 6.31 NJM4580E-W (IC911,IC921,IC941,IC951,IC971,IC981,IC991 to IC994) : Ope amp.


6.32 S-93C66AFJ-X (IC451) : Memory

- Pin layout

- Pin function

| Pin No. | Symbol | Function |
| :---: | :---: | :--- |
| 1 | NC | Not connect |
| 2 | Vcc | Power supply |
| 3 | CS | Chip select input |
| 4 | SK | Serial clock input |
| 5 | DI | Serial data input |


| 6 | DO | Serial data output |
| :---: | :---: | :--- |
| 7 | GND | Ground |
| 8 | TEST | TEST pin:Open |

- Block diagram



### 6.33 SI-8033JF (IC191) : Switching regulator

- Block Diagram



### 6.34 SST39VF160-7CEK (IC509) : 16 Mbit multi-purpose flash memory

- Pin layout
- Block diagram


- Pin function

| Pin <br> No. | Symbol | I/O |  |
| :---: | :---: | :---: | :--- |
| $1-9$ | A15-A8,A19 | I | Address inputs : To provide memory addresses. <br> During Sector-Erase A19-A11 address lines will select the sector. <br> During Block-Erase, A19-A15 address line will select the block. |
| 10 | NC | - | No connection : Unconnected pins |
| 11 | WE\# | I | Write Enable : To control the Write operations |
| $12-15$ | NC | - | No connection : Unconnected pins |
| $16-25$ | A18,A17,A7-A0 | I | Address inputs : To provide memory addresses. <br> During Sector-Erase A19-A11 address lines will select the sector. <br> During Block-Erase, A19-A15 address line will select the block. |
| 26 | CE\# | I | Chip Enable : To activate the device when CE\# is low. |
| 27 | VSS | - | Ground |
| 28 | OE\# | I | Output Enable : To gate the data output buffers |
| $29-36$ | DQ0,DQ8,DQ1 <br> DQ9,DQ2,DQ10 <br> DQ3,DQ11 | I/O | Data input/output : To output data during Read cycles and receive input data during write cycles. <br> Data is internally latched during a write cycle. <br> The outputs are in tri-state when OE\# or CE\# is high. |
| 37 | VDD | - | Power supply : To provide power supply voltage (2.7-3.6V) |
| $38-45$ | DQ4,DQ12,DQ5 <br> DQ13,DQ6,DQ14 <br> DQ7,DQ15 | I/O | Data input/output : To output data during Read cycles and receive input data during write cycles. <br> Data is internally latched during a write cycle. <br> The outputs are in tri-state when OE\# or CE\# is high. |
| 46 | VSS | - | Ground |
| 47 | NC | - | No connection : Unconnected pins |
| 48 | A16 | I | Address input : To provide memory address. <br> During Sector-Erase A19-A11 address lines will select the sector. <br> During Block-Erase, A19-A15 address line will select the block. |

### 6.35 TC9446F-025 (IC631): Digital signal processor for dolby digital (AC-3) / DTS audio decode

- Pin Function

| Pin No. | Symbol | 1/0 | Function |
| :---: | :---: | :---: | :---: |
| 1 | RST | 1 | Reset signal input terminal (L:reset H: normal operation) |
| 2 | MIMD | I | Microcomputer interface mode selection input terminal (L:serial H:IC bus) |
| 3 | MICS | 1 | Microcomputer interface chip select input terminal |
| 4 | MILP | , | Microcomputer interface latch pulse input |
| 5 | MIDIO | 1/0 | Microcomputer interface data l/O terminal |
| 6 | MICK | 1 | Microcomputer interface clock input terminal |
| 7 | MIACK | 0 | Microcomputer interface acknowledge output terminal |
| 8~11 | FIO~3 | , | Flag input terminal 0~3 |
| 12 | IRQ | 1 | Interrupt input terminal |
| 13 | VSS | - | Digital ground terminal |
| 14 | LRCKA | 1 | Audio interface LR clock input terminal A |
| 15 | BCKA | 1 | Audio interface bit clock input terminal A |
| 16~18 | SDO0~2 | O | Audio interface data output terminal 0 |
| 19 | SD03 | - | Non connect |
| 20 | LRCKB | 1 | Audio interface LR clock input terminal B |
| 21 | BCKB | , | Audio interface bit clock input terminal B |
| 22 | SDT0 | 1 | Audio interface data input terminal 0 |
| 23 | SDT1 | 1 | Audio interface data input terminal 1 |
| 24 | VDD | - | Power supply for digital circuit |
| 25 | LRCKOA | O | Audio interface LR clock output terminal A |
| 26 | BCKOA | O | Audio interface bit clock output terminal A |
| 27, 28 | TEST0,1 | 1 | Test input terminal 0/1 (L:test H: normal operation) |
| 29~30 | LRCKOBBCKOB | - | Non connect |
| 31 | TXO | O | SPDIF Output |
| 32, 33 | TEST2,3 | I | Test input terminal (L:test H: normal operation) |
| 34 | RX | 1 | SPDIF input terminal |
| 35 | VSS | - | Ground terminal for digital circuit |
| 36 | TSTSUB0 | 1 | Test sub input terminal 0 (L:test H: normal operation) |
| 37 | FCONT | 0 | VCO Frequency control output terminal |
| 38,39 | TSTSUB1TSTSUB2 | 1 | Test sub input terminal 12 (L:test H: normal operation) |
| 40 | PDO | O | Phase detect signal output terminal |
| 41 | VDDA | - | Power supply for analog circuit |
| 42 | PLON | 1 | Clock selection input terminal (L:external clock H:VCO clock) |
| 43 | AMPI | 1 | amplifier input terminal for LPF |
| 44 | AMPO | O | amplifier output terminal for LPF |
| 45 | CKI | 1 | External clock input terminal |
| 46 | VSSA | - | Ground terminal for analog circuit |
| 47 | CKO | 0 | DIR Clock output terminal |
| 48 | LOCK | O | VCO Lock output terminal |
| 49 | VSS | - | Ground terminal for digital circuit |
| 50 | WR | 0 | External SRAM writing signal output terminal |
| 51 | OE | O | External SRAM output enable signal output terminal |
| 52 | CE | O | External SRAM chip enable signal output terminal |
| 53 | VDD | - | Power supply terminal for digital circuit |
| 54~61 | IO7~0 | 1/0 | External SRAM data I/O terminal 7~0 |
| 62 | VSS | - | Ground terminal for digital circuit |
| 63~70 | AD0~7 | 0 | External SRAM address output terminal 0~7 |
| 71 | VDD | - | Power supply terminal for digital circuit |
| 72~80 | AD8~16 | 0 | External SRAM address output terminal 8~16 |
| 81 | VSS | - | round terminal for digital circuit |
| 82~89 | PO0~7 | O | General purpose output terminal 0~7 |
| 90 | VDDDL | - | Power supply terminal for DLL |
| 91 | LPFO | O | LPF output terminal for DLL |
| 92,93 | DLON,DLCKS | 1 | Refer to the undermentioned table |
| 94 | SCKO | - | Non connect |
| 95 | VSSDL | - | Ground terminal for DLL |
| 96 | SCKI | 1 | External system clock input terminal |
| 97 | VSSX | - | Ground terminal for oscillation circuit |
| 98, 99 | XO,XI | 1/O | Oscillation I/O terminal |
| 100 | VDDX | - | Power supply terminal for oscillation circuit |


| DLCKS terminal | DLON terminal | DLL clock setting |
| :---: | :---: | :--- |
| L | L | SCKI input (DLL circuit OFF) |
| L | H | Four times XI clock |
| $H$ | L | Three times XI clock |
| H | H | Six times XI clock |

### 6.36 UPD784215AGC167 (IC671): Digital signal controller

- Pin layout

- Pin function

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 1~8 |  | - | Non connect |
| 9 | VDD | - | Power supply terminal |
| 10 | X2 | O | Connecting the crystal oscillator for system main clock |
| 11 | X1 | I | Connecting the crystal oscillator for system main clock |
| 12 | VSS | - | Connect to GND |
| 13 | XT2 | O | Connecting the crystal oscillator for system sub clock |
| 14 | XT1 | 1 | Connecting the crystal oscillator for system sub clock |
| 15 | RESET | 1 | System reset signal input |
| 16 | AUTODATA | 1 | Output of DSP to general-purpose port |
| 17 | LOCK | 1 | Output of DSP to general-purpose port |
| 18 | DIGITALO | 1 | Output of DSP to general-purpose port |
| 19 | FORMAT | I | Output of DSP to general-purpose port |
| 20 | CHANNEL | I | Output of DSP to general-purpose port |
| 21 | ERR | 1 | Output of DSP to general-purpose port |
| 22 | REST IN | I | Reset signal input |
| 23 | AVDD | - | Power supply terminal |
| 24 | AVREF0 | - | Connect to GND |
| 25 |  | - | Connect to GND |
| 26 |  | - | Connect to GND |
| 27 |  | - | Connect to GND |
| 28 |  | - | Connect to GND |
| 29 |  | - | Connect to GND |
| 30 |  | - | Connect to GND |
| 31 |  | - | Connect to GND |
| 32 |  | - | Connect to GND |
| 33 | AVSS | - | Connect to GND |
| 34,35 |  | - | Non connect |
| 36 | AV REF1 | - | Power supply terminal |
| 37 | RX | - | Not use |
| 38 | TX | - | Not use |
| 39 |  | - | Non connect |
| 40 | DSPCOM | 1 | Communication port from IC701 |
| 41 | DSPSTS | O | Status communication port to IC701 |
| 42 | DSPCLK | 1 | Clock input from IC701 |
| 43 | DSPRDY | 1 | Ready signal input from IC701 |
| 44 |  | - | Non connect |

1-58 (No.22023)

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 45 | MIDIO IN | I/O | Interface I/O terminal with microcomputer |
| 46 | MIDIO OUT | 1/O | Interface I/O terminal with microcomputer |
| 47 | MICK | 0 | Interface I/O terminal with microcomputer of clock signal |
| 48 | MICS | 0 | Interface I/O terminal with microcomputer of chip select |
| 49 | MILP | 0 | Interface I/O terminal with microcomputer |
| 50 | MIACK | 0 | Interface I/O terminal with microcomputer |
| 51 |  | - | Non connect |
| 52 |  | - | Non connect |
| 53 | DSPRST | 0 | Reset signal output of DSP |
| 54~63 |  | - | Non connect |
| 64 | CODEC OUT | I/O | Interface I/O terminal with microcomputer |
| 65 | CODEC IN | 1/O | Interface I/O terminal with microcomputer |
| 66 | CODEC CLK | 0 | Interface I/O terminal with microcomputer of clock signal |
| 67 | CODEC CS | 0 | Interface I/O terminal with microcomputer of chip select |
| 68 | CODEC XTS | - | Non connect |
| 69 |  | - | Non connect |
| 70 |  | - | Non connect |
| 71 | PD | 0 | Reset signal output |
| 72 | GND | - | Connect to GND |
| 73 |  | - | Non connect |
| 74 |  | - | Non connect |
| 75 |  | - | Non connect |
| 76 |  | - | Non connect |
| 77 |  | - | Non connect |
| 78 |  | - | Non connect |
| 79 |  | - | Non connect |
| 80 |  | - | Non connect |
| 81 | VDD | - | Power supply |
| 82 |  | - | Non connect |
| 83 |  | - | Non connect |
| 84 | ANA/T-TONE | 0 | Test tone control |
| 85 | LEF-MIX | 0 | Control at output destination of LFE channel |
| 86 |  | - | Non connect |
| 87 | D.MUTE | 0 | Mute of the digital out terminal is controlled |
| 88 | S.MUTE | 0 | Mute of the audio signal is controlled |
| 89 |  | 0 | Non connect |
| 90 | ASW1 | 0 | Selection of digital input selector |
| 91 | ASW2 | - | Selection of digital input selector |
| 92 | ASW3 | - | Selection of digital input selector |
| 93 | ASW4 | - | Selection of digital input selector |
| 94 | TEST | - | Test terminal |
| 95 |  | - | Non connect |
| 96 |  | - | Non connect |
| 97 |  | - | Non connect |
| 98 |  | - | Non connect |
| 99 |  | - | Non connect |
| 100 |  | - | Non connect |

- Pin layout

$$
12345
$$

- Block diagram



### 6.38 SI-8090JF (IC193) : Switching regulator

- Block Diagram



### 6.39 MN101C35DKF (IC701) : Panel micon

- Pin Layout

- Pin function

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 1 to 7 | NC | - | Not connect |
| 8 | VDD | - | Power supply |
| 9 | OSC2 | O | 8 MHz |
| 10 | OSC1 | I | 8MHz |
| 11 | VSS | - | Ground |
| 12 | XI | 1 | Connect to ground |
| 13 | XO | O | Not connect |
| 14 | MMOD | - | Connect to ground |
| 15 | VREF- | - | Connect to ground |
| 16 | KEY1 | I | Key input 1 (7 key) |
| 17 | KEY2 | I | Key input 2 (7 key) |
| 18 | KEY3 | I | Key input 3 (7 key) |
| 19 | KEY4 | 1 | Key input 4 (7 key) |
| 20 | KEY5 | I | Key input 5 (7 key) |
| 21 | KEY6 | I | Key input 6 (7 key) |
| 22 | CS1 | 1 | Chip select 1 |
| 23 | CS2 | 1 | Chip select 2 |
| 24 | VREF+ | - | Connect to power supply |
| 25 | LED_DIMMER | O | LED dimmer |
| 26 | M_RESET | 1 | Reset input |
| 27 | BLUE_LED | O | LED (BLUE) |
| 28 | VCR_LED | O | LED (VCR) |
| 29 | STB_LED | O | LED (STB) |
| 30 | DVDA_LED | O | LED (DVD audio) |
| 31 | DVD_LED | 0 | LED (DVD) |
| 32 | M_BUSY | O | Micon communication BUSY |
| 33 | M_CS | 1 | Micon communication CS |
| 34 | REMO | 1 | Remote control input |
| 35 | JOG1 | 1 | Volume JOG input 1 |
| 36 | JOG2 | 1 | Volume JOG input 2 |
| 37,38 | NC | - | Not connect |
| 39 | M_STATUS | O | Micon communication status output |
| 40 | M_COMMAND | 1 | Micon communication command input |
| 41 | M_CLK | 1 | Micon communication CLK |
| 42 to 50 | NC | - | Not connect |
| 51 to 63 | G1 to G13 | O | GRID1 to GRID13 |
| 64 to 99 | P36 to P1 | 0 | SEGMENT36 to SEGMENT1 |
| 100 | VPP | - | VPP |

### 6.40 MN101C49GMM1 (IC761) : System control micon

- Pin Layout

| 100 | 76 |
| :---: | :---: |
|  |  |
| 25 |  |
| 26 | 51 |

- Pin function

| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 1 | GND | - | Ground |
| 2 | NTSC/PAL | 1 | NTSC/PAL discrimination switch (RBG switching discrimination) |
| 3 | VCR S/C | 1 | VCR S/Composite detection |
| 4 | DBS S/C | 1 | DBS S/Composite detection |
| 5 | SAFETY | 1 | Short detection |
| 6 | TH | 1 | Short state and heat sink temperature detection |
| 7 | OUTPUTLEVEL | 1 | Output level detection |
| 8 | VSR IN | 1 | VCR voltage detection |
| 9 | DBS IN | 1 | STB voltage detection |
| 10 | VREF+ | - | Reference voltage |
| 11 | VDD | - | Power supply |
| 12 | OSCOUT | O | 8MHz crystal output |
| 13 | OSCIN | 1 | 8MHz crystal input |
| 14 | GND | - | Ground |
| 15 | GND | - | Ground |
| 16 | NC | - | Not connect |
| 17 | GND | - | Ground |
| 18 | DI DO | O | Panel control serial communication DATA OUT |
| 19 | DI DI | 1 | Panel control serial communication DATA IN |
| 20 | DI CLK | O | Panel control serial communication CLOCK |
| 21 | S2UDT | O | PANTERA serial communication DATA OUT |
| 22 | U2SDT | 1 | PANTERA serial communication DATA IN |
| 23 | SCLK | 1 | PANTERA serial communication CLOCK |
| 24 | INTP | O | PANTERA communication transmitting request |
| 25 | CPURST | O | PANTERA reset |
| 26 | CS | 1 | PANTERA communication receiving request (Interrupt) |
| 27 | GND | - | Ground |
| 28 | PROTECT | 1 | Speaker protect detection |
| 29 | NC | - | RDS communication STROBE (Interrupt), connect to ground |
| 30 | DI BUSY | 1 | Panel control communication busy |
| 31 | HPSW | 1 | Headphone detection |
| 32 | VDD2/FLASH-VDD | - | Flash memory writing power supply port |
| 33 | RESET IN | 1 | System control reset input |
| 34 | DSP RST | O | DSP micon reset output |
| 35 | DSP RDY | O | DSP micon ready |
| 36 | AVC OUT | O | AV compulink output |
| 37 | AVC IN | I | AV compulink input |


| Pin No. | Symbol | I/O | Function |
| :---: | :---: | :---: | :---: |
| 38 | VIDEO MUTE1 | O | Video driver MUTE1 control |
| 39 | VIDEO MUTE2 | O | Video driver MUTE2 control |
| 40 | VIDEO YCMIX | O | Video driver YCMIX control |
| 41 | VPP/FLASH-VSS | O | Flash memory writing power supply port |
| 42 | DSP COM | O | DSP serial communication DATA OUT |
| 43 | DSP STAT | 1 | DSP serial communication DATA IN |
| 44 | DSP CLK | O | DSP serial communication CLOCK |
| 45 | VOL DATA | O | VOLUME serial communication DATA OUT (M61516) |
| 46 | VOL LATCH | O | VOLUME serial communication STROBE (M61516) |
| 47 | VOL CLK | O | VOLUME serial communication CLOCK (M61516) |
| 48 | NC | - | DIGITAL OUT mute control (ON:H) |
| 49 | INT/PROG | O | DIGITAL terminal LINE2 switching (INT:H,PROG:L) |
| 50 | HEADPHONE RELAY | O | Headphone relay switching (ON:H) |
| 51 | VIDEO RGB | O | Video driver RGB control |
| 52 | NC | - | Not connect |
| 53 | NC | - | Not connect |
| 54 | FRT2 SPK RELAY | O | Front speaker relay switching 2 (ON:H) |
| 55 | FRT1 SPK RELAY | O | Front speaker relay switching 1 (ON:H) |
| 56 | CNT SPK RELAY | O | Center speaker relay switching (ON:H) |
| 57 | REAR SPK RELAY | O | Rear speaker relay switching (ON:H) |
| 58 | S1RELAY | O | Power amplifier power supply control (ON:H) |
| 59 | INH | 1 | AC cutting off detection (INH:L) |
| 60 | NC | - | SLOW switching output |
| 61 | NC | - | SLOW switching output |
| 62 | SYSTEM PON | O | System power supply control (ON:H) |
| 63 | FAN ON/OFF | O | Fan ON/OFF control (ON:H) |
| 64 | DVD PON | O | DVD power supply control (ON:L) |
| 65 | TUNER PON | O | TUNER power supply control (ON:H) |
| 66 | ME ON | O | MECHA power supply control (ON:L) |
| 67 | RDS DATA | I/O | RDS communication DATA, not connect |
| 68 | NC | - | RDS communication CLOCK, not connect |
| 69 | NC | - | TUNER stereo detection, not connect |
| 70 | TUNER DATA IN | 1 | TUNER serial communication DATA IN |
| 71 | NC | - | Not connect |
| 72 | TUNER DATA | O | TUNER serial communication DATA OUT |
| 73 | TUNER CLK | 0 | TUNER serial communication CLOCK |
| 74 | TUNER CE | 0 | TUNER serial communication CE |
| 75 | S1OUT | O | For S1 output control |
| 76 | SMUTE | O | System mute (MUTE:H) |
| 77 | DSPON | 0 | DSP power supply control (ON:H) |
| 78 |  | O | Not connect |
| 79 | STANDBY LED | 0 | Standby LED control (ON:L) |
| 80 | FAN LOW | O | Fan control 1 (ON:H) |
| 81 | FAN MID | O | Fan control 2 (ON:H) |
| 82 | DISC SET | O | Read start permission to front end (SET:H) |


| Pin No. | Symbol | I/O |  |
| :---: | :---: | :---: | :--- |
| 83 | DISC STOP | I | EJECT permission from front end (STOP:H) |
| 84 | FAN HIGH | O | Fan control 3 (ON:H) |
| 85 | NC | - | Not connect |
| 86 | SW MUTE | O | Sub woofer mute (MUTE:H) |
| 87 | VIDEO SW1 | O | Video switching output 1 |
| 88 |  | O | Video switching output 2 |
| 89 |  | O | Video switching output 3 |
| 90 | VIDEO SW4 | O | Video switching output 4 |
| 91 | DI RST | O | Panel control reset output |
| 92 | DI CS | O | Panel control serial communication CS |
| 93 | NC | - | Not connect |
| 94 | LMUTE | O | Loader mute output |
| 95 | DAVSS | - | Ground |
| 96 | SWOPEN | I | Loader OPEN/CLOSE SW detection |
| 97 | SWUPDN | I | Loader mechanism down detection |
| 98 | TOPEN | O | Loader motor open control (PWM) |
| 99 | TCLOSE | O | Loader motor close control (PWM) |
| 100 | DAVDD | - | Power supply |



VICTOR COMPANY OF JAPAN, LIMITED
AV \& MULTIMEDIA COMPANY AUDIO/VIDEO SYSTEMS CATEGORY 10-1,1chome,Ohwatari-machi,Maebashi-city,371-8543,Japan

