
Ned. Ver. v. Historie v/d Radio

The appearance of the Kolster - Brandes ER30 table model.

A N electronic variable tone control circuit is interposed in the A.F. amplifier of the Kolster-Brandes ER30, between the pre-amplifier and the output valve. The receiver is a 4-valve (plus rec-

KOLSTER-BRANDES ER30

Covering also the FG20 autoradiogram and the radio unit in the FT50 TV receiver

tifier) 3-band superhet designed to operate from A.C. mains of 200-250 V, 50-100 c/s. The waveband ranges are 16.3-51.4 m, 187-585 m and 732-2,110 m.

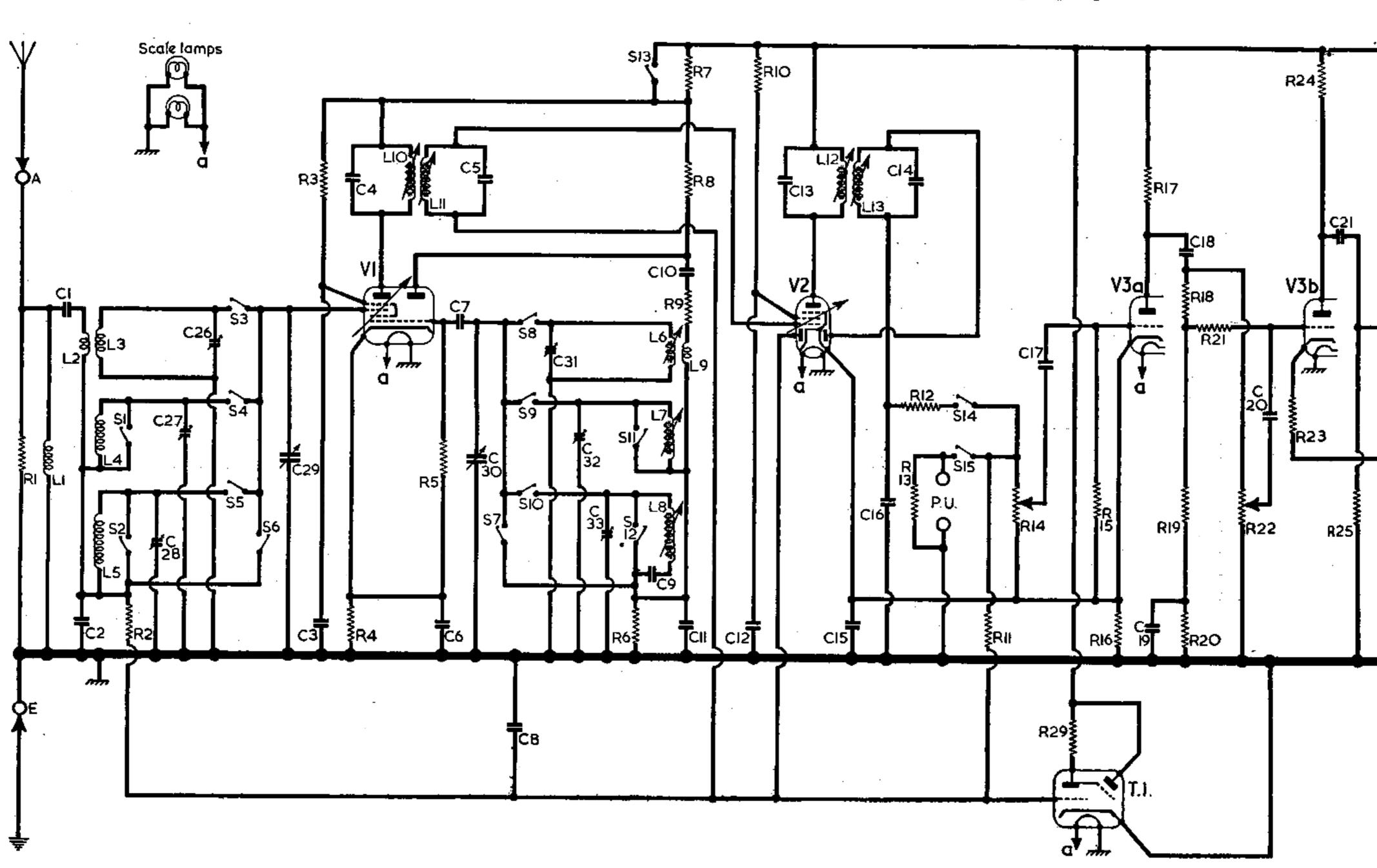
Provision is made for the connection of a gramophone pick-up and an external speaker. The internal speaker can be muted, and the gramophone pick-up may be left permanently connected. The internal speaker is a 10-inch model.

The FG20 is a multi-speed autoradiogram employing an ER30 chassis, and the same chassis is used as the radio receiver in the FT50 television receiver.

Release dates and original prices: ER30, August 1949, £21 os 1d, increased February 1950 to £22 4s 5d, and February 1951 to £23 13s 8d, then April 1951 to £23 14s 6d; FG20, December 1950, £51 9s 7d, increased February 1951 to £55 3s 1d. Purchase tax extra.

CIRCUIT DESCRIPTION

Aerial input on M.W. and L.W. is "bottom" coupled via capacitative potential divider comprising C1 and C2, the effect of L2 being negligible at these frequencies, to single-tuned circuits L4, C29


(M.W.) and L5, C29 (L.W.). On S.W., aerial input is inductively coupled via L2 to single-tuned circuit L3, C29. L1 and R1 shunt the aerial circuit.

First valve (V1, Brimar 6K8GT) is a triode hexode operating as frequency changer with internal coupling. Oscillator grid coils L6 (S.W.), L7 (M.W.) and L8 (L.W.) are tuned by C30. Parallel trimming by C31 (S.W.), C32 (M.W.) and C33 (L.W.); series tracking by C11 (M.W.) and C9, C11 (L.W.). Inductive reaction coupling on S.W. by L9. Capacitative coupling on M.W. and L.W. across the common impedance of C11 in grid and anode circuits.

Second valve (V2, Brimar 7R7) is a double diode R.F. pentode operating as signal detector and I.F. amplifier. The pentode section is coupled by tuned transformers C4, L10, L11, C5 and C13, L12, L13, C14.

Intermediate frequency 465 kc/s.

Audio frequency output from diode signal is developed across the manual volume control R14, which acts as the diode load, and passed via coupling capacitor C17 to

Loca

Values

control grid of triode A.F. amplifier (V3a, one half of double triode valve, Brimar 6SL7GT), whose cathode circuit is common with that of V2.

Provision is made for the connection of a gramophone pick-up via \$15 across R14. In addition to the change-over action of \$14, \$15, radio is muted on gram by the opening of \$13, inserting R7 into the H.T. feed circuit to screen and both anodes of V1.

D.C. potential developed across R14 is tapped off and fed back via a decoupling circuit as grid bias to F.C. and I.F. valves, giving automatic gain control. The control grid of the cathode ray tuning indicator (T1, Brimar 6U5G) is connected to the A.G.C. line, so that its potential rises negatively as the incoming signal strength increases.

Resistance-capacitance coupling via electronic tone control circuit employing a second triode valve (V3b) between V3a and tetrode output valve (V4, Brimar 6V6GT). The output from V3a is developed across the potential divider C18, R18, R19, R20, C19 and fed to V3b control grid via R21 from a fixed position.

The output across the resistance arm, R18, R19, R20 appears also across R22, whose slider can tap off a variable amount of the signal across the arm and feed it via C20 to the control grid of V3b, modifying the frequency response of the coupling.

The overall response of **V3b** and **V4** is further modified by output voltages from

T1 secondary winding fed back to V3b cathode circuit via the bias resistor R23, and by the introduction of C22 across V4 control grid circuit.

H.T. current is supplied by I.H.C. full-wave rectifying valve (V5, Brimar 6X5GT), with smoothing by electrolytic

capacitors C25, C23 and resistor R26. Residual hum is neutralized by passing the H.T. current through a section of the output transformer primary winding. A single secondary winding on the mains transformer T2 supplies all valve heaters, including the rectifier.

CAPACITORS 1

COMPONENTS AND VALUES

	RESISTORS	Values	Loca- tions
R1	Aerial shunt	4·7kΩ	G3
$\mathbf{R2}$	A.G.C. decoupling	$100 \mathrm{k}\Omega$	G3
$\mathbf{R3}$	V1 S.G. feed	$22 \mathrm{k}\Omega$	F2
$\mathbf{R4}$	V1 G.B	270Ω	F 2
R5	V1 osc. C.G	$47 \mathrm{k}\Omega$	F 3
R6	Osc. shunt	4·7kΩ	F 3
R7	Radio muting	$470 \mathrm{k}\Omega$	G2
$\mathbf{R8}$	Osc. anode feed	$33 \mathrm{k}\Omega$	F2
$\mathbf{R9}$	Osc. stabilizer	100Ω	F 3
R10	V2 S.G. feed	$82\mathbf{k}\Omega$	F2
R11	A.G.C. decoupling	$2.2 \mathrm{M}\Omega$	F2
R12	I.F. stopper	$47 \mathrm{k}\Omega$	E2
R13	P.U. shunt	$220 \mathrm{k}\Omega$	F3
R14	Volume control	$500 \mathrm{k}\Omega$	C1
R15	V3a C.G	$10 \mathrm{M}\Omega$	F2
R16	V2, V3a G.B	100Ω	F 3
R17	V3a anode load	$220 \mathrm{k}\Omega$	E2
R18	\mathbf{f}	$470 \mathrm{k}\Omega$	D2
R19	Mama compactors	$47 \mathrm{k}\Omega$	$\mathbf{D2}$
$\mathbf{R20}$	Tons correctors {	$200 \mathrm{k}\Omega$	D2
$\mathbf{R21}$	l) U	$200 \mathrm{k}\Omega$	$\mathbf{D2}$
R22	Tone control	$500 \mathrm{k}\Omega$	$\mathbf{D2}$
R23	V3b G.B	4·7kΩ	E2
$\tilde{R}24$	V3b anode load	$220 \mathrm{k}\Omega$	E 2
$\tilde{R}25$	V4 C.G	$470 k\Omega$	E 3
$\tilde{R}26$	H.T. smoothing	$1.5 k\Omega$	E 3
$\tilde{R}27$	T1 shunt	47kΩ	$\mathbf{E}2$
$\tilde{R}\tilde{2}8$	V4 G.B	240Ω	E 3
R29	T.I. anode feed	$1M\Omega$	Ci

			tion
C1	} Aerial coupling {	0.005µF	G3
Ç2	ו די ו	$0.003 \mu Y$	G3
C3	VI S.G. decoup	$0.02 \mu F$	F2
C4	1 1st I.F. trans.	$200 \mathrm{pF}$	A1
Ç 5	$\int tuning $	$200 \mathrm{pF}$	A1
C6	V1 cath. by-pass	$0.02\mu\mathrm{F}$	F 3
C7	V1 osc. C.G	$100 \mathrm{pF}$	$\mathbf{F2}$
c8	A.G.C. decoup	$0.02\mu\mathrm{F}$	$\mathbf{F2}$
C9	L.W. osc. tracker	$200 \mathrm{pF}$	$\bar{\mathbf{F}}$ 3
C10	Oscillaton counting	$200 \mathrm{pF}$	F 3
C11	Socillator coupling	330 pF	F 3
C12	V2 S.G. decoup,	$0.02 \mu F$	$\mathbf{F2}$
C13	2nd I.F. trans.	200pF	B 1
C14	$ f $ tuning $\{ f \}$	$200 \mathrm{pF}$	Bī
C15	Cathode by-pass	$0.1\mu F$	F2
C16	I.F. by-pass	$100 \mu F$	$\mathbf{F}\mathbf{\bar{2}}$
C17) · · · · · · · · · · · · · · · · · · ·	$0.005 \mu F$	$\mathbf{F}\mathbf{\bar{2}}$
C18	$ \}$ A.F. coupling $\{ $	$0.01 \mu F$	E2
C19	Tomo como de la Ciliada de la	$0.01 \mu \mathrm{F}$	D2
C20	Tone correctors {	150pF	$\tilde{\mathbf{D}}$ 2
C21	A.F. coupling	$0.01 \mu F$	$\mathbf{\tilde{E}}_{3}$
C22	Tone corrector	$50 \mathrm{pF}$	E2
C23*	H.T. smoothing	$32\mu F$	$\overline{\mathbf{D3}}$
C24*	V4 cath. by-pass	$25\mu\mathrm{F}$	$\tilde{\mathbf{E}}$ 3
C25*	H.T. smoothing	$32\mu \mathrm{F}$	$\mathbf{\tilde{D}3}$
C261	S.W. aerial trim,	40pF	G3
C27‡	M.W. aerial trim	40pF	Ğ3
C28i	L.W. aerial trim	40pF	Ğ3
C29†	Aerial tuning	_	Ãĩ
C30†	Oscillator tuning		ĀÎ
C311	S.W. osc. trimmer	4 0p F	$\mathbf{G}\mathbf{\hat{3}}$
C32±	M.W. osc. trimmer	40pF	Ğ3
C33‡	L.W. osc. trimmer	80pF	Ğš

* Electrolytic.

† Variable.

‡ Pre-set.

Red T1 Yellow Red C Ext. Book C Ext. Compared C Sid Compar	
1	
C25 C25 SI7	V5

Circuit diagram of the K.-B. ER30. On M.W. and L.W. the aerial coupling consists of the potential divider formed by C1 and C2. V3a and V3b are two halves of a double triode valve, V3b, operating as an electronic tone control. In some models the cathodes of V2 and V3a go directly to chassis, and R16 and C15 are omitted. C22 also may be This omitted. circuit diagram applies also to the FG20 autoradiogram and to the FT50 television broadcast radio receiver.

OT:	HER COMPONENTS	Values	Loca- tions
<u>L</u> 1	Mod. hum filter	16.0	G3
$\mathbf{L2}$	S.W. aerial coup		- G3
$\mathbf{L3}$	1)		G3
$\mathbf{L4}$	Aerial tuning colls	3.0	G 3
<u>L5</u>	IJ - U	20.0	G3
$\mathbf{L}6$	Oscillator tuning	←	F3
L7	coils	3.0	F3
$\mathbf{L8}$	l)	8-0	F3
$\mathbf{L9}$	S.W. reaction coil		F3
L10	1st I.F. trans. $\{Pri. \}$	3.5	A1
L11	Sec.	3.5	AI
L12	$\}$ 2nd I.F. trans. $\{Pri. \mid Pri. \mid $	4.5	Bl
L13	(Sec.	3.5	B 1
L14	Speech coil		
	(a	13.0	1
T1] b	450·0	E 3
) c	_	1
	1 \ <u>d</u>	***	1
	Primary (total)	45·0	
T2	H.T. sec., (total)	$580 \cdot 0$	C1
	Htr. secondary	0.3	
81-815	,		G2
316	Speaker switch	_	
317	Mains sw., g'd R22		D2

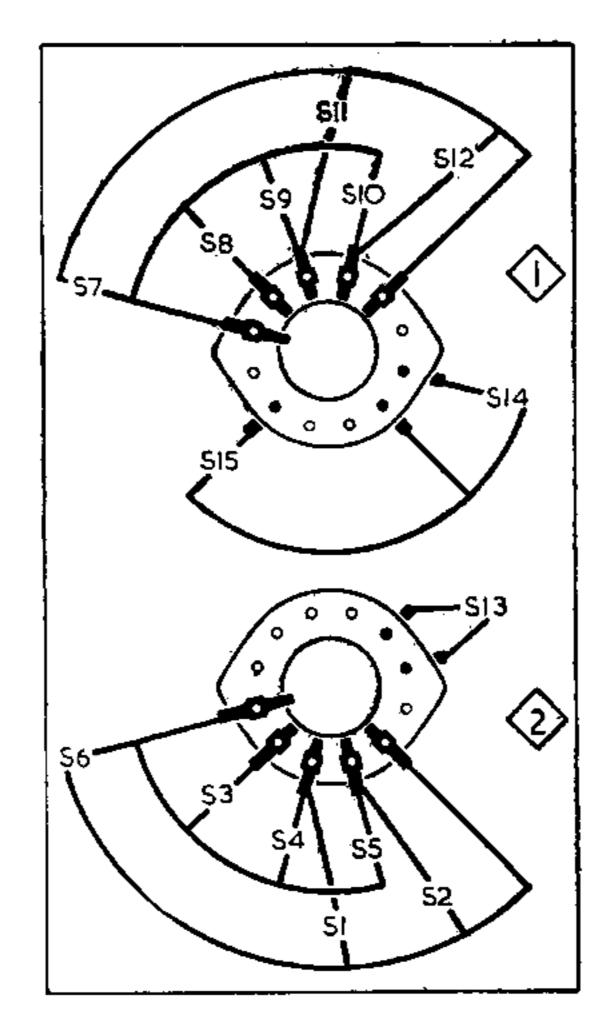
Waveband Switch Diagrams and Table

Switches	Gram	L.W.	M.W.	s.w.
S1 S2		С		
82			C	C
S 3	 :	_ _ c	<u>c</u>	0 -
84	_		C	
S5 i		C	_	
S 6	C		—	
\$5 \$6 \$7	CC			_
S 8				<u>c</u>
89		 1	c 	_
810		CC	 ,	
811	_	Ċ	<u></u> -	_
S12			C	C
813		C	C	C
814		C	000	000
S15	C	<u>.</u>		_

VALVE ANALYSIS

Valve voltages and currents given in the table below are those measured on our receiver when it was operating from A.C. mains of 230V, with the voltage adjustment set appropriately. The set was tuned to the high wavelength end of M.W. and the volume control turned to maximum, but there was no signal input.

Voltage readings were taken with an Avo Electronic Testmeter, and as it draws no appreciable current, allowance must be made for the current drawn by other meters. Chassis was the negative connection.


The target voltage on the cathode ray tuning indicator was 220V, and that on the triode anode 11V. This latter rises to about 40V upon the arrival of a signal.

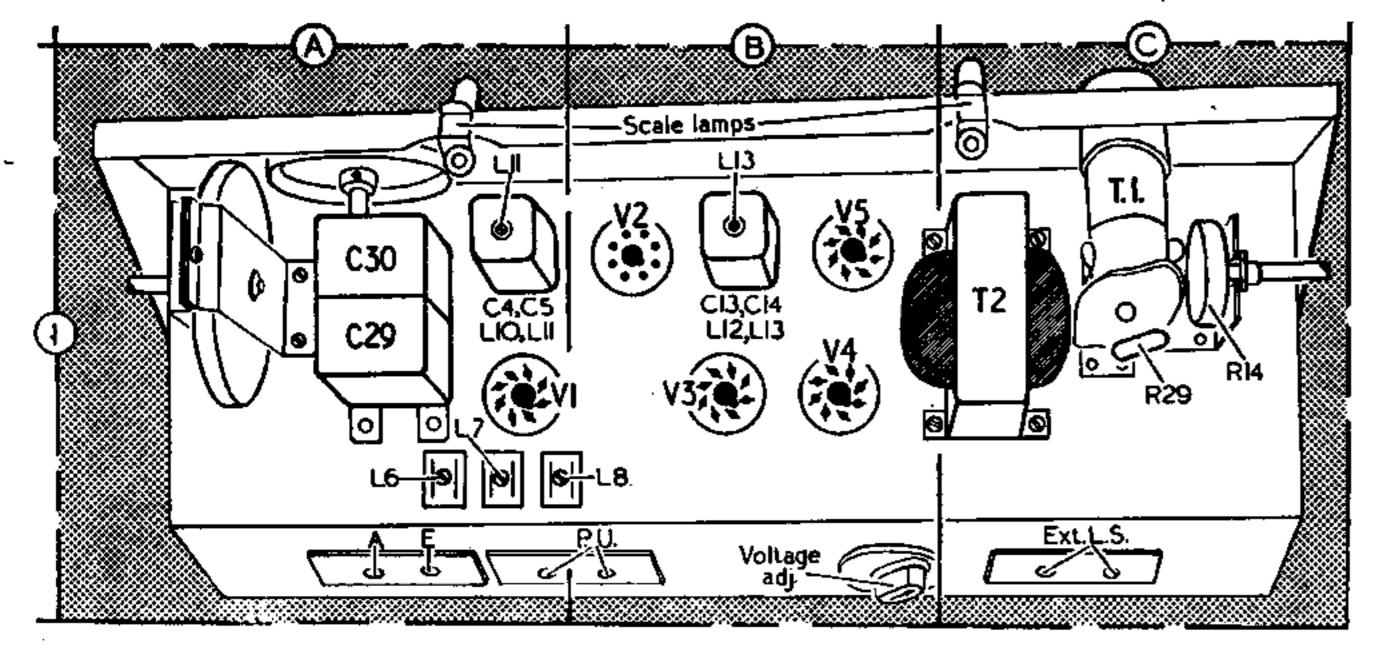
37-lees	Anode		Screen		Cath.
Valves	v	mA	v	mA	v
V1 6K8GT	$\begin{cases} 210 \\ \text{Oscil} \\ 88 \end{cases}$	$\left.egin{array}{c} 2\cdot7 \ { m lator} \ { m 3}\cdot 2 \end{array} ight\}$	135	5.0	3.2
V2 7R7	210	3.7	110	1.3	0.65
$\begin{array}{c} V3\\6SL7GT \\ \end{array}$	80	0.5			0.65
6SL7GT (b	130	0.37	l —	<u> </u>	
V4 6V6GT	230	34.0	210	3.5	9.4
V5 6X5GT	236†	l 		; —	245.0

† A.C. volts, each anode.

GENERAL NOTES

Switches.—S1-S12 are the waveband switches, and S13-S15 are the radio/gram change-over switches, ganged in two rotary units beneath the chassis. These units are indicated in our underside draw-

Diagrams of the waveband switch units, drawn as seen when viewed in the directions of the arrows in our underside view of the chassis. On the left is the associated switch table.


ing of the chassis, where they are identified by the numbers 1 and 2 in diamond surrounds.

The diagrams (above) show these units in detail. They are drawn as seen when viewed in an inverted chassis in the directions of the arrows in the under-chassis view. The table in col. 1 gives the switch positions for the four control settings, starting from the fully anti-clockwise position of the control knob. A dash indicates open, and **C**, closed.

S16 is a screw-type switch for muting the internal speaker. It is mounted on a panel carrying the external speaker sockets on the back cover of the receiver.

\$17 is the Q.M.B. mains switch, ganged with the tone control R22.

Scale Lamps.—These are two M.E.S. type lamps, with clear tubular bulbs, rated at 6.5V, 0.3A.

Plan view of the chassis, showing the socket panels at the rear for aerial, pick-up and external speaker connections, which go to a second set of sockets on the back cover. Until these latter are connected the internal speaker is open-circuited.

External Speaker.—Two sockets are provided on the back cover of the receiver for the connection of a low impedance (about $2-4\Omega$) external speaker. Between them is a screw-type switch \$16 by which the internal speaker may be muted. A pair of leads from this panel goes to two sockets on the chassis.

These sockets are connected internally to the internal speaker, one of them being connected also to the tap on the output transformer secondary. The other is returned to chassis, but it does so via the external speaker panel and \$16. The rest of its path to chassis is via the earth lead on the A and E socket panel.

Because of this circuit arrangement the internal speaker speech coil is open-circuited if the plugs to the back cover are removed, and the internal speaker will be inoperative unless the earthy socket is temporarily connected to chassis.

It is important when inserting the plugs from the back cover into the Ext. L.S. sockets on the chassis to get them the right way round: the green lead should go into the left-hand socket, and the yellow lead into the right-hand socket. In our under-chassis view these colours are not indicated. They would, of course, be reversed because the chassis is inverted.

DISMANTLING THE SET

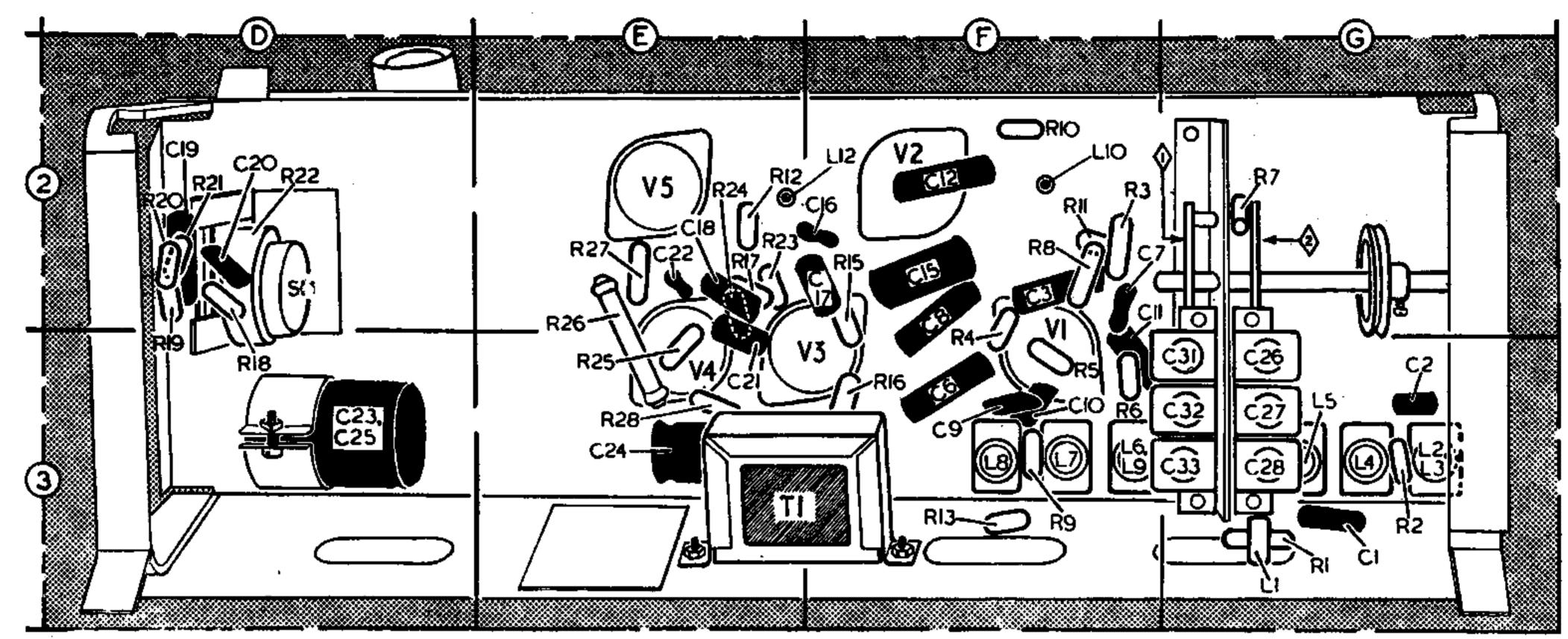
Removing Chassis.—Pull off four control knobs and remove four cheese-head screws (with washers) securing chassis to cabinet;

withdraw chassis to extent of speaker leads and unsolder them from the speech coil tags.

Removing Speaker.—Withdraw the four cheese-head screws (with lock washers) securing the speaker to the sub-baffle, and lift it out.

When replacing, the speech coil tags should be at the bottom.

DRIVE CORD REPLACEMENT


About five feet of nylon braided glass yarn is required for a new drive cord, which should be run as shown in our sketch in cols. 4 and 5, where the system is drawn as seen from the front right-hand corner of the chassis, neglecting obstructions, when the gang is at maximum capacitance.

A keyhole-shaped aperture near the right-hand scale lamp, with a slot at the top, will register exactly with the large (central) cursor with the gang at maximum when the cursor assembly is properly adjusted, but to see this the cursor must be viewed directly from the front. A second similar keyhole registers with the same cursor when the gang is at minimum capacitance.

The best way to fit the cord is first to make a non-slip loop about ½in diameter at one end, slip it over the right-hand cursor, and wax it to hold it in position temporarily on the horizontal bar.

Then, holding the cursor assembly roughly in the maximum position, make a trial run of the cord past the right-hand pulley, round the control spindle $3\frac{1}{2}$ times, and so on to the gang drum, running round it until the point is reached where the cord meets the tension spring, with the gang at maximum.

Now fold the cord back on itself and form it into a slip-knot loop that will hold

Underside view of the chassis. The components associated with the tone control circuit are grouped around the variable element R22 on the left. The unreadable switch number ganged with R22 should be S17. The aerial shunt coil L1 is wound on its associated resistor R1. Diagrams of the waveband switch units, coded 1 and 2 in diamond surrounds, appear at the head of col. 2.

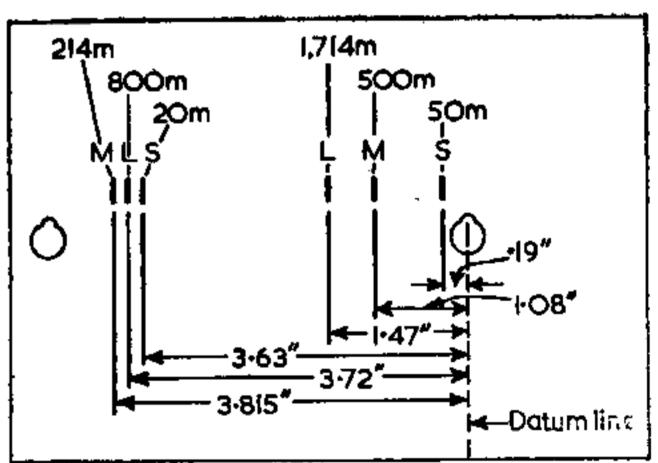
it on to the tension spring securely. The cord will inevitably have come adrift from the drum during this process, but it need be held no longer; neither need the cursor assembly be held. The tension spring can be hooked in position, and the other half of the cord can be run, starting from the tension spring and pulling against the gang stop at maximum.

Finally, re-run the first length back to the starting point at the cursor, and tie off the second length to the loop on the first, as shown in the sketch, winding it round the cursor bar a turn or so en route,

and fix the joins with wax.

A considerable range of coarse adjustment can be obtained by sliding the loop along the bar, and an adequate range of fine adjustment is then available by turning the drum on the gang spindle.

CIRCUIT ALIGNMENT


1.F. Stages.—Connect output of signal generator, via a $0.1\mu F$ capacitor in the "live" lead, to control grid (top cap) of V1 and chassis. Switch set to M.W., turn volume control to maximum and gang to minimum. Feed in a 465 kc/s

(645.16m) signal and adjust the cores of L13 (location reference B1), L12 (E2), L11 (A1) and L10 (F2) for maximum output, reducing the input as the circuits come into line to reduce A.G.C. effects. Repeat these adjustments.

R.F. and Oscillator Stages.—Since the glass tuning scale is mounted in the cabinet, and alignment adjustments have to be carried out with the chassis on the bench, a series of calibration marks are printed on the front of the scale backing plate, and readings are made against the long centre cursor. As these calibration marks have been omitted in some models, including ours, the exact positions of the marks with respect to the datum line, and the wavelengths they represent, are indicated in our drawing in col. 6 and can be pencilled in on the scale backing plate where necessary.

With the gang at maximum capacitance the cursor should coincide with the datum line, and any error may be corrected by rotating the drive drum on its spindle, after slackening the two grub screws. Transfer "live" signal generator lead, via a suitable dummy aerial, to aerial socket.

M.W.—With set switched to M.W. tune to 500m line on scale backing plate, feed in a 500m (600kc/s) signal and adjust the core of L7 (A1) for maximum output. Tune set to 214m line, feed in a 214m (1,400kc/s) signal and adjust C32 (G3) and C27 (G3) for maximum output. Repeat these adjustments.

Sketch showing a section of the scale backing plate, viewed from the front. Exact distances are shown from an imaginary datum line drawn through the centre of the right-hand keyhole opening for the six cursor settings for the alignment procedure. None of the markings shown actually existed in our receiver.

L.W.—Switch set to L.W., tune to 1,714m line, feed in a 1,714m (175kc/s) signal and adjust the core of L8 (A1) for maximum output. Tune set to 860m line (800m line in drawing), feed in an 860m (350kc/s) signal and adjust C33 (G3) and C28 (G3) for maximum output. Repeat these adjustments.

S.W.—Switch set to S.W., tune to 50m line, feed in a 50m signal and adjust the core of L6 (A1) for maximum output. Tune set to 20m line, feed in a 20m (15Mc/s) signal and adjust C31 (G3) and C26 (G3) for maximum output. Repeat these adjustments.

Shetch of the tuning drive system, drawn as seen when viewed from the front righthand corner of the chassis when the gang is at maximum capacitance. The scale backing plate is assumed to be transparent.