Intexdytnins

GREEMANA

Schenatic Dagans

\rightleftharpoons Flag joined with one or more flags with the same signal name inscribed.

TECHNICAL SPECIFICATIONS

Dimensions:	(WxHxD)	$483 \times 88 \times 325 \mathrm{~mm}$ (2U)
Weight:		13 Kg
Power Requirements:	(230Vac $\pm 10 \% 50 \mathrm{~Hz}$)	500VA
Output Power:	(4Ω stereo/parallel)	2×300 Watts
	(8Ω stereo/parallel)	2×200 Watts
	(8Ω bridge)	600Watts
	(16 Ω bridge)	400Watts
Max. Undistorted Out:	(4Ω stereo/parallel)	98Vpp
	(8Ω stereo/parallel)	113Vpp
	(8Ω bridge)	194Vpp
Input Sensitivity:	(constant sensitivity)	$0.775 \mathrm{Vrms}(0 \mathrm{~dB})$
	(constant gain)	$1.75 \mathrm{Vrms}(+7 \mathrm{~dB})$
Input Impedance:	(balanced)	$30 \mathrm{~K} \Omega$
	(unbalanced)	$15 \mathrm{~K} \Omega$
Voltage Gain:	(constant sensitivity)	$33 \pm 0.5 \mathrm{~dB}$
	(constant gain)	$26 \pm 0.5 \mathrm{~dB}$
Slew Rate:		$25 \mathrm{~V} / \mu \mathrm{S}$
Damping Factor:	(4Ω stereo/parallel)	>400
	(8Ω stereo/parallel)	>800
Frequency Response	(-0.2dB)	$20 \mathrm{~Hz} \div 20 \mathrm{KHz}$
at Full Power:	(-3dB)	$10 \mathrm{~Hz} \div 60 \mathrm{KHz}$
IMD:	(SMPTE 60Hz/7KHz 4:1)	<0.1\%
THD:	(THD + N)	<0.1\%
S/N Ratio:	(unweighted)	>95dB
Crosstalk:	(1KHz)	$>60 \mathrm{~dB}$

TEST PROCEDURES \& ADJUSTMENTS

Precaution

\searrow To prevent short circuit during any test, the oscilloscope must be EARTH insulated, this occurs because some test require to connect its probe to the amplifier output, non-compliance may cause damages to oscilloscope inputs circuitry.
\Leftrightarrow Before removing or installing any modules and connectors, disconnect the amplifier from AC MAINS and measure the DC supply voltages across each of the power suppliy capacitors. If your measurement on any of the caps is greater than 10 Vdc , connect a $100 \Omega 20 \mathrm{~W}$ resistor across the applicable caps to discharge them for your safety. Remember to remove the discharge resistor immediately after discharging caps. Do not power up the amplifier with the discharge resistor connected.
\triangleleft Read these notes entirely before proceeding to any operation. These notes are not comprehensive of all damages that possibly occur, but includes some specifically advices, checks and adjustments relative to this amplifier.

Remarks

The power supply utilizes a dual bipolar DC rail configuration with low and high voltages; one positive and one negative low rail ($+/-\mathrm{Vcc} 1$) and one positive and one negative high rail (+/-Vcc2).

Visual Check

\Rightarrow Use compressed air to clear dust in the amplifier chassis
\Rightarrow Before proceed to supply the amplifier check visually the internal assembly, if appears an evident damage find the most possible reasons that cause it.
\Rightarrow Check the wiring cables for possible interruptions or shorts.
\Rightarrow If the damage has burnt a printed circuit board don't try to repair it, replace with a new one.

Test Instruments

\Rightarrow Audio Generator
D Dual Trace Oscilloscope
\Rightarrow Digital Multimeter
$\Rightarrow 2 \Omega 1000 \mathrm{~W}, 4 \Omega 500 \mathrm{~W}, 100 \Omega 20 \mathrm{~W}$ resistors
\Rightarrow Variac ($0 \div 250 \mathrm{Vac}$)
\Rightarrow Temperature Meter

Setup

Connect the Variac between the mains and the amplifier and set it at zero voltage.
\Rightarrow Set the amplifier in STEREO MODE and turn full clockwise the LEVEL potentiometers
\Rightarrow Connect the audio generator to the channel inputs and set it to 1 KHz $775 \mathrm{mV}_{\text {RMs }}(0 \mathrm{~dB}$) sinusoidal signal
\checkmark Insert the temperature meter through the IC3 interstice located at centre of heatsink.
\Rightarrow The procedures that follow must be executed subsequently in the order specified

Supply Check

\triangle Remove the transformer secondary fuses (located on SUPPLY \& PROTECTIONS board), set the Variac to the nominal mains voltage, check with the Multimeter the AC supply voltages:

$$
\mathrm{F} 1-\mathrm{F} 2=52 \pm 2 \mathrm{Vac} \quad \mathrm{~F} 3-\mathrm{F} 4=90 \pm 3 \mathrm{Vac}
$$

\checkmark Re-set the Variac at zero voltage, turn off the amplifier and put the fuses back on its holders.
\Rightarrow Connect the oscilloscope probes $\mathrm{CH} 1 / 2$ to the channel outputs, before RL1 and RL2, set both to $20 \mathrm{~V} / \mathrm{div}$. $200 \mu \mathrm{~S} /$ div.
\Rightarrow Set up the Variac slowly monitoring the Outputs with the oscilloscope $\mathrm{CH} 1 / 2$ connected, it should display the sinusoidal input signal amplified with no distortions, if a distortion occur check the POWER AMPLIFIER boards as suggested in the ADVICES section
\Rightarrow If the protection trips, turn off the amplifier, wait some minutes and
isconnect the supplies from the outputs modules (CN2, CN3 on POWER AMPLIFIER boards), continue to check the supplies.
\Rightarrow CAUTION: Before re-connecting the output modules to the supplies, you must have the capacitors discharged for your safety: connect a 100Ω 20W resistor across the caps and remove the resistor just afte they are discharged.
\triangleright Finally verify the DC supplies on SUPPLIES \& PROTECTIONS Board:
$T 8$ (+Vcc2) $=+61 \pm 2 \mathrm{Vdc}$
T5 (+Vcc1) $=+35 \pm 1.5 \mathrm{Vd}$
T6 (-Vcc1) $=-35 \pm 1.5 \mathrm{Vdc}$
T7 (-Vcc2) $=-61 \pm 2 \mathrm{Vdc}$
CN2 pin1 $=+23 \pm 1 \mathrm{Vdc}$
CN3 pin3-4-5 $=+15 \pm 1 \mathrm{Vdc}$
CN3 pin8-9-10 $=-15 \pm 1 \mathrm{Vdc}$
\measuredangle If one or more voltages don't correspond, check the rectifiers, capacitors and transformers disconnecting them from circuitry, refer to schematics.

Channels Check

\Rightarrow The channel A is facing the front and channel B the rear of the chassis
\bowtie These procedures are intended for one channel at a time, repeat these operation for the other channel
\Rightarrow Verify, with the Multimeter, the insulation between the heatsink and the transistors collectors
\Rightarrow SETUP:
Connect the CH1 scope GND clip to CN3 pin 1 (GND terminal) Connect the CH1 probe tip to CN3 pin 2 (AMP output).
Connect the CH2 probe tip to D20 cathode.
Set the LEVEL potentiometers full clockwise
The load resistor is disconnected

- INITIAL TEST

Increase slowly the Variac. The channel output signals must be symmetrical respect the GND without visible distortion and oscillation as shown in Fig. 1 Trace A. If there is a distortion read the section ADVICES and proceed to check the other channel.
Verify that, when the heatsink temperature is less than $50^{\circ} \mathrm{C}$, the cooling fan voltage must be between 10 and 14 Vdc

\rightarrow HIGH RAIL CHECK

When the output signal (Positive half-wave) is less than 30 Vp the voltage on D20 cathode must remain constant at 36 V , when the output signal exceeds 30 Vp the voltage must follow the output signal with 6 V offset see Fig. 1 Trace B), to check the negative high rail connect the probe to D30 anode (see Fig. 1 Trace C)
Connect the $4 \Omega 500 \mathrm{~W}$ load on the output and repeat the INITIAL and HIGH RAIL checks.
Check the signal clipping, it must occur at $48 \pm 2 \mathrm{Vpp}$ (see Fig. 2 Trace $A, B, C)$.

Fig. 1

Verify the voltages across the diodes D19 and D26; they must be 14.8 $\pm 0.5 \mathrm{Vdc}$.
\leadsto SIGNAL/CLIP SENSOR CHECK
Set the LEVEL pot to minimum, set the scope timebase at $1 \mathrm{~V} / \mathrm{div}$. $200 \mu \mathrm{~S}$ div., then increase the level and check the SIGNAL/CLIP led activity: it must turn on (green light) when the amplifier output is higher than 1 Vp Set the scope at $20 \mathrm{~V} / \mathrm{div}$. and increase the level, check the led: it must change from green to red colour at the amplifier output signal clipping
\Rightarrow CURRENT AND SHORT CIRCUIT SENSOR CHECK:
Set the CH2 sensitivity to $0.5 \mathrm{~V} / \mathrm{div}$., connect the scope CH 1 , GND clip a CN3 pin 2 (AMP output) and the probe tip at TR26 (PNP) emitter, con ect the CH2 probe tip at TR17 (NPN) emitter Set the generator to have approx. 1 Vp on the emitters: their difference must be less than 0.2 V on the peaks (see Fig. 3 Trace A \& B)
Fig. 3

Trace A ($0.5 \mathrm{~V} / \mathrm{div}$. miter must keep the emitter voltages (both half channel) at 1.25 Vp approx. (see Fig. 4 Trace A).
Temporarily short the amplifier output: the current limiter must keep the emitter voltages (both half channel) at $0.8 \pm 0.1 \mathrm{Vp}$ (see Fig. 4 Trace B).

Fig. 4

) COOLING FAN \& PROTECTION CHECK:
Short circuit pins 15 and 16 of OC1, the fan must run at max. speed $20 \div 23 \mathrm{Vdc}$ on its tips).
Short circuit pins 13 and 14 of OC1, the PROTECT led must turn on immediately, the fan must run at max. speed. The PROTECT led of the other channel must also turn on after 2 Sec. and the relays must disconnect the output sockets
Remove the short circuit, after 3 Sec. both PROTECT leds must turn off

and the relays must re-connect the output sockets.

Temporarily short the emitter and the collector of TR1 the PROTECT led must turn on and the relays must disconnect the output sockets.
Turn off the amplifier and wait a minute to let the supply caps discharge.

\triangleleft OFFSET SENSOR CHECK:

Set the Variac to zero voltage output, disconnect the amplifier load and the supply connection to the Power board (CN2,3,4), turn on the ampli fier, connect temporarily (by means of a suitable conductor wire) CN3 pin 2 to +15 Vdc (CN1 pin 5), the PROTECT led must turn on in 5 seconds approx.; the fan must run at maximum speed)
Remove the connection, wait until the leds turn off and after some seconds repeat the check with -15 Vdc (available on CN1 pin 4), the led PROTECT must turn on again.

SOA ADJUSTMENT

Set the scope sensitivity at $5 \mathrm{~V} /$ div. (both channels). Disconnect the fan and cut the pins A-B of J16.
Connect the $4 \Omega 500 \mathrm{~W}$ load and connect the CH2 probe tip at TR23 collector, check the waveform as shown in Fig 5 Trace B, Trace A show CH 1 that is also connected at TR26 (PNP) emitter

Fig. 5

Set the scope CH 2 sensitivity at $2 \mathrm{~V} / \mathrm{div}$. and connect the probe tip at the testpoint TP3
Set the load at 2Ω, wait until the temperature reaches $80^{\circ} \mathrm{C}$; then change the load back to 4Ω
Adjust the generator level to have the CH 1 waveshape as shown in Fig 6 Trace A.
Turn the R47 trimmer to level the peaks of the CH 2 waveshape as shown Fig 6 Trace b

Fig. 6

Solder the pins A-B of J16: the CH2 trace becomes continuous Increase the generator level for the max. displacement of the CH2 trace toward the centre of the screen Fig 7 Trace b.
Wait until the temperature reaches $88^{\circ} \mathrm{C}$, then turn clockwise the R62 Wait until the temperature reaches $8^{\circ} \mathrm{C}$, then
trimmer to activate the SOA control (that is displayed by CH1 trace when its peak voltage decrease Fig 7 Trace A), after some seconds, the channel goes in PROTECT mode.
Set the CH2 sensitivity at $5 \mathrm{~V} /$ div. then, with its tip, check the voltage on D19 cathode: it must be 14 V or more
Activate the fan and check its supply voltage: it must be 20 V or more (max. speed).

Fig. 7

Trace A (5V/div.)

Trace B (2V/div.)

BIAS ADJUSTMENT

Remove the CH2 probe, connect CH1 GND clip to CN3 pin 1 (GND terminal) and its probe tip to CN3 pin 2 (AMP output) and set its sensitivity at $1 \mathrm{~V} / \mathrm{div}$.
Set the generator level at zero, connect the Multimeter across the emit ters of TR17 and TR26, when the heatsink temperature reaches $55^{\circ} \mathrm{C}$, turn off the cooling fan and adjust R55 trimmer to read $6 \pm 0.5 \mathrm{mV}$. Adjust the generator level until the sinewave appears at full screen amplitude, No crossover distortion must be detectable: if necessary re-adjus R55. Re-connect the fan.

BANDWIDTH CHECK:

Sweep the generator frequency from 20 Hz to 20 KHz , the output leve must have not detectable level changes.

> SLEW RATE CHECK

Set the scope sensitivity to $10 \mathrm{~V} / \mathrm{div}$. $1 \mu \mathrm{~S} / \mathrm{div}$. and set the generator to 1 KHz square wave mode. Check the output square wave rising and falling edge slopes: both must be $10 \mathrm{~V} / \mu \mathrm{S}$ or more as shown in Fig 8 .
Fig. 8

Inputs Board Check

These procedures are intended for one channel at a time, repeat these operations for the other channel
\Rightarrow SETUP:
Connect the CH 1 probe to amplifier input of the channel under test and set both at $500 \mathrm{mV} /$ div. $200 \mathrm{mS} /$ div
Connect the CH2 probe to amplifier output of the channel under test and set it at $10 \mathrm{mV} / \mathrm{div}$. $200 \mathrm{~ms} / \mathrm{div}$.
Set the audio generator at 1 KHz sinus. $775 \mathrm{mV}_{\text {RMS }}$ (0 dB).
Set the LEVEL potentiometers full clockwise.
The load resistor is disconnected

CMRR ADJUSTMENT

Temporarily disconnect pin 3 from pin 1 and short the pin 2 (positive input) and pin 3 (negative input) of XLR input socket.
Adjust the trimmer R10 (channel A) or R21 (channel B) to obtain the minimum output level. short with pin 1 (GND) of XLR input socket
Set CH2 scope at $500 \mathrm{mV} / \mathrm{div}$. and connect it to the output of INPUTS board (CN3 ping for channel A or CN3 pin7 for channel B). Set the input SENSITIVITY (SW1) at 1.75 Vrms , adjust the trimmer R5 (channel. A) or R17 (channel B) to obtain the same amplitude of the scope signals.
\triangleright AMPLIFIER GAIN CHECK
Set CH2 scope at $20 \mathrm{~V} / \mathrm{div}$. and connect it to the amplifier output of the channel under test. By means of the SENSITIVITY switch check the output levels: at 775 mV position the output voltage must be $50 \pm 1.5 \mathrm{Vp}$ and at 1.75 V position must be $22.5 \pm 0.5 \mathrm{Vp}$
AMPLIFIER BRIDGE MODE CHECK
Set the amplifier in BRIDGE mode (input signal to channel A), connect Set the amplifier in BRIDGE mode (input signal to channel A), connect
the CH2 probe to the bridge output: the output voltage must be $97 \pm 3 \mathrm{Vp}$.
\downarrow SIGNAL TO NOISE RATIO CHECK
Disconnect the audio generator and short the input (pin 1,2,3 of XLR socket shorted) the output signal (noise) must be less 1 mV .

Advices

\leftrightarrows Check the channels one at time to determine which is right (note: if you have a spare amplifier module that you know as right, use it).
\triangleright If you have determinate that the problem is a short on a rail, you must check the output transistors.
To determine which transistor devices are bad, use a soldering iron to lift oneg of each emitter pin and measure the emitter-collector resistance on each device. Unsolder and lift one leg of each base pin and check the as a short. as a short.
If all the transistors are OK, unsolder and lift one leg of each diode and check them.
Check the circuit board for open foil traces
Use the Multimeter as Ohm-meter to check the resistors, particularly the base and emitter resistors of damaged transistor.
\triangleright If the input sinewave appears to be distorted during the negative cycle, you can assume that the problem is located somewhere in the circuitry of the positive low rail.
If the positive cycle appears distorted, you can assume that the problem is in the circuitry of the negative low rail
\triangleright If the high rails appear distorted or are not modulating as shown in figure, then the problem probably exists somewhere in the circuitry of the respec tive (+ or -) defective high rail. Refer to the schematics.

