ONKYO SERVICE MANUAL

AUDIO VIDEO CONTROL
 TUNER AMPLIFIER MODEL TX-SV636

Black model

BMDN	$120 \mathrm{~V} \mathrm{AC}, 60 \mathrm{~Hz}$
BMP	$230 \mathrm{~V} \mathrm{AC}, 50 \mathrm{~Hz}$
BMW	120 V or $220 \mathrm{~V}=230 \mathrm{~V}$ AC, $50 / 60 \mathrm{~Hz}$

SAFETY-RELATED COMPONENT WARNING:!
COMPONENTS IDENTIFIED BY MARK \triangle ON THE SCHEMATIC DIAGRAM AND IN THE PARIS LIST ARE CRITICAL FOR RISK OF FIRE AND ELECTRIC SHOCK REPLACF THESE COM PONENTS WITH ONKYO PARTS WHOSE PART NUMBERS APPEAR AS SHOWV IN THIS MANUAL.
MAKE LEAKAGE-CURRENT OR RESISTANCE MEASUREMENTS TO DETERMINE TIIAT EXPOSED PARTS ARE ACCEPTABLY IN SULATED FROM THE SUPPLY CIRCUIT BEFORE: RETURNING THE APPLIANCE TO THE CUSTOMER.

TABLE OF CONTENTS

Specilications ... $\frac{2}{3}$
Exploded view $\langle 120 \mathrm{~V} / \mathrm{W}$ orkdwike models) 3
Parts list (120 V/Worldwide models) 5
Exploded view (230 V model) 6
Parts list 1230 V medell 7
Block diagram (Tuner section). - 8
120 V model 8
Other models 9
Microphocessor connection dagram 10
Microprocessor descriptions 11
IC block diagrams and descriptions 12
Adjustment procedures 23
Pc board-parts list (Amplifier section) 25
Schematic deagram 27
Printed errcuit board view 31
Schematic diaqram. 35
Printed crecuit board view 39
Printed carcuit board-parts list 41
Schematic diagram 43
Pe hoard-parts list (Tuner section) 47
Pe board view (Amplifier section) 49
Packing view 51
Notes. 52

SPECIFICATIONS

AMPLIFIER SECTION	
Power Output	
Sront Main L/R channels:	
	100 watts per channel, min. RMS at 8 ohms, both channels driven from 20 Hz to 20 kHz with no more than 0.08% total harmonic distortion.
Continuous Power output:	2×120 watts at 80 hms (DIN)
Surround mode and Multi source mode	
Front Main L/R and Center channels:	$\begin{aligned} & 85 \mathrm{~W}+85 \mathrm{~W}+85 \mathrm{~W}(1 \mathrm{kHz}, \\ & 0.08 \%, 8 \text { ohms }) \end{aligned}$
Rear channels (Rear only driven):	$30 \mathrm{~W}+30 \mathrm{~W}(1 \mathrm{kHz}, 0.8 \%, 8$ ohms)
Remote channels:	$85 \mathrm{~W}+85 \mathrm{~W}$ ($1 \mathrm{kHz}, 0.1 \%, 8 \mathrm{ohms}$)
Total Harmonic Distortion:	0.08\% at rated power (Front)
IM Distortion:	0.08\% at rated power (Front)
Damping Factor:	60 at 8 ohms (Front)
Input Sensitiviry and Impedance	
Phono:	$2.5 \mathrm{mV} / 50 \mathrm{kohms}$
CD/Tape Play:	$150 \mathrm{mV} / 50$ kohms
Output level and impedance	
Tape Rec:	$150 \mathrm{mV} / 2.2 \mathrm{kohms}$
Pre out:	$1 \mathrm{~V} / 2.2$ kohms
Phono Overload:	120 mV RMS at $1 \mathrm{kHz}, 0.5 \%$ T.H.D.
Frequency Response:	20 Hz to $30 \mathrm{kHz}, \pm 1 \mathrm{~dB}$
RIAA Deviation:	20 Hz to $20 \mathrm{kHz}, \pm 0.8 \mathrm{~dB}$
Tone Control	
Bass:	$\pm 10 \mathrm{~dB}$ at 100 Hz
Treble:	$\pm 10 \mathrm{~dB}$ at 10 kHz
Signal to Noise Ratio	
Phono:	80 dB (IHF A. 5 mV input)
CD/Tape:	100 dB (IHF A)
Muting:	$-\infty \mathrm{dB}$
VIDEO SECTION	
Signal sensitivity and impedance:	$1 \mathrm{Vp}-\mathrm{p}, 75$ ohms (VDP/VCR input, output)
TUNER SECTION	
FM	
Tuning Range:	$87.5-108.0 \mathrm{MHz}$ (50 kHz steps)
Usable Sensitivity	
Mono:	$11.2 \mathrm{dBf}, 1.0 \mu \mathrm{~V}$ (75 ohms), IHF
	$0.9 \mu \mathrm{~V}$ ($26 \mathrm{~dB} \mathrm{~S} / \mathrm{N}, 40 \mathrm{kHz}$ Div.)
	75 ohms, DIN
Stereo:	$17.2 \mathrm{dBf}, 2.0 \mu \mathrm{~V}$ (75 ohms), IHF
	$23 \mu \mathrm{~V}$ ($46 \mathrm{~dB} \mathrm{~S} / \mathrm{N}, 40 \mathrm{kHz}$ Div.)
	75 ohms, DIN
50dB Quieting Sensitivity	
Mono:	$17.2 \mathrm{dBf}, 2.0 \mu \mathrm{~V}$ (75 ohms)
Stereo:	$37.2 \mathrm{dBf}, 20 \mu \mathrm{~V}$ (75 ohms)
Capture Ratio:	1.5 dB
Image Rejection Ratio	
U.S.A. \& Canadian models:	40 dB
Other area models:	85 dB
IF Rejection Ratio:	90 dB
Signal-to-Noise Ratio	
Mono:	73 dB
Stereo:	67 dB
Altemate Channel Attenuation:	55 dB
AM Suppression Ratio:	50 dB
Total Harmonic Distortion	
Mono:	0.15\%
Stereo:	0.25\%
Frequency Response:	$30 \mathrm{~Hz}-15 \mathrm{kHz}, \pm 1.5 \mathrm{~dB}$
Stereo Separation:	45 dB at 1 kHz
	30 dB at $100 \mathrm{~Hz}-10 \mathrm{kHz}$

AM
Tuning Range
U.S.A. \& Canadian models: $\quad 530-1,710 \mathrm{kHz}(10 \mathrm{kHz}$ steps $)$

European \& Australian models: $522-1,611 \mathrm{kHz}(9 \mathrm{kHz}$ steps $)$
Worldwide models: $\quad 531-1,602 \mathrm{kHz}(9 \mathrm{kHz}$ steps $)$.
$530-1,710 \mathrm{kHz}(10 \mathrm{kHz}$ steps)
$30 \mu \mathrm{~V}$
40 dB
40 dB
40 dB
0.7%
Total Harmonic Distortion:
GENERAL
Power Supply:
U.S.A. \& Canadian models: AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$

European \& Australian models: $\mathrm{AC} 230 \mathrm{~V}, 50 \mathrm{~Hz}$
Worldwide models: $\quad \mathrm{AC} 220-230 \mathrm{~V}$ and 120 V switchable $50 / 60 \mathrm{~Hz}$
Power Consumption
U.S.A \& Canadian models: 4.3 A
$\begin{array}{ll}\text { U.S.A \& Canadian models: } & 4.3 \mathrm{~A} \\ \text { Other area models: } & 410 \mathrm{~W}\end{array}$
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$): $\quad 455 \times 170 \times 389 \mathrm{~mm}$
$17-15 / 16^{\prime \prime} \times 6-11 / 16^{\prime \prime} \times 15-5 / 16^{\prime \prime}$
$13.0 \mathrm{~kg}(28.7 \mathrm{lbs})$

REMOTE CONTROLLER

U.S.A. \& Canadian models: RC-P101S Other area models: RC-P201S Transminer: Infrared Signal range: \quad Approx. 5 meters, 16 ft . Power supply: Two "AA" batteries ($1.5 \mathrm{~V} \times 2$)

Specifications and features are subject to change without notice.

SERVICE PROCEDURES

1. Replacing the fuses

- -1This symbol located near the fuse indicates that the fuse used is fast operating type. For continued protection against fire hazard, replace with same type fuse. For fuse rating refer to the marking adjacent to the symbol.
- \quad - Ce symbole indique que le fusible utlise est a rapide. Pour une protection permanente, n'utiliser que des fusibles de meme type. Ce darnier est indique la qu le present symbol est appose.

CIRCUIT NO. PART NO. DESCRIPTION

F901	252166 Y	6.3A-UL/T-237, Primary $<$ D/W $>$
F902	252076	3.15A-TSC, Primary $<$ P/W $>$
F903	252075	2.5A-SE-EAK, Primary $<$ P $>$
	NOTE: $<$ D> $>$:120V model only
	$<$ P>	:230V model only
	$<$ W $>:$ Worldwide model only	

2. To Initialize the unit

This device employs a microprocessor to perform various functions and operations. If interference generated by an external power supply, radio wave, or other electrical source results in accident which causes the specified operations and functions to operate abnormally.
To perform a result, please follow the procedure below.

1. Press and hold down the VIDEO-1 button, then press the POWER button.
2. After "clear" is displayed, the preset memory and each mode stored in the memory, such as surround, are initialized and will return to the factory settings.
3. Safety-check out
(Only U.S.A. model)
After correcting the original service problem, perform the following safety check before releasing the set to the customer. Connect the insulating-resistance tester between the plug of power supply cord and the screw on the back panel.
Specifications: $3.3 \mathrm{Mohm} \pm 10 \%$ at 500 V .
4. Change of voltage

Worldwide models are equipment with a voltage selector to conform with local power supplies. This switch is located on the back panel.
Be sure to set this switch to match the voltage of the power supply in your area before turning the power switch on.
This switch is set to 220 V at the factory. Voltage is changed by sliding the groove in the switch with the screwdriver to the right
or left. Confirm that the switch has been moved all the way to the right or left before turning the power switch on.

5. Memory preservation

This unit does not require memory preservation batteries
A built-in memory power back-up system preserves contents of the memory during power failures and even when the unit is unplugged.
The unit must be plugged in and the power switch turned on and off once in order to charge the back-up system. Note that since this is not a permanent memory, the power switch must be turned on and off a few times each month the keep the back-up system operative.
The period of the time during which memory contents are preserved after power has last been turned off varies depending on climate and placement of the unit. On the average, memory contents are protected over a period of 3 to 4 weeks (a minimum of 2 weeks) after the last time power has been turned off. This period is shorted when the unit is exposed to very high humidity or used in an area with an extremely humid climate.
6. Setting the tuning step frequency

Worldwide models are equipped with a step band selector switch. This switch is located on the back panel. This switch is set to 9 kHz at the factory, but may have to be reset to 10 kHz depending on the area where the unit is used.

AM band step
Europe: 9 kHz
U.S.A.: $\quad 10 \mathrm{kHz}$

AM FREQ
STEP

7. Changing the band step

With the exception of the worldwide models, a tuning step selector switch is not provided. When you change the band step, change the parts as shown below.

	To 10 kHz	To 9 kHz
R764	1.8 kohm	3 kohm

5 $\frac{5}{3}$ $\frac{0}{a}$ $\frac{0}{a}$

MICROPROCESSOR TERMINAL DESCRIPTIONS

Pin No．	Function	I／0	Description
37	$\overline{S D}$	1	Detector input pin of broadcast more than muting level
38	STBY／RECV	0	Stand－by and received indicator output pin
39	VOLDOWN	0	Volume control output pin
40	VOLUP	0	Refer table 1.
41	STEREO	1	Detector input pin of FM steree broadcast
42	IPMEN	1	IPM swich connection pin
43	RESET	1	System reset input pin
44	REMIN	1	Remote control signal input pin
45	SYSIN	I	System code input pin
46	POFF	1	Power stoppare detector input pin
47	RDSSCK	1	Clock input pin from RDS decoder IC μ PD1346CS
48	VDD		Power supply pin（ +5 V ）
49	X 2		Resonator connection terminal for main system clock
50	X1		Connect the ceramic resonator 10 MHz ．
51	IC		Internal connection pin．Connect to the ground terminal．
52	XT2		Crystal connection pin for sub system clock resonator
53	RDSSIG	1	Detector input pin of RDS broadcast．L．RDS broadcast
54	AVSS		Ground pin of A／D converter
55	K0	1	Operation key connection pin
56	K1	1	Operation key connection pin
57	K2	1	Operation key connection pin
58	K3	1	Oneration key connection pin
59	K4	1	Operation key connection pin
60	K5	I	Opcration key connection pin
61	MODE	1	Initializing input of operation mode
62	BAND	1	Initializing input of band region and RDS function．
63	AVDO		Analogue power surply of A / D converter
64	AVREF		Reference vollage input pin of A / D converter

아＊		I $工$
命	－	\rightarrow I
단		

Table 1

解

TX-SV636

LH2464-10 (DRAM)

Output enable	$\overline{\mathrm{OE}} 1$	18	Vss	Ground
Data input/output	$1 / \mathrm{O} 1 \quad 2$	17	1/O4	Data input/output
Data input/output	1/O2 3	16	$\overline{\text { CAS }}$	Column address strobe
Write enable	WE 4	15	1/O. 3	Data input/output
Row address strobe	$\overline{\mathrm{RAS}} 5$	14		
	A6 6	13	AI	
Address input	A5 7	12	A2	Address input
	- $44 \begin{array}{r}8 \\ \hline\end{array}$	11	A^{3}	
$+5 \mathrm{~V}$	$\operatorname{Vec} 9$	10	A7	

13-BT-138GK (FL TUBE)

136

PIN NO.	$\begin{aligned} & 6 \\ & 4 \\ & \hline \end{aligned}$	$\begin{array}{r} 6 \\ 3 \\ \hline \end{array}$	$\begin{aligned} & \hline 6 \\ & 2 \\ & \hline \end{aligned}$	6 1	6 0	5 9	5 8	5	5	5 5	5 4	5 3	5 2	5	5 0	4
CONNECTION	$\begin{aligned} & \mathrm{F} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \hline P \\ & 3 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline P \\ & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline P \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline P \\ & 3 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline P \\ & 3 \\ & 1 \end{aligned}$	$\begin{aligned} & \hline \mathbf{P} \\ & 3 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} \\ & 2 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} \\ & 2 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} \\ & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & \hline P \\ & 2 \\ & 6 \end{aligned}$	2
PIN NO.	4 8 8	4 7	4 6	4 5	4 4	4 3	4 2	4 1	4 0	3 9	3 8 8	3 7	3 6	3 5	3 4 4	3 3
CONNECTION	$\begin{aligned} & \hline \mathrm{P} \\ & 2 \\ & 4 \end{aligned}$	P 2 3	P 2 2	P 2 1	P 2 0	P 1 9	P 1 8	P 1 7	P 1 6	$\begin{gathered} \hline \mathrm{P} \\ 1 \\ 5 \end{gathered}$	P 1 4	$\begin{aligned} & \hline \mathrm{P} \\ & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline \mathrm{P} \\ & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \hline \mathbf{P} \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \hline \mathrm{P} \\ & 1 \\ & 0 \end{aligned}$	9
PIN NO.	3 2 2	3	3 0	2 9	2 8	2	2	2 5	2 4	2 3	2	2 1	2 0	1	8	7
CONNECTION	$\begin{aligned} & \text { P } \\ & \gamma \end{aligned}$	P	$\begin{aligned} & P \\ & 6 \end{aligned}$	$\begin{aligned} & P \\ & 5 \end{aligned}$	$\begin{aligned} & P \\ & 4 \end{aligned}$	3	$\begin{aligned} & P \\ & 2 \end{aligned}$	$\begin{gathered} P \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{C} \end{aligned}$	1 3						
PIN NO.	1 6	$\begin{array}{r}1 \\ 5 \\ \hline\end{array}$	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1
CONNECTION	1 2	!	1 0	$\begin{aligned} & 9 \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & 8 \\ & \mathrm{G} \end{aligned}$	$\begin{gathered} 7 \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 6 \\ G \end{gathered}$	$\begin{aligned} & 5 \\ & \mathrm{G} \end{aligned}$	$\begin{gathered} 4 \\ \mathrm{G} \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{G} \end{gathered}$	$\begin{aligned} & 2 \\ & \mathrm{G} \end{aligned}$	$\begin{gathered} 1 \\ \mathrm{G} \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{P} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathbf{P} \end{aligned}$	F	F

$$
\begin{aligned}
\text { NOTE: } & \text { F1,F2 Filament } \\
& \text { NP.........No pin } \\
& \text { NC.....No connection } \\
& \text { IG }-13 \mathrm{G} \ldots \text { Grid }
\end{aligned}
$$

Pin No.	Symbol	Description
41	MOSI/HA0	SPI Master-Out-Slave-In/I C Slave Address 0
42	$\overline{\mathrm{SS}} / \mathrm{HA} 2$	SPI Slave Selector/I C Slave Address 2
4.3	HREQ	Host Request
44	SGND	GND:SAI,SHI \& ONCE ourput buffer supply pin
45	SDO2	Serial Data Output 2
46	SDO1	Serial Data Output 1
47	SDOO	Serial Data Ourput 0
48	SVCC	Vcc:SAI,SHI \& ONCE output buffer supply pin
49	SCKT	Transmit Serial Clock
50	WST	Transmit Word Select
51	SCKR	Receive Serial Clock
52	QGND	GND:Internal Logic supply pin
53	QVCC	Vcc:Internal Logic supply pin
54	SGND	GND:SAI,SHI \& ONCE output buffer supply pin
55	WSR	Receive Word Select
56	SDII	Serial Data Input 1
57	SDI0	Serial Data Input 0
58	DSO	Debug Serial Output
59	DSI/OSO	Debug Serial Input/Chip Status 0
60	DSCK/OS1	Debug Serial Clock/Chip Status 1
61	$\overline{\mathrm{DR}}$	Debug Request Input
62	MD7	Data Bus input/output pin
63	MD6	Data Bus input/output pin
64	MD5	Data Bus input/output pin
65	MD4	Data Bus input/output pin
66	DGND	GND:EMI data bus \& GPIO output buffer pin
67	MD3	Data Bus input/output pin
68	MD2	Data Bus input/output pin
69	MDI	Data Bus input/output pin
70	DVCC	Vcc:EMI data bus \& GPIO output buffer pin
71	MDO	Data Bus input/output pin
72	DGND	GND: EMI data bus \& GPIO output buffer pin
73	GPIO3	General Purpose Input/Output 3
74	GPIO2	General Purpose Input/Output 2
75	GPIO1	General Purpose Input/Output 1
76	GPIO0	General Purpose Input/Output 0
77	$\overline{\text { MRD }}$	Data Read Strobe
78	$\overline{\text { MWR }}$	Data Write Strobe
79	MA17 $\overline{\text { MCS }} 1 / \overline{\text { MRAS }}$	Address Line 17/Chip selector 1/Row Address Strobe
80	MA16/MCS2/MCAS	Address Line 16/Chip selector 2/Column Address Strobe

Pin No.	Symbol	Description
1	AGND	GND:EMI control output buffer pin
2	AMC0	This outpur is Chip selector 0 for SRAM accesses.
3	MA15/ $\overline{\mathrm{MCS} 3}$	Address Line 15/Chip Selector 3
4	MA14	Address output for DRAM access
5	MA13	Address output for DRAM access
6	AVCC	Vcc:EMI address/control ourput buffer pin
7	MAI2	Address output for DRAM access
8	AGND	GND:EMI address output buffer pin
9	QVCC	Vcc:Intemal Logic supply pin
10	QGND	GND:Internal Logic supply pin
11	MA11	Address output for DRAM access
12	MA10	Address output for DRAM access
13	MA9	Address output for DRAM access
14	MA8	Address output for DRAM access
15	AGND	GND:EMI address output buffer pin
16	MA7	Address output for DRAM access
17	AVCC	$V_{\text {cc: }}$ EMI address/control output buffer pin
18	MA6	Address output for DRAM access
19	MA5	Address output for DRAM access
20	MA4	Address output for DRAM access
21	AGND	GND:EMI address output buffer pin
22	MA3	Address output for DRAM access
23	MA2	Address output for DRAM access
24	MA1	Address output for DRAM access
25	MA0	Address output for DRAM access
26	SCK/SCL	SPI Serial Clock/I C Serial clock
27	EXTAL	This input should be connected to an external clock source.
28	QVCC	Vcc:Internal Logic supply pin
29	QGND	GND:Internal Logic suppiy pin
30	PINIT	PLL Initialization pin
31	PGND	GND:PLL supply pin
32	PCAP	Off-chip capacitor connection pin for PLL filter
33	PVCC	Vcc:PLL supply pin
34	SGND	GND:SAI,SHI \& ONCE output buffer supply pin
35	MISO/SDA	SPI Master-In-Slave-Our/I C Data and Acknowledge
36	RESET	This input is a direct hardware reset of the processor.
37	MODA $\overline{/ R Q A}$	Mode Select A/Extermal Interrupt Request A/STOP Recovery
38	MODB/ $\overline{/ R Q B}$	Mode Select B/External Interrupt Request B
39	MODC $\overline{\mathrm{NMI}}$	Mode Select C/Non-Maskable Interrupt Request
40	SVCC	Vcc:SAI,SHI \& ONCE output buffer supply pin

TX-SV636

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	VSS	Ground pin	16	CVOUT	Composite video signal output pin
2	XTALIN1	Crystal resonator connection pin for internal synchronizing signal generation	17	VDD2	Power supply pin for Composite video signal
3	XTAL OUT1		18	CVIN	Composite video signal input pin
4	HSYNCOUT	Horizontal synchronizing signal output pin	19	CVCR	Chroma signal input pin for SECAM
5	XTAL IN2	Crystal resonator connection pin for internal synchronizing signal generation	20	SYNCIN	Video signal input pin for internal synchronizing separation circ
6	XTAL OUT2		21	SEPC	Bias output pin for internal synchronizing separation circuit
7	VSYNCOUT	Vertical synchronizing signal output pin	22	VSS	Ground pin
8	CS	Chip enable input pin for serial data input	23	PDOUT	Voltage output pin for AFC circuil
9	SIN	Scrial data input pin	24	AMPIN	Filter connection pin
10	SCLK	Clock input pin for serial data	25	AMPOUT	
11	SECAM	SECAM mode selector input pin	26	FC	Voltage output pin for AFC circuit
12	525/625	Selector pin for scansion line	27	VCOIN	LC resonator connection pins for VCO
13	NTSC/PAL	Selector pin for NTSC or PAL	28	vcoour	
14	3.58/4.43	Selector pin for 3.58 MHz or 4.43 MHz	29	SYNCDET	External synchronizing signal discrimination output pin
15	RST	System reset input pin	30	VDD1	Power supply pin

LA1851N-F (FM IF, MPX AND AM RADIO SYSTEM)

TA7291 (VOLUME MOTOR DRIVER)

ADJUSTMENT PROCEDURES

Preparation

1. Input

FM mono: $1 \mathrm{kHz}, 75 \mathrm{kHz}$ devi., $60 \mathrm{~dB} / \mu \mathrm{V}$
FM stereo: $1 \mathrm{kHz}, 67.5 \mathrm{kHz}$ devi., $60 \mathrm{~dB} / \mu \mathrm{V}$

$$
\text { Pilot signal } 19 \mathrm{kHz} 7.5 \mathrm{kHz} \text { devi. }
$$

2. Outputs

Connect the non-inductive type resistor of 8 ohms
to the all speaker terminals unless otherwise noted.

$\mathrm{AM}: 400 \mathrm{~Hz}, 30 \% \bmod$.

1. FM ADJUSTMENT

Item	Step	Connection of instrument	FM SG output	Stereo modulator output	Tuning frequency	Output indicator	Adjustment point	$\begin{aligned} & \text { Adjust } \\ & \text { for } \end{aligned}$	Remarks
$\underset{\mathrm{IF} / \mathrm{RF}}{\mathrm{FM}}$	1	Fig. 1	99.0 MHz 1 kHz 75 kHz devi. $65 \mathrm{dBf}(60 \mathrm{~dB})$	$\underline{\square}$	99.0 MHz	DC voltmeter	L101	$0 \pm 20 \mathrm{mV}$	FM MUTE/MODE switch:OFF/MONO Repeat the steps 1 and 3 until no further adjustment is necessary.
	2					AC voltmeter	IFT on the front end	Maximum	
	3					Distortion analyzer	L102	Minimum	
Stereo Distortion		Fig. 2	99.0 MHz Ext. $\bmod .65 \mathrm{dBf}(60 \mathrm{~dB})$	Channel L or R 1 kHz	99.0 MHz	Distortion analyzer	IFT on the front end	Minimum	Don't turn more than $\pm 180^{\circ}$
Stereo Separation	1	Fig. 2	99.0 MHz Ext. mod. $65 \mathrm{dBf}(60 \mathrm{~dB})$	Channel L 1 kHz	99.0 MHz	Channel R AC voltmeter	R150	Minimum	Maximum and same separation
	2			$\begin{gathered} \text { Channel } \mathrm{R} \\ 1 \mathrm{kHz} \end{gathered}$		Channel L AC voltmeter		Minimum	
Muting Level		Fig. 2	99.0 MHz $19.2 \mathrm{dBf}(14 \mathrm{~dB})$	-	99.0 MHz	Oscilloscope	R158	Signal output	
RDS		Fig. 3	99.0 MHz Ext. mod. 60dB	RDS data or $57 \mathrm{kHz} 3 \%$ devi.	99.0 MHz	Oscilloscope	R191	Maximum	European model only

2. AM ADJUSTMENT

120 V model

Step	AM SG output	Tuning Frequency	Output Indicator	Adjustment point	Adjust for
1	530 kHz	Digital DC voltmeter	OSC coil on RF block L151	$1.4 \pm 0.2 \mathrm{~V}$	
2	600 kHz $400 \mathrm{~Hz} 30 \%$ mod. $60 \mathrm{~dB} / \mathrm{m}$	600 kHz	AC voltmeter	RF coil on RF block L151	Maximum
3	990 kHz $40 \mathrm{~Hz} 30 \%$ mod. $60 \mathrm{~dB} / \mathrm{m}$	990 kHz	AC voltmeter	L152	Maximum

230 V and Wolrdwide models

Step	AM SG output	Tuning Frequency	Output Indicator	Adjustment point	Adjust for
1		522 kHz or 531 kHz	Digital DC voltmeter	OSC coil on RF block L151	$1.3 \pm 0.1 \mathrm{~V}$
2	603 kHz $400 \mathrm{~Hz} 30 \%$ mod. $60 \mathrm{~dB} / \mathrm{m}$	603 kHz	AC voltmeter	RF coil on RF block L151	Maximum
3	999 kHz $400 \mathrm{~Hz} 30 \%$ mod. $60 \mathrm{~dB} / \mathrm{m}$	999 kHz	AC voltmeter	L152	Maximum

Reference Specification
FM tuned voltage: $87.5 \mathrm{MHz} \sim 108.0 \mathrm{MHz}$
More than $1.3 \mathrm{~V} \sim$ Less than 10 V
AM tuned voltage: $530 \mathrm{kHz} \sim 1710 \mathrm{kHz}$
$1.4 \pm 0.2 \mathrm{~V} \sim$ Less than 9.0 V

Reference Specification
FM tuned voltage: $87.5 \mathrm{MHz} \sim 108.0 \mathrm{MHz}$
More than $1.3 \mathrm{~V} \sim$ Less than 10 V
AM tuned voltage: $522 \mathrm{kHz} \sim 1611 \mathrm{kHz}$
$1.3 \pm 0.2 \mathrm{~V} \sim$ Less than 9.0 V
$1.3 \pm 0.2 \mathrm{~V} \sim$ L
(230 V model)
AM tuned voltage: $531 \mathrm{kHz} \sim 1602 \mathrm{kHz}$
$1.3 \mathrm{~V} \pm 0.2 \sim$ Less than 9.0 V
(Worldwide model)

Adjustment point

TX-SV636

SCHEMATIC DIAGRAM 4/6

PRINTED CIRCUIT BOARD-PARTS LIST

CIRCUIT NO.	PART NO. Capacitors	DESCRIPTION
C814	374721034	$0.01 \mu \mathrm{~F} \pm 5 \%, 50 \mathrm{~V}$, Plastic
C820,C821	353721019	$100 \mu \mathrm{~F}, 6.3 \mathrm{~V}$, Elect.
C822,C825	374724744	$0.47 \mu \mathrm{~F} \pm 5 \%, 50 \mathrm{~V}$,Plastic
C824	353721019	100μ F,6.3V, Elect.
C829,C841	353721019	$100 \mu \mathrm{~F}, 6.3 \mathrm{~V}$, Elect.
C850,C853	353721019	100μ F,6.3V,Elect.
C861-C864	353780109	$1 \mu \mathrm{~F}, 50 \mathrm{~V}$, Elect.
C867-C870	374722724	$2700 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$,Plastic
C873-C876	374721824	$1800 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$,Plastic
C879-C882	374721224	$1200 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$,Plastic
C885-C888	370132214	$220 \mathrm{pF} \pm 5 \%, 100 \mathrm{~V}$, APS
C891-C894	353741009	$10 \mu \mathrm{~F}, 16 \mathrm{~V}$,Elect.
	Resistor	
R1705	49163103413	$10 \mathrm{k} \times 13 \mathrm{RM} 1 / 101 \mathrm{~J}$, Array
	Push switches	
S701	25035652	NPS-111-S604 < D/W>
S702-S706	25035652	NPS-111-S604
S709-S715	25035652	NPS-111-S604
S717-S729	25035652	NPS-111-S604
S730-S732	25035652	NPS-111-S604 <P>
S733-S748	25035652	NPS-111-S604
S961	25035653	\triangle NPS-122-L605 <P>
	Holder	
Q1701a	$27190913 Y$	
	Wire holders	
JL701b	25050946	NSCT-40P733
JL801b	25051087	NSCT-3P874

TX-SV636

CAUTION:Replacament of the transistor of mark *, if necessary, mast be made from the sime beta group (Hirr) as the original rype.

CIRCUIT No.	PART NO. Resistors	DESCRIPTION
R901	431523355	A 3.3 Mohm, $1 / 2 \mathrm{~W}$, Solid < D >
R951	453530824	$8.2 \mathrm{Ohm} \pm 5 \%, 1 / 2 \mathrm{~W}, \mathrm{Mctal}$
	Plug	
P901a	25055675	NPLG-2P631 <D/P>
	Relay	
RL901	25065248 or	4 NRL-1P15A-DC12-29 or
	25065516	\triangle NRL-1P10A-DC12-097 <D/W>
	25065515 or	\triangle NRL-1P5A-DC12-096 or
	25065508	\triangle NRL-1P10A-DC12-093 <P>
	AC outlet	
P902	25051124	\triangle NSCT-6P911 <D>
P903	25051125	\triangle NSCT-4P912 <P/W>
	Fuseholders	
F901a	25050065	\triangle YSH403T < D/W>
F902a	25050065	$\triangle \mathrm{YSH} 403 \mathrm{~T}$ <P/W>
F903a	25050065	$\triangle \mathrm{YSH} 403 \mathrm{~T}$ <P>
	Fuse	
F901	252166 Y	© 6.3A-UL/T-237, Primary <D/W>
F902	252076	A 3.15A-SE-EAK, Primary <P/W>
F903	252075	\triangle 2.5A-SE-EAK, AC outlet < P>
	Wire holder	
JL961a	25051089	NSCT-5P876
CIRCUIT No.	Part No.	description
	Switch	
S901	25065437	\triangle NSS-22157P, Voltage selector <W>

VIDEO CIRCUIT PC BOARD (NAETC-5775-1A/1B/1C/1E/1F) CIRCUIT NO. PARTNO DESCRIPTION

Q251	1 cs	
	22240373	BA7625
Q259	22240293 or	NJM4558L-D or
	22240247	BA15218N
Q271	22240968	LC74763-9147
	Transistors	
Q252-Q254	2213354 or	2SA933S-R or
Q273	2212125	2SA1048-GR
Q255	2213510 or	DTAl14ES or
	2214350	RN2202
Q256	2212285 or	2SC2878-A or
	2212286	2SC2878-B
Q257	2213640 or	DTC123JS or
	2214660	RN1205
Q258	2213830 or	DTB113ZS or
	2214690	RN2226
Q260,Q261	2213284 or	$2 \mathrm{SC1740S-R}$ or
	2212115	2SC2458-GR
Q272	2213284 or	2SC1740S-R or
	2212115	2SC2458-GR
	Diodes	
D251	224471203	MTZJ12C
D252-D255	223205,	1SS270A,
D271	223163 or	1SS133 or
	223222	WG713A
	Coils	
L271	233454K056	NCH-1452 056K

PRINTED CIRCUIT BOARD-PARTS LIST

CIRCUIT NO.	PART NO. Wire holder 25051093	DESCRIPTION
JL401a	NSCT-9P880 Capacitors	
C401,C402	354741009	10μ F,16V,Elect.
C405,C406	354744709	$47 \mu \mathrm{~F}, 16 \mathrm{~V}$,Elect.
C407,C408	374721534	$0.015 \mu \mathrm{~F} \pm 5 \%, 50 \mathrm{~V}$,Plastic
C411,C412	374721534	$0.015 \mu \mathrm{~F} \pm 5 \%, 50 \mathrm{~V}$,Plastic
C413-C416	374721044	$0.1 \mu \mathrm{~F} \pm 5 \%, 50 \mathrm{~V}$,Plastic
C417-C420	374721024	$1000 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$,Plastic

FRONT TERMINAL PC BOARD (NAETC-5778-1A/1B/1C/1E/1F)

CIRCUIT NO.	PART NO.	DESCRIPTION
P261	2009990281	NSAS-4P0409,Socket
P305	25045402	NPJ-3PDBL227,Terminal
P321	2009990125	NSAS-6P0190,Socket

PRE. OUTPUT TERMINAL PC BOARD (NAETC-5779-1A/1B/1C/1E/1F) CIRCUIT No. Partno. DESCRIPTION
P431 25045458 or NPJ-6PDBL279 or

	25045300	NPJ-6PDBL159,Tcrminal
P432	25045456 or	NPJ-2PDBL277 or
	25045298	NPJ-2PDBL157,Terminal
JL502b	25055628	NPLG-7P590,Plug

MR/RI TERMINAL PC BOARD (NAETC-5780-1A/1B/1C/1E/1F)

CIRCUIT No.	PART NO. Transistors	DESCRIPTION
Q1761,Q1762	221282 or	DTC144ES or
	2213560	RN1204
Q1763	221282 or	DTC144ES or
	2213560	RN1204 <D>
Q1764	2213510 or	DTA114ES or
	2214350	RN2202 <D>
	Photo coupler	
Q1765	24120043	ON3131 <D>
	Diodes	
D1761,D1763	223205,	1SS270A,
	223163 or	1SS133 or
	223222	WG713A
D1762	223205,	1SS270A,
	223163 or	1 SS 133 or
	223222	WG713A < D >
D1764	223205,	1SS270A,
	223163 or	$1 \mathrm{SS133}$ or
	223222	WG713A < P/W>
	Capacitors	
C1761	354721019	$100 \mu \mathrm{~F}, 6.3 \mathrm{~V}$, Elect.
C1762	374724724	$4700 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$, Plastic
	Terminals	
P1761	25045172	HSJ-1003-01-020,RI
P1762	25045433	HSJ-1003-01-013,XANTECH <D>
	25045293	HSJ-1003-01-012,MR <P/W>
	Wire trap	
JL702b	25055630	NPLG-9P592
	Wire holder	
JL961b	25051089	NSCT-5P876
	Switch	
S1761	25065286	NSS-22112, Band step <W>

TUNER CIRCUIT PC BOARD (NARF-5774-1A/1B/1C/1E/1F) CIRCUIT NO. PART NO. DESCRIPTION

(1)	Front end	-
TU001	240098Y	ENV172DIG1 < D>
	240089	FE415-G11 <P/W>
	ICs	
Q121	22240090	LM7001
Q141	22240983Y	LA185iN-F
Q176	22240293 or	NJM4558L-D or
	22240247	BA15218N
Q181	22240679	μ PC1346CS $<$ P>
	Transistors	
Q101	2210746	2SC945A-P <P/W>
Q102	2211723	2SC1923-O
Q122,Q142	2213510 or	DTAl14ES or
Q175	2214350	RN2202
Q123	2212445	2SK365-GR
Q124	2213284 or	2SC1740S-R or
Q171,Q172	2212115	2SC2458-GR
Q143	221282 or	DTC144ES or
	2213560	RN1204
Q144	2213640 or	DTC123JS or
	2214660	RN1205
Q173,Q174	2212794	2SD1468-R
Q182	2213284 or	$2 \mathrm{SC1740S}$-R or
	2212115	2SC2458-GR <P>
	Diode	
D165	224470512	MTZJ5.1B
	Transformers	
L101	$233457 Y$	NFIF-4081
L102	233458 Y	NFIF-4082
L106	232139	NMIF-4062
	Coils	
L103	233471 Y	NMC-6084 <P/N>
L104	233454 K 220	NCH-1452 220K
L107,L108	233355 A	NMC-4059 <P/W>
L109,L110	231092	NCH-2140 < D>
	RF block	
L105	232163 A	NMRF-7065
	Resonators	
X104	3010268 Y	CSB456F23,Ceramic
X121	3010141	XTL-7.2M,Crystal
X181	3010203	AF6146CG <P>
	Ceramic filters	
X101	3010071	SFE10.7MA5
X102	3010071	SFE10.7MAS < P/W>
X103	3010071	SFE10.7MA5 < D>
	3010130	SFE10.7MZ2A <P/W>
X105	3010123	SFZ450JL
	Capacitors	
C001	354741019	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$,Elect.
C127	354721019	$100 \mu \mathrm{~F}, 6.3 \mathrm{~V}$, Elect.
C 130	354780229	$2.2 \mu \mathrm{~F}, 50 \mathrm{~V}$, Elect.
C131	374722234	$0.022 \mu \mathrm{~F} \pm 5 \%, 50 \mathrm{~V}$, Plastic
C132	354783399	$0.33 \mu \mathrm{~F}$, 50 V , Elect.
C133,C142	354741019	$100 \mu \mathrm{~F}, 16 \mathrm{~V}$,Elect.
C145	354741009	$10 \mu \mathrm{~F}, 16 \mathrm{~V}$, Elect.
C146	374723324	$3300 \mathrm{pF} \pm 5 \%, 50 \mathrm{~V}$, Plastic
C147	374721534	$0.015 \mu \mathrm{~F} \pm 5 \%, 50 \mathrm{~V}$, Plastic < D >
	374721034	$0.01 \mu \mathrm{~F} \pm 5 \%, 50 \mathrm{~V}$,Plastic < P / W >

PRINTED CIRCUIT BOARD VIEW FROM BOTTOM SIDE

TUNER CIRCUIT PC BOARD
$\left.\begin{array}{llllll}\text { CIRCUIT NO. } & \text { PART NO. } & \text { DESCRIPTION } & \text { CIRCUIT NO. } & \text { PART NO. } & \text { DESCRIPTION } \\ \text { Resistors }\end{array}\right]$

TX-SV636

NOTES

The TX-SV636(B)MPT type (Taiwanese model) is the same as the TX-SV636(B)MP type (230V model)

		MPT type		MP type	
Ref.no.	PART NAME	PARTNO.	DESCRIPTION	PARTNO.	DESCRIITION
U1	Main circuit pcb ass'y	1A651568-1EY	NAAR-5768-1E	1A651568-1BY	NAAR-5768-1B
U2	Secondary circuit peb ass'y	1A651569-1EY	NAETC-5769-1E	1A651569-1BY	NAETC-5769-1B
U4	Display circuit pcb ass'y	1A651570-1CY	NADG-5770-1C	1A651570-1BY	NADG-5770-1B
U5	Master volume circuit peb ass'y	1A651571-1CY	NAAF-5771-1C	1A651571-18Y	NAAF-5771-1B
U6	Headphone terminal pcb ass'y	IA651572-1EY	NAETC-5772-1E	1A651572-1BY	NAETC-5772-1B
U7	Primary circuit pcb ass'y	1A651573-1EY	NAPS-5773-1E	1A651573-1BY	NAPS-5773-1B
U8	Tuner circuit pcb ass'y	1A651574-1EY	NARF-5774-IE	1A651574-1BY	NARF-5774-1B
U10	Video circuit peb ass'y	1AG51575-1EY	NAETC-5775-1E	1A651575-1BY	NAETC-5775-1B
U12	Speaker terminal pcb ass'y	1A651576-1EY	NAETC-5776-1E	1A651576-18Y	NAETC-5776-1B
U14	Tone control circuil peb ass'y	1A651577-1EY	NAAF-5777-1E	1A651577-1BY	NAAF-5777-1B
U15	Front terminal pcb ass'y	1A651578-1EY	NAETC-5778-1E	1A651578-1BY	NAETC-5778-1B
U16	Pre. output terminal pcb ass'y	1A651579-1EY	NAETC-5779-1E	1A651579-1BY	NAETC-5779-1B
017	MR/RI terminal pcb ass'y	1A651580-1EY	NAETC-5780-1E	1A651580-1BY	NAETC-5780-18
U18	Transformer terminal pcb ass'y	1A651581-1EY	NAETC-5781-1E	1A651581-1BY	NAETC-5781-1B
	Instruction manual	29342318 Y	FST	29342316 Y	GFI
	Instruction manual	Not used		29342317Y	SDSW
	FM antenna adaptor	25065462		Not used	
	Rear panel	27122227 Y		27122226 Y	
	Knob, power	Not used		28325306 Y	
	Decorative frame	27215253 AY		27215256AY	
	Front pancl ass'y	1 A 651121 Y		1A704121Y	
		29053069 Y		29053019 Y	

The TX-SV636(B)MGK type (Korean model) is the same as the TX-SV636(B)MP type (230 V model) with the exception of the following sections.

		MGK type		MP type	
REF.NO.	PARTNAME	Partino.	DESCRIPTION	PARTENO.	DESCRIIPTION
U1	Main circuit pcbass'y	1A651568-1FY	NAAR-5768-IF	1A651568-1HY	NAAR-5768-1B
U2	Sccondary circuit peb ass'y	1A651569-IFY	NAETC-5769-1F.	1A651569-1BY	NAETC-5769-1B
U4	Display circuit pcb ass'y	1A651570-1CY	NADG-5770-1C	1A651570-1BY	NADG-5770-18
US	Master volume circuit peb ass'y	1A651571-1CY	NAAF-5771-1C	1A651571-1BY	NAAF-5771-1B
U6	Headphone terminal peb ass'y	1A651572-1FY	NAETC-5772-1F	1A651572-1BY	NAETC-5772-1B
U7	Primary circuit peb ass'y	1A651573-1FY	NAPS-5773-1F	1A651573-1BY	NAPS-5773-1B
U8	Tuner circuit pcb ass'y	1A651574-1FY	NARF-5774-1F	1A651574-18Y	NARF-5774-1B
U10	Video circuit peb ass'y	1A651575-1FY	NAETC-5775-1F	1A651575-18Y	NAETC-5775-1B
U12	Speaker terminal pcb ass'y	1A651576-1FY	NAETC-5776-1F	1A651576-1BY	NAETC-5776-1B
U14	Tone control circuit pcb ass'y	1A651577-1FY	NAAF-5777-1F	1A651577-1BY	NAAF-5777-1B
U15	Front terminal peb ass'y	1A651578-1FY	NAETC-5778-1F	1A651578-1BY	NAETC-5778-1B
U16	Pre. output terminal pcb ass'y	1A651579-1FY	NAETC-5779-1F	1A651579-1BY	NAETC-5779-1B
U17	MR/RI terminal pcb ass'y	1A651580-1FY	NAETC-5780-1F	1A651580-1BY	NAETC-5780-1B
U18	Transformer terminal pcb ass'y	1A651581-1FY	NAETC-5781-1F	1A651581-1BY	NAETC-5781-1B
T901	Power transformer	2301073 Y	NPT-1230DG	2301072Y	NPT-1230P.
P901	Power supply cord	253213WSE	KS-AS	253193HIT	AS-CEE
F903	Fuse	Not used		252075	2.5A-SE-EAK
P904, P905	AC outlet	25051266	NSCT-2P1056	Not used	
	Insiruction manual	Not used		$29342316 Y$	GFI
	Instriction manual	Not used		29342317 Y	SDSW
	FM antenna adaptor	25065462		Not used	
	Rear panel	27122259 Y		27122226 Y	
	Knob,power	Not used		28325306 Y	
	Decorative frame	27215253AY		27215256AY	
	Front panel ass'y	1 A 651121 Y		1A704121Y	
	Carton box	29053069 Y		29053019 Y	

ONFYO CORPORATION

International Sales Div. : 31 Sankyo-bild. 3-8-5, Asakusabashi, Taito-ku, TOKYO 111, JAPAN TEL : 03-5820-5865 FAX : 03-5820-5869
ONKYO U.S.A. CORPORATION
200 Williams Drive, Ramsey, N.J. 07446, U.S.A
TEL : 201-825-7950 FAX : 201-825-8150

ONKYO EUROPE ELECTRONICS GmbH
Industriestrasse 18-20, 82110 Germering, GERMANY !
TEL : 089 849320 FAX : 0898493226 ,3AY In:
ONKYO FRANCE $\quad 085 \quad$ Ins
Immeuble Le Diamant, Domaine Tectnologique de Saclay, 4 Rue Rene Razel, ${ }^{〔} .5462 \quad$ FM ai
TEL: (1) 69331400 FAX : (1) $69413584 \quad 355018$ CV-K-

