Service Manual

MASH³

Tuner/Compact Disc Changer

SL-CH80

(K) ... Black Type

Area

Suffix for Model No.	Area	Colour
(E)	Europe and Great Britain	(10)
(EG)	Germany and Italy	(K)
(GN)	Oceania	

SB-CH79
SB-CH80

SB-CH80

SB-CH80

A

Remote Control

SU-CH80

SB-CH79
SB-CH80

SB-CH80

(The configuration of the speakers differs according to the area.)

Because of unique interconnecting cables, when a component requires service, send or bring in the entire system.

MASH is a trademark of NTT

TRAVERSE DECK: RAE0113Z MECHANISM SERIES

SPECIFICATIONS

Transmitter

FM TUNER SECTION

Frequency range 87.50 - 108.00 MHz Sensitivity 23.3 dBf (4.0 µV, IHF '58) Total harmonic distortion MONO 0.3 % STEREO 0.5% S/N 60 dB (65 dB, IHF) MONO Image rejection at 98.1 MHz 35 dB Stereo separation 35 dB 1 kHz 75Ω (unbalanced) Antenna terminal(s)

MAM TUNER SECTION

Frequency range
MW
LW
Sensitivity (for 500mW)
MW (at 999 kHz)
LW (at 252 kHz)

CD SECTION

44.1 kHz Sampling frequency 16 bit linear Decoding Semiconductor laser/780nm Beam source/wavelength Number of channels 2 ch, stereo 20 Hz - 20 kHz (+1, -2 dB) Frequency response 90 dB filter (JIS.A) S/N Wow and flutter Below measureable limit Digital filter 4 times over sampling D/A converter MASH (1 bit DAC)

GENERAL

 Power consumption
 130 W

 Power supply
 AC 50Hz, 230 – 240 V

 Dimensions (W x H xD)
 270 x 184.4 x 343.9 mm

 Weight
 4.2 kg

Note:

522 - 1611 kHz

144 - 288 kHz

250 µV/m

500 μV/m

- 1. Specifications are subject to change without notice.
- 2. Weight and dimensions are approximate.
- 3. Total harmonic distortion is measured by the digital spectrum analyzer.

System	Tuner/Compact Disc Changer	Cassette Deck/Amplifier	Speakers	
00 01100 5	SD-CH	80 E		
SC-CH80 E	SL-CH80 E	SU-CH80 E	1	
an allea ED	SD-CH80 EB		* SB-CH80 E	
SC-CH80 EB	SL-CH80 E	SU-CH80 EB		
SC-CH80 EG	SD-CH80 EG]	
SC-CH80EG	SL-CH80 EG	SU-CH80 EG		
SC-CH80 GN	SL-CH80 GN	SU-CH80 GN	SB-CH79 P	

Panasonic

* Made in PAES

CONTENTS

PAGE	PAGE
• MEASUREMENTS AND ADJUSTMENTS 40 ~ 43	PRECAUTION OF LASER DIODE 2 & 3
 DISPLAY FUNCTIONS OF AUTOMATICALLY-ADJUSTED 	HANDLING PRECAUTIONS FOR TRAVERSE DECK4
RESULTS44 & 45	• LOCATION OF CONTROLS 5
• TERMINAL GUIDE OF ICs, TRANSISTORS & DIODES 45	• DISASSEMBLY INSTRUCTIONS 6 ~ 14
• TERMINAL FUNCTION OF IC'S	HOW TO CHECK THE SERVO AND MAIN P.C.B 14 &15
PACKAGING49	 INSTALLATION OF THE LOADING COMPONENTS15 ~ 17
CD LOADING UNIT PARTS LOCATION 50	• INSTALLATION OF THE TRAY BASE AND TRAY ASS'Y 17
CD LOADING UNIT PARTS LIST51	• SCHEMATIC DIAGRAM 18 ~ 29
WIRE CONNECTION DIAGRAM52	DIGITAL SERVO SYSTEM30
• TROUBLESHOOTING GUIDE53 & 54	• PRINTED CIRCUIT BOARD31 ~ 34
CABINET PARTS LOCATION 55 & 56	• BLOCKDIAGRAM 35 ~ 38
• REPLACEMENT PARTS LIST 57 ~ 60	GENERALINSPECTION
• RESISTORS & CAPACITORS 61 ~ 64	

NOTE:

Refer to the service manual for Model No. SU-CH80 (Order No. MD9404036C8) for information on "ACCESSORIES", "CONNECTIONS" and "PACKAGING".

PRECAUTION OF LASER DIODE

CAUTION:

This product utilizes a laser diode with the unit turned "on", invisible laser radiation is emitted from the pickup lens. Wave length: 780 nm

Maximum output radiation power from pick up: 100 μW/VDE

Laser radiation from the pick up lens is safety level, but be sure the followings:

- 1. Do not disassemble the optical pick up unit, since radiation from exposed laser diode is dangerous.
- 2. Do not adjust the variable resistor on the pickup unit. It was already adjusted.
- 3. Do not look at the focus lens using optical instruments.
- 4. Recommend not to look at pick up lens for a long time.

ACHTUNG:

Dieses Produkt enthält eine Laserdiode. Im eingeschalteten Zustand wird unsichtbare Laserstrahlung von der Lasereinheit abgestrahlt.

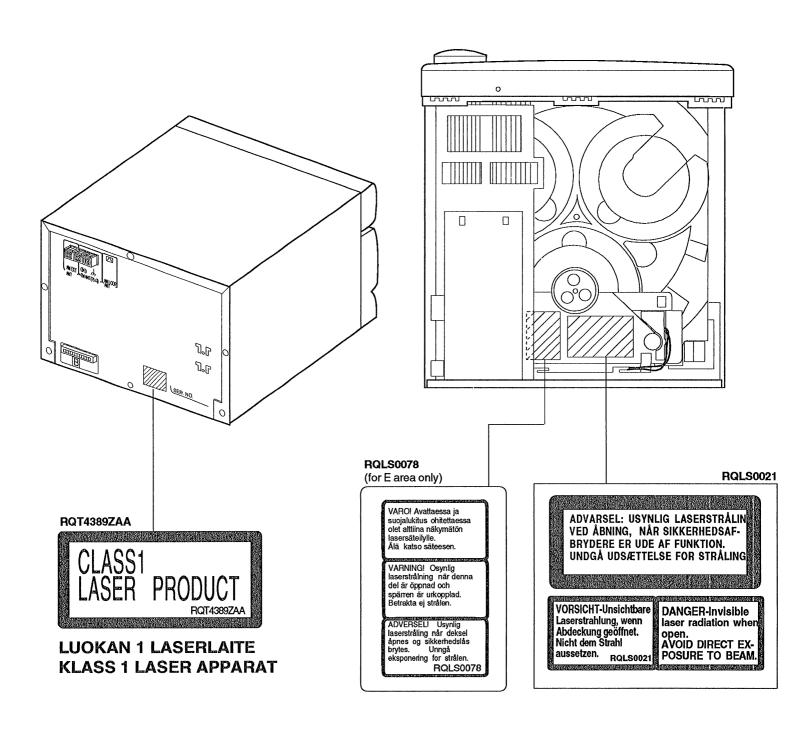
Wellenlänge: 780nm

Maximale Strahlungsleistung der Lasereinheit :100µW/√DE

Die Strahlung an der Lasereinheit ist ungefährlich, wenn folgende Punkte beachtet werden:

- 1. Die Lasereinheit nicht zerlegen, da die Strahlung an der freigelegten Laserdiode gefährlich ist.
- 2. Den werkseitig justierten Einstellregler der Lasereinhit nicht verstellen.
- 3. Nicht mit optischen Instrumenten in die Fokussierlinse blicken.
- 4. Nicht über längere Zeit in die Fokussierlinse blicken.

ADVARSEL: I dette a apparat anvendes laser.

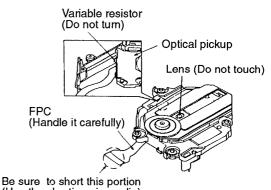

THIS MUSIC SYSTEM IS CAPABLE OF RECEIVING THE NEW AM STEREO BROADCASTS FROM THE AM BAND RADIO STATIONS. HOWEVER LIKE MANY MUSIC SYSTEM CURRENTLY AVAILABLE ON THE MARKET IT WILL REPRODUCE THIS AM STEREO SIGNAL ONLY IN AM MONO, WHICH, IN EFFECT, IS OF NO LESSER QUALITY THAN YOUR AM MONO MUSIC SYSTEM.

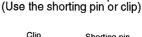
M USE OF CAUTION LABELS

Note: O mark indicate that caution label is used in that area.

X mark indicate that caution label is not used in that area.

Area	RQT4389ZAA	RQLS0078	RQLS0021
(E)	0	0	0
(EG)	0	Х	0
(GN)	0	х	0

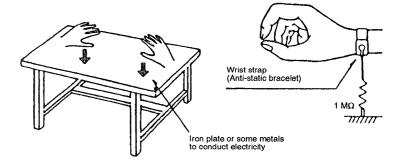

MANDLING PRECAUTIONS FOR TRAVERSE DECK


The laser diode in the traverse deck (optical pickup) may break down due to potential difference caused by static electricity of clothes or human body.

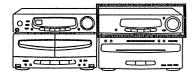
So, be careful of electrostatic breakdown during repair of the traverse deck (optical pickup).

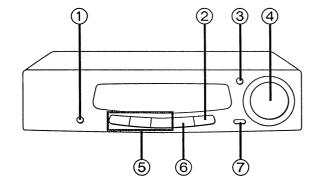
Handling of traverse deck (optical pickup)

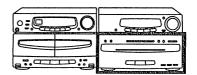
- Do not subject the traverse deck (optical pickup) to static electricity as it ie extremely sensitive to electrical shock.
- To prevent the breakdown of the laser diode, an antistatic shorting pin is inserted into the flexible board (FPC board). When removing or connecting the short pin, finish the job in as short time as possible.
- Take care not to apply excessive stress to the flexible board (FPC board).
- Do not turn the variable resistor (laser power adjustment). It has already been adjusted.

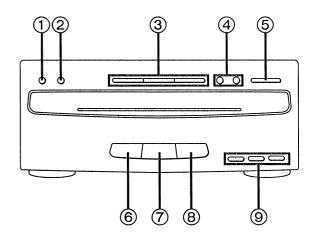


Grounding for electrostatic breakdown prevention


- Human body grounding
 Use the anti-static wrist strap to discharge the static
 electricity from your body.
- Work table grounding
 Put a conductive material (sheet) or steel sheet on the area where the traverse deck (optical pickup) is placed, and ground the sheet.


Caution:


The static electricity of your clothes will not be grounded through the wrist strap. So, take care not to let your clothes touch the traverse deck (optical pickup).



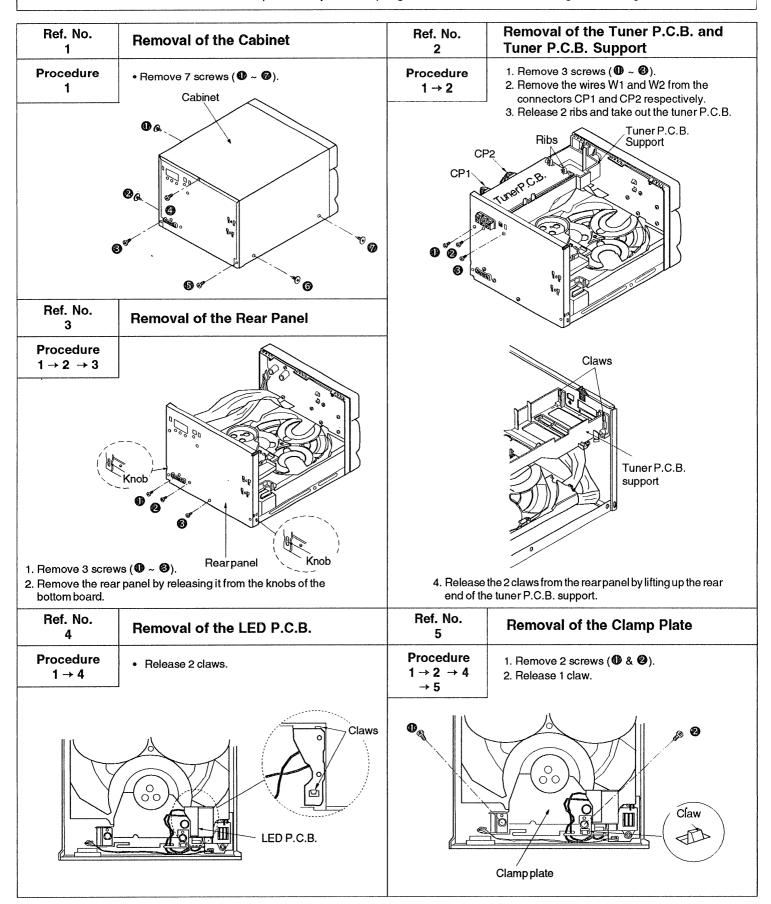
MLOCATION OF CONTROLS

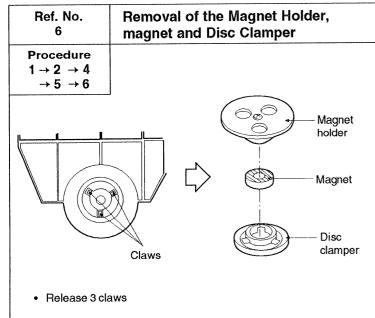
Tuner section

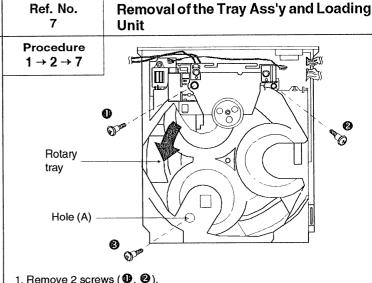
- CD display mode select button (CD DISPLAY)
- **2 3 4 5 6 7** FM mode/beat proof button (FM MODE/BP)
- **Setting button (SET)**
- Tuning/CD skip dial (TUNING/CD SKIP)
- Input select buttons (TAPE, AUX, CD)
- Tuner/band select button (TUNER/BAND)
- Tuning mode select button (TUNING MODE)

Compact disc changer section

- (1) Repeat button (REPEAT)
- 2 Random play button (RANDOM)
- 3 Disc buttons (DISC 1, DISC 2, DISC 3)
- Skip/search buttons (|◀◀/◀◀ , ▶▶/▶▶|)
- 4 5 6 7 8 Disc tray open/close button (≜ OPEN/CLOSE)
- Stop button ()
- Pause button ([][])
- Play button (>)
- Compact disc edit recording buttons (J.FIT, ALBUM, LAST FADE)

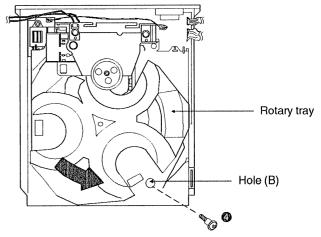

MDISASSEMBLY INSTRUCTIONS


Warning: This product uses a laser diode. Refer to caution statements on page 2.


ACHTUNG: Die lasereinheit nicht zerlegen.

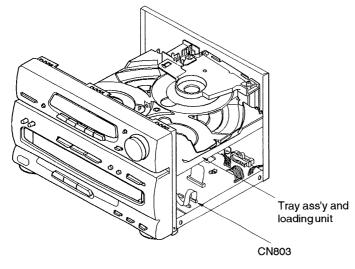
Die lasereheit dart nur gegen eine vom hersteller speziferte einheit ausgetauscht werden.

"ATTENTION SERVICER" Some chassis components may have sharp edges. Be careful when disassembling and servicing.



- 1. Remove 2 screws (10, 22).
- 2. Rotate the ratary tray to the position that can be confirmed the hole (A).
- 3. Remove 1 screw (3).

Ref. No.


Note:

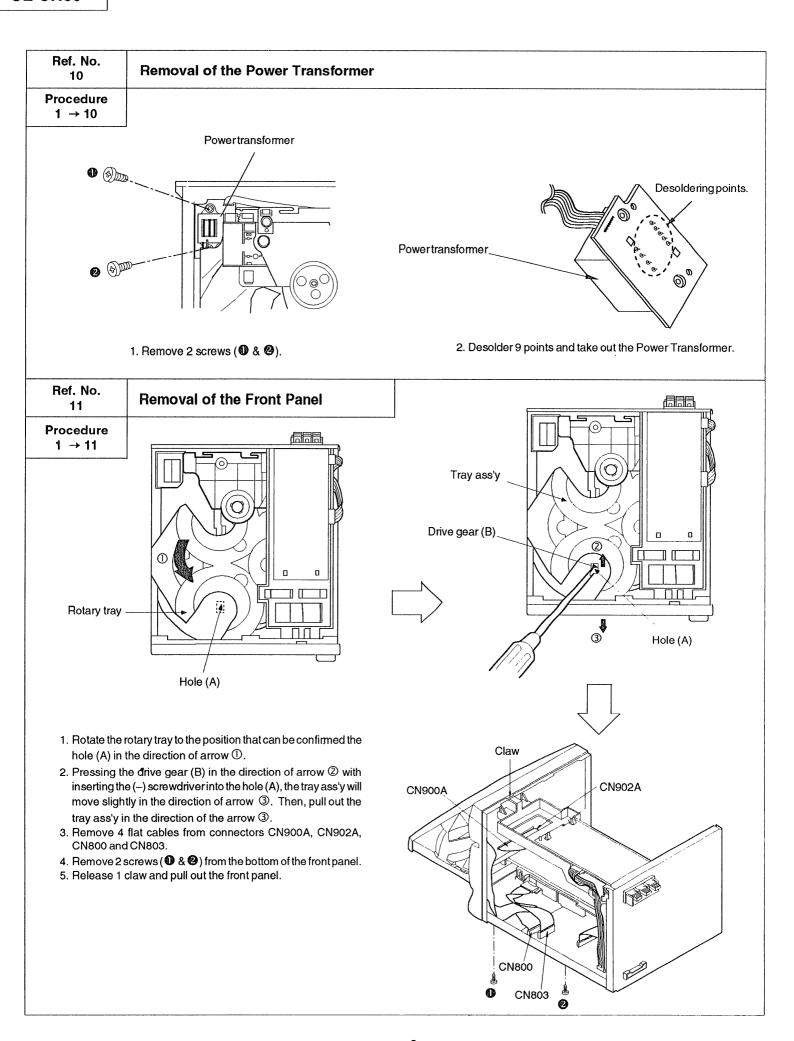
In case that screw @ cannot be removed due to narrowness of hole (A), refer to the instruction of Ref. No. 13, remove the tray base, and remove screw 8.

- 4. Rotate the ratary tray to the further position that can be confirmed the hole (B).
- 5. Remove 1 screw (4).

Ref. No.

6. Lift up the tray ass'y and the loading unit and then remove 1 wire connector CN803.

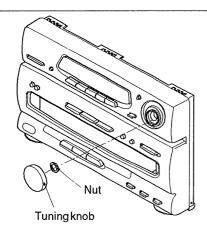
Removal of the Rotary Lock Lever

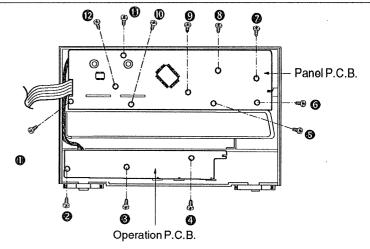

Ref. No.

8

Procedure 1 → 2 → 4 → 5 → 8	Remove the spring. Release the claw.
	Claw
	Rotary lock lever

Procedure 1 → 2 → 3	Remove 3 cables from connectors CN800, CN803 and CN900B.
→ 9	2. Remove 2 screws (& 2).
	3. Remove the cable W801A by desoldering it.
	0
	W801A
_	CN900B
	CN803
•	

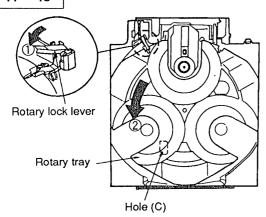

Removal of the Main P.C.B.



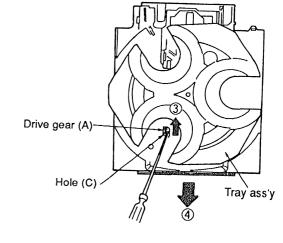
Ref. No. 12

Removal of the Panel P.C.B. and Operation P.C.B.

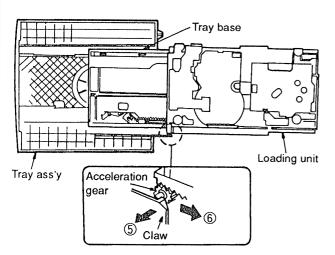
Procedure 1 → 11 → 12

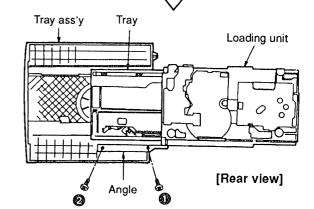

- 1. Remove the tuning knob with a flat head (-) screwdriver.
- 2. Unscrew the nut.

3. Remove 12 screws (~ (2)).

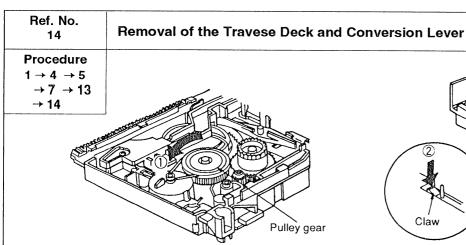

Ref. No. 13

Removal of the Loading Unit and Tray base

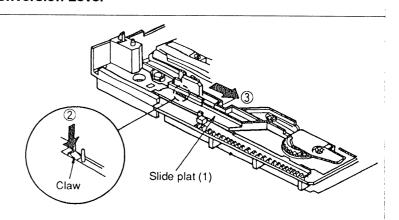

Procedure 1 → 11 → 13


 \Diamond

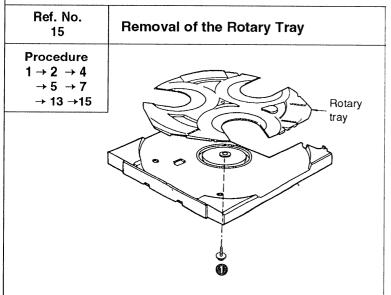
 While pressing the rotary lock lever in the direction of arrow and then rotate the rotary tray to the position that can be confirmed the hole (C) in the direction of arrow arrow . 2. Pressing the drive gear (A) in the direction of arrow ③ with inserting the (-) screwdriver in the hole (C), the tray ass'y moves slightly in the direction of arrow ④. Then, pull the tray ass'y in the direction of arrow ④.

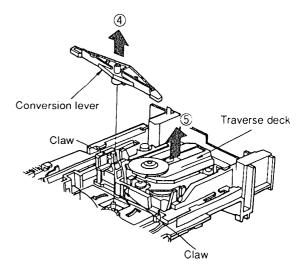


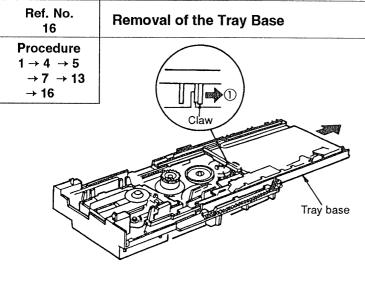
 \Diamond

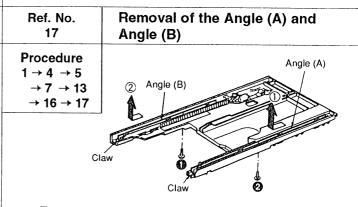


5. Release the claw in the direction of arrow (5) and then remove the acceleration gear in the direction of arrow (6).


- 1. Remove the 2 screws (1), 2).
- 2. Remove the angle.

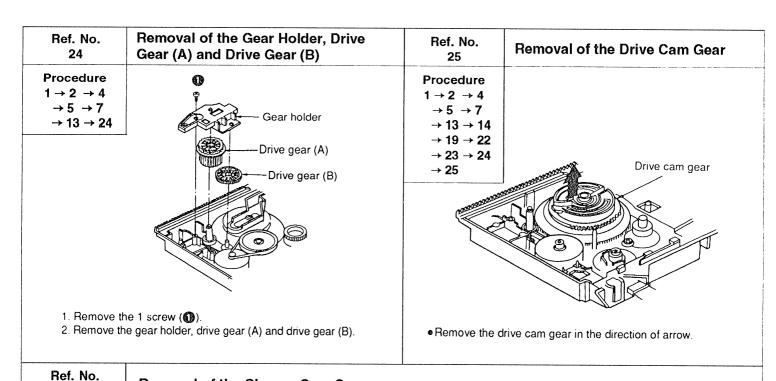

 Rotate the pulley gear to full position in the direction of arrow ①.


2. Push the claw in the direction of arrow ②, and then move the slide plate (1) in the direction of arrow ③.


• Remove the 1 screw (1).

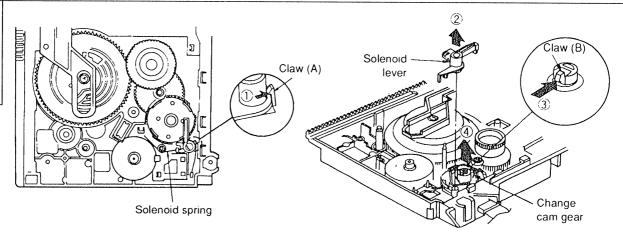
- 3. Remove the conversion lever in the direction of arrow 4. Release the claw and then remove the traverse dock in
- 4. Release the claw and then remove the traverse deck in the direction of arrow ⑤.

• Release the claw in the direction of arrow ① and then remove the tray base in the direction of arrow ②.

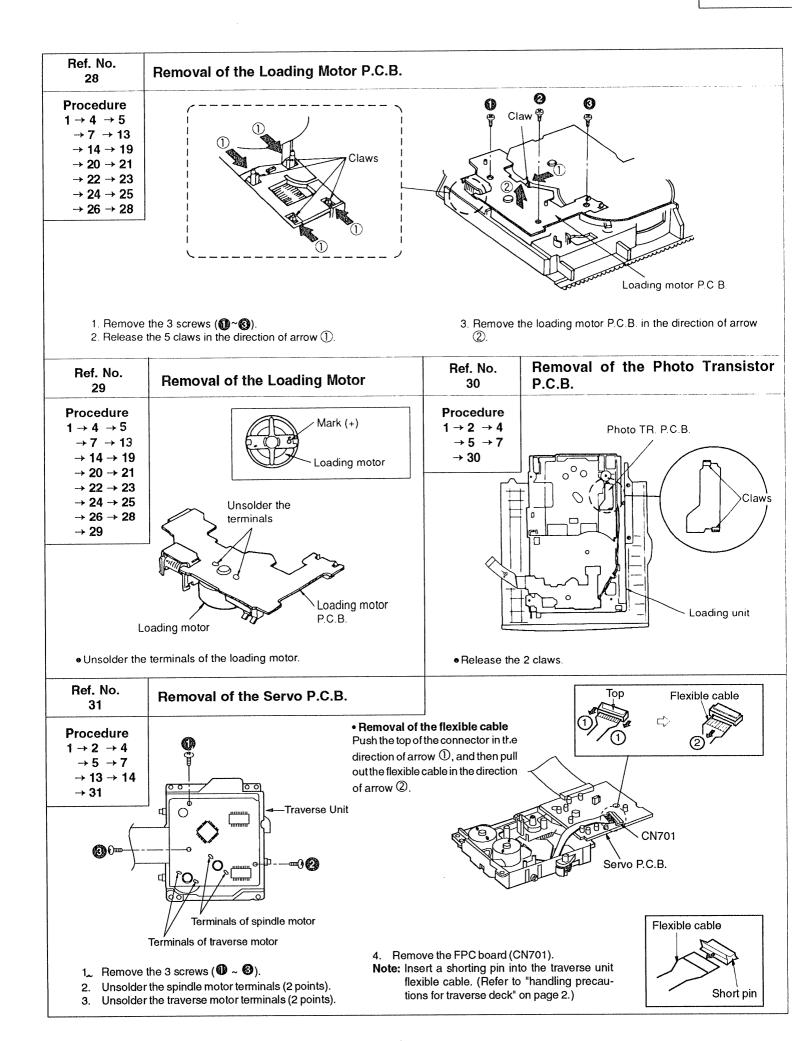

■ Removal of the angle (A)

- 1. Remove the 1 screw (1).
- 2. Release the claw and then remove the angle (A) in the direction of arrow (1).

Removal of the angle (B)


- 1. Remove the 1 screw (2).
- 2. Release the claw and then remove the angle (B) in the direction of arrow ②.

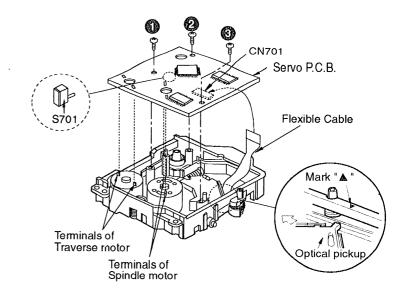
Ref. No. 18	Removal of the Tray Lock Lever and Lock Gear	Ref. No. 19	Removal of the Slide Plate (1)
Procedure 1 → 4 → 5 → 7 → 13 → 16 → 18		Procedure $1 \rightarrow 2 \rightarrow 4$ $\rightarrow 5 \rightarrow 7$ $\rightarrow 13 \rightarrow 14$ $\rightarrow 19$	
1. Remove	Rotary lock spring Tray lock spring the rotary lock spring and tray lock spring. Lock gear		
	Tray lock lever	1. Remove the 2. Remove the	Slide plate (1) 1 screw (1). slide plate (1) in the direction of arrow.
2. Remove	the 1 screw (1).		
Ref. No. 20	Removal of the Slide Plate (3)	Ref. No. 21	Removal of the Slide Plate (2)
Procedure 1 → 4 → 5 → 7 → 13 → 14 → 20	1 Slide plate (3)	Procedure $1 \rightarrow 4 \rightarrow 5$ $\rightarrow 7 \rightarrow 13$ $\rightarrow 13 \rightarrow 14$ $\rightarrow 20 \rightarrow 21$	Slide plate (2)
	de plate (3) in the direction of arrow ①, and e it in the direction of arrow ②.		the direction of arrow ①, and then plate (2) in the direction of arrow ②.
Ref. No. 22	Removal of the Pulley Gear	Ref. No. 23	Removal of the Oscillating Gear
Procedure 1 → 4 → 5 → 7 → 13 → 22	Claws	Procedure 1 → 4 → 5 → 7 → 13 → 23	Claw
1. Remove the	Belt Pulley gear		Oscillating gear
	2 claws and then remove the pulley gear in		w in the direction of arrow $\textcircled{1}$ and then llating gear in the direction of arrow $\textcircled{2}$.


Removal of the Change Cam Gear

Procedure $1 \rightarrow 2 \rightarrow 4$ $\rightarrow 5 \rightarrow 7$ $\rightarrow 13 \rightarrow 14$ $\rightarrow 20 \rightarrow 22$ $\rightarrow 26$

1. Remove the solenoid spring.

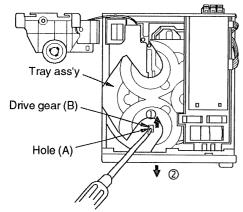
	claw (A) in the direction of arrow ① and then solenoid lever in the direction of arrow ②.	3. Release the claw in the direction of arrow ③ and then remove the change cam gear in the direction of arrow ④.	
Ref. No. 27	Removal of the Reduction Gear and Gear Lever		
Procedure $1 \to 4 \to 5$ $\to 7 \to 13$ $\to 14 \to 19$ $\to 20 \to 22$ $\to 23 \to 24$ $\to 25 \to 26$ $\to 27$	Sprin	Reduction gear	
	 Remove the spring. Remove the 1 screw (1). 	3. Remove the reduction gear in the direction of arrow ①.4. Turn the gear lever in the direction of arrow ②, and then remove it in the direction of arrow ③.	

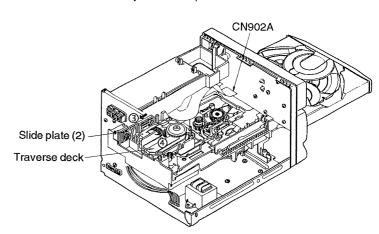


INSTALLING THE SERVO P.C.B.

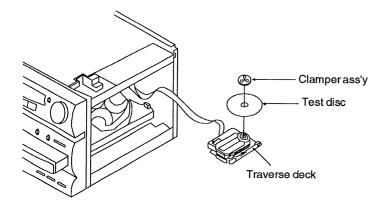
- - [Otherwise, the rest detect switch (S701) mounted on the servo P.C.B. may be damaged.]
- Connect the flexible cable to the connector (CN701).
- Install the servo P.C.B. in the traverse deck unit with the three screws.
- Solder the two terminals of the traverse motor and the two terminals of the spindle motor.

Note: Connect the flexible cable to the connector (CN701) firmly.


Tighthen the 3 screws before soldering the terminals.

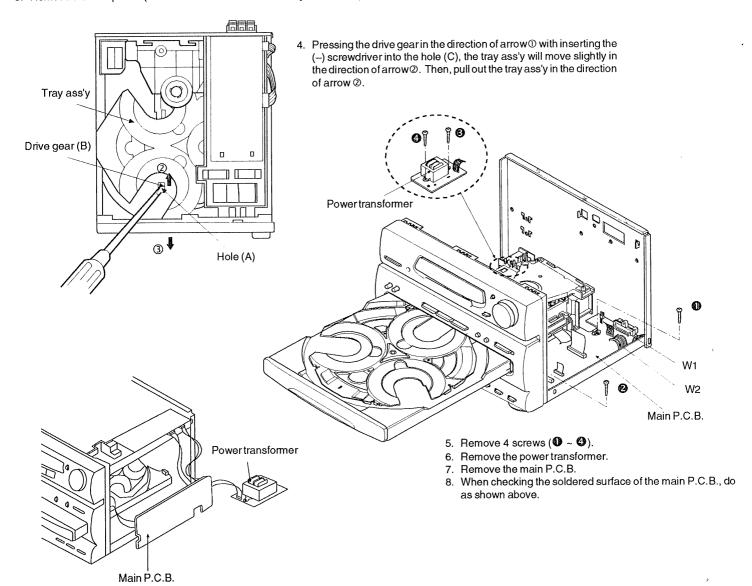

M HOW TO CHECK THE SERVO AND MAIN P.C.B.

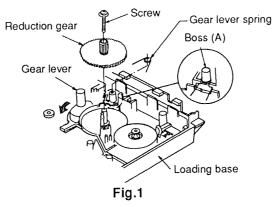
M CHECK THE SERVO P.C.B.


- Remove the cabinet. (See Ref. No. 1 of the disassembly instructions.)
- 2. Remove the clamp plate. (See Ref. No. 5 of the disassembly instruction.)
- 3. Remove the magnet holder, magnet and disc clamper. (See Ref. No. 6 of the disassembly instruction.)


4. Pressing the drive gear (B) in the direction of arrow ① with the inserting the (–) screwdriver in the hole (A), the tray ass'y will move slightly in the direction of arrow ②. Then, pull out the tray ass'y in the direction of arrow ②.

- 5. Remove the connector CN902A.
- 6. Pressing the slide plate (2) in the direction of arrow ③, and then remove the traverse deck in the direction of arrow ④.


- 7. Place the test disc and secure it by using the clamper ass'y.
- 8. Restore the tray ass'y.
- Reconnect the connector CN902A.


10. When checking the soldered surface of the servo P.C.B., do as shown above.

M CHECK THE MAIN P.C.B.

- 1. Remove the cabinet. (See Ref. No. 1 of the disassembly instruction.)
- 2. Remove the tuner P.C.B. and tuner P.C.B. support. (See Ref. No. 2 of the disassembly instruction.) **Note**: Do not remove the connectors CP1 and CP2.
- 3. Remove the rear panel. (See Ref. No. 3 of the disassembly instruction.)

■ INSTALLATION OF THE LOADING COMPONENTS

- 1. Install the gear lever on the loading base and then slide the gear lever in the direction of arrow ①. (See Fig.1.)
- 2. Install the reduction gear and secure it with a screw. (See Fig.1.)
- 3. Install the gear lever spring to the boss (A). (See Fig.1.)

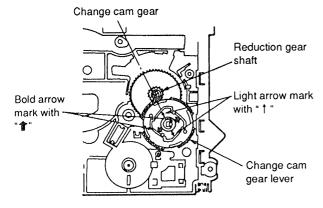


Fig.2

 Install the change cam gear. (See Fig.2.)
 Note: Align the tip of the light arrow marked with "↑" on the change cam gear with the axis of the reduction gear shaft.

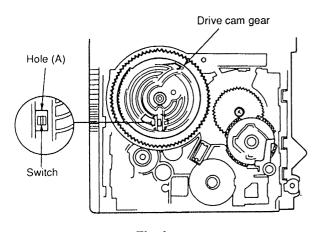
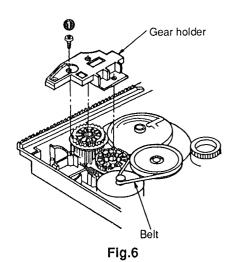



Fig.4

 Align the hole (A) of the drive cam gear with the switch, and then insert the drive cam gear. (See Fig. 4)
 Note: In case that the drive cam gear is inserted into the holes except the hole (A) of the drive cam gear, the switch may be damaged.

- 9. Install the gear holder and secure it with a screw (See Fig.6.)
- 10. Install the belt. (See Fig.6.)

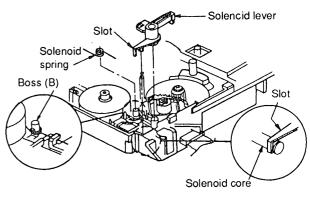


Fig.3

- Install the solenoid lever. (See Fig.3)
 Note: Align the slot of the solenoid lever with the solenoid core.
- 6. Install the solenoid spring to the boss (B). (See Fig.3.)

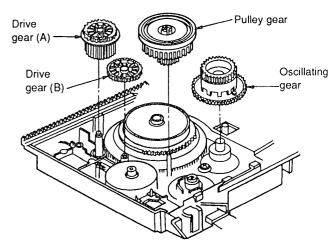


Fig.5

8. Install the drive gear (B), the drive gear (A), the oscillating gear ass'y and the pulley gear. (See Fig. 5)

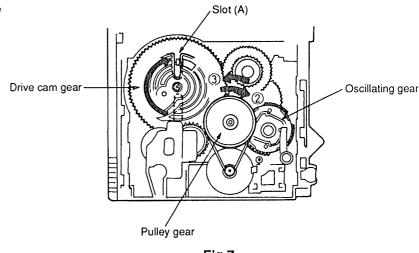
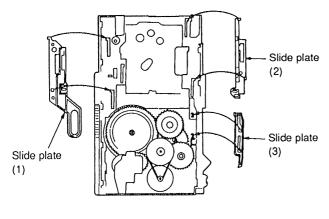
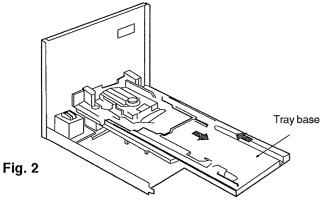


Fig.7

- 11. Rotate the pulley gear in the direction of arrow ② and then rotate the pulley gear to full position in the direction of arrow ③ when the oscillating gear stops.
- Rotate the drive cam gear so that the slot (A) of the drive cam gear is put into a given position as shown in fig.7.




Fig.8

13. Install slide plate (1), slide plate (2) and slide plate (3).

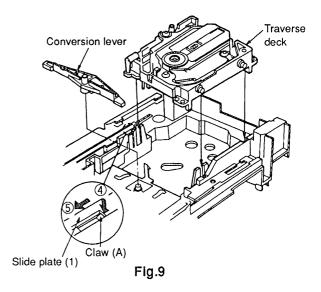
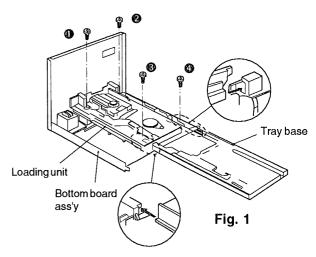
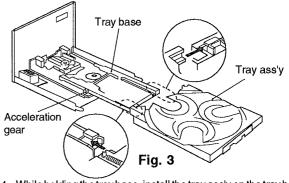


Fig.10

- 16. Push slide plate (1) in the direction of arrow ⑥, so that the catch (A) in Fig.9 engages with slide plate (1).
- 17. Secure slide plate (1) with a screw (2).
- 18. Rotate the pulley gear in the direction of arrow so that slot (A) of the drive can gear is in the position shown in Fig. 10.



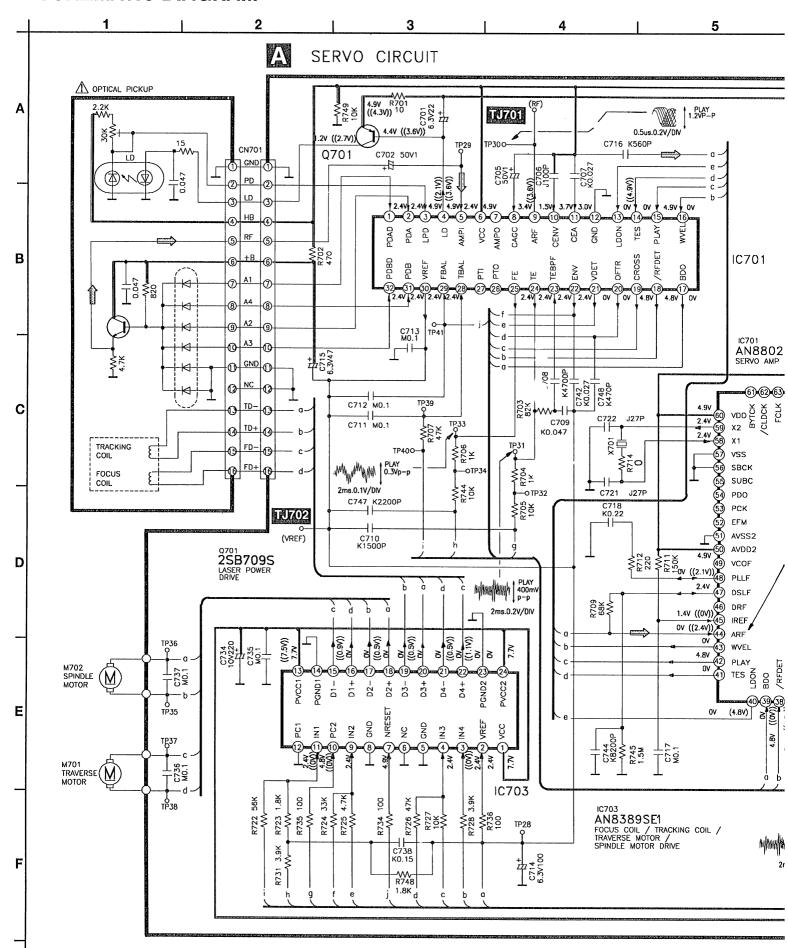
 After sliding the tray base in the direction of arrow ①, draw the tray base gradually in the direction of arrow ②. (See Fig 2.) Slide the tray base until the tray base stops.



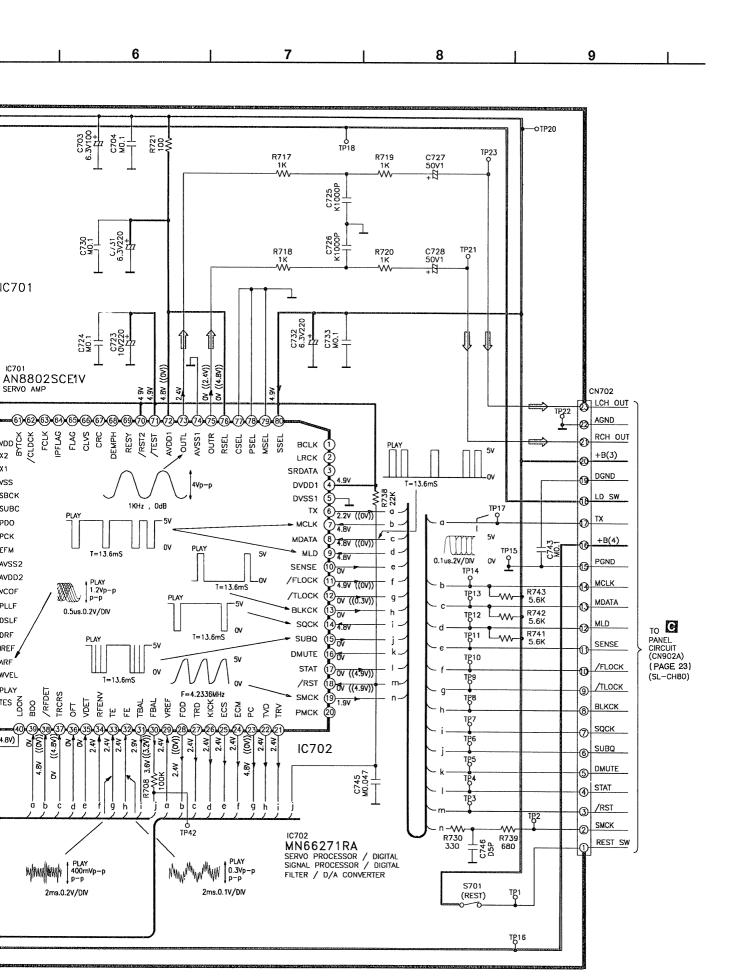
- Press catch (A) in the direction of arrow (4) and then push slide (1) of the loading unit in the direction of arrow (5). (See Fig.9)
- 15. Install the traverse deck and the conversion lever. (See Fig.9)

INSTALLATION OF THE TRAY BASE AND TRAY ASS'Y

- Install the loading unit on the bottom board ass'y and secure it with 4 screws (● ~ ●). (See fig. 1)
- 2. Install the tray base on the loading unit. (See fig. 1)



- 4. While holding the tray base, install the tray ass'y on the tray base and feed the tray ass'y slowly. (See fig.3)
- 5. After engaging the acceleration gear, release the tray base which is held and feed the tray ass'y. (See fig.3)


ting

gear

SCHEMATIC DIAGRAM

SL.

NOTES:

< For LOADING MOTOR CIRCUIT >

• S501 Traverse deck position detect switch. · S502 Disc tray full open detect switch. • S503 Disc tray half open detect switch.

< For SERVO CIRCUIT >

• S701 : Rest switch.

< For PANEL CIRCUIT >

 S901 Set switch. (SET) • S902 Tuning mode select switch. (TUNING MODE) FM mode/beatproof select switch. (FM MODÉ/BP) S903 • S904 Tuner/band select switch. (TUNER/BAND) CD function select switch. (CD) • S905 S906 AUX function select switch. (AUX)

TAPE function select switch. (TAPE) S907 CD display switch. (CD DISPLAY)
Loading tray open/close switch. (A OPEN/CLOSE) S908

• S910

CD forward skip switch. (▶▶/▶▶) S911 CD reverse skip switch. (|44/44) CD random play switch. (RANDOM) • S912 S913 • S914 CD repeat switch. (REPEAT) Disc 1 select switch. (DISC) · \$915 Disc 2 select switch. (DISC2) • S916 Disc 3 select switch. (DISC3)
Last fade edit switch. (LAST FADE) • S917 • S918 Sequential CD recording switch. (ALBUM) • S919

Fit edit switch. (J.FIT) S920 CD Play switch. (>) • S921 CD pause switch. ([][]) • S922 CD stop switch. () S923

< GENERAL >

• The voltage value and waveforms are the reference voltage of this unit measured by DC electronic voltmeter (high impedance) and oscilloscope on the basis of chassis. Accordingly, there may arise some error in voltage values and waveforms depending upon the internal impedance of the tester or the measuring unit.

< For Main circuit >

No Mark ... Tape Playback { } ... FM/MW/LW (()) ... CD ()...Other

< For Servo circuit >

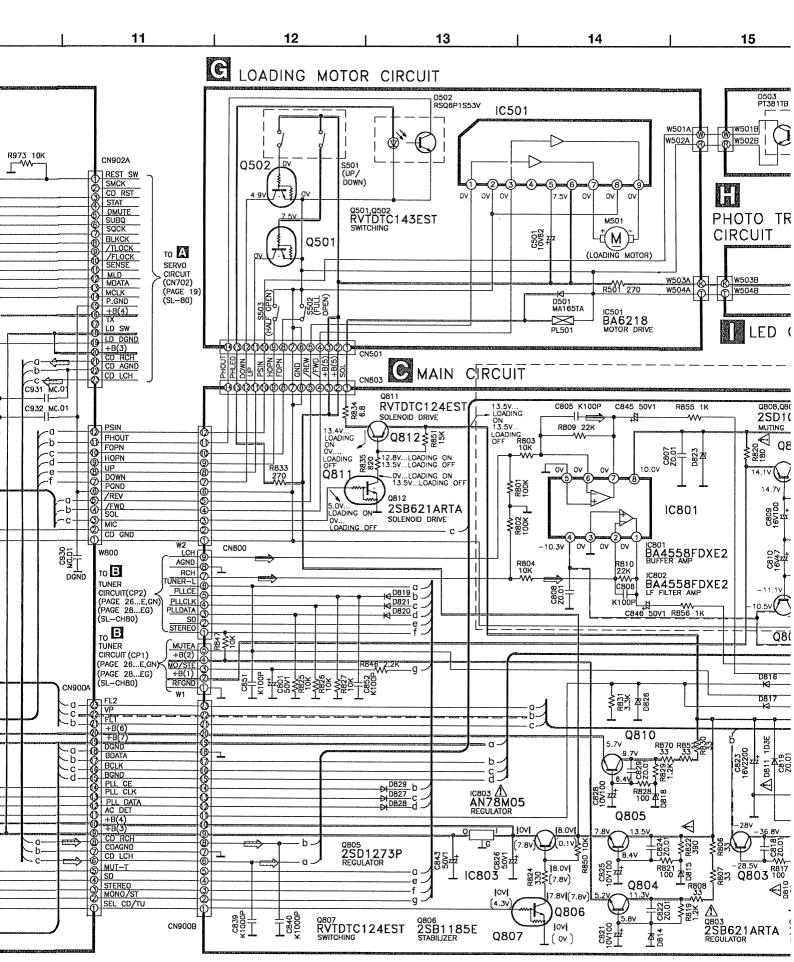
No mark ... STOP () ... Playback (Test disc 1kHz, L+R 0 dB)

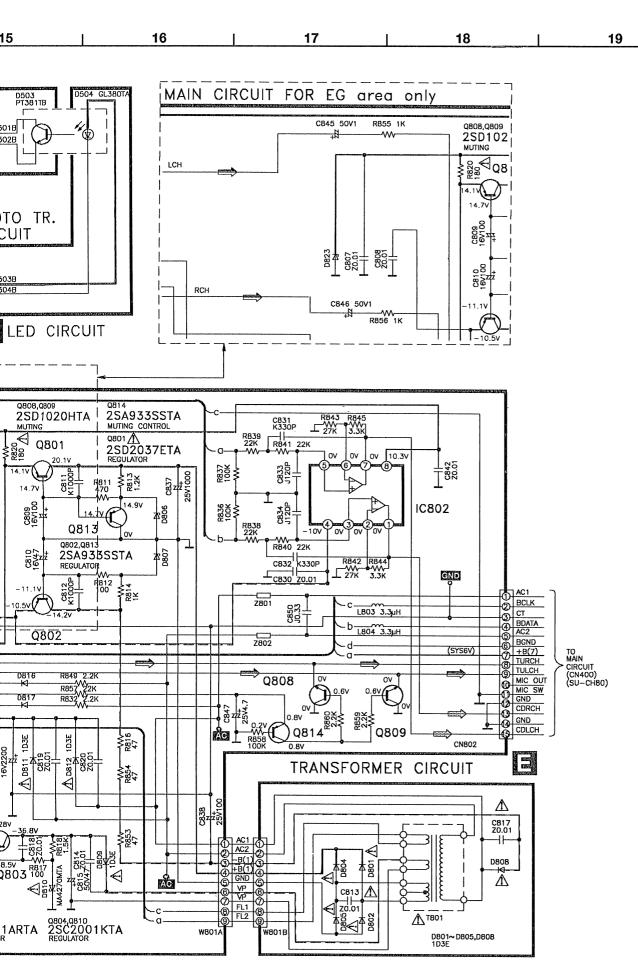
CAUTION!

IC and LSI are sensitive to static electricity.

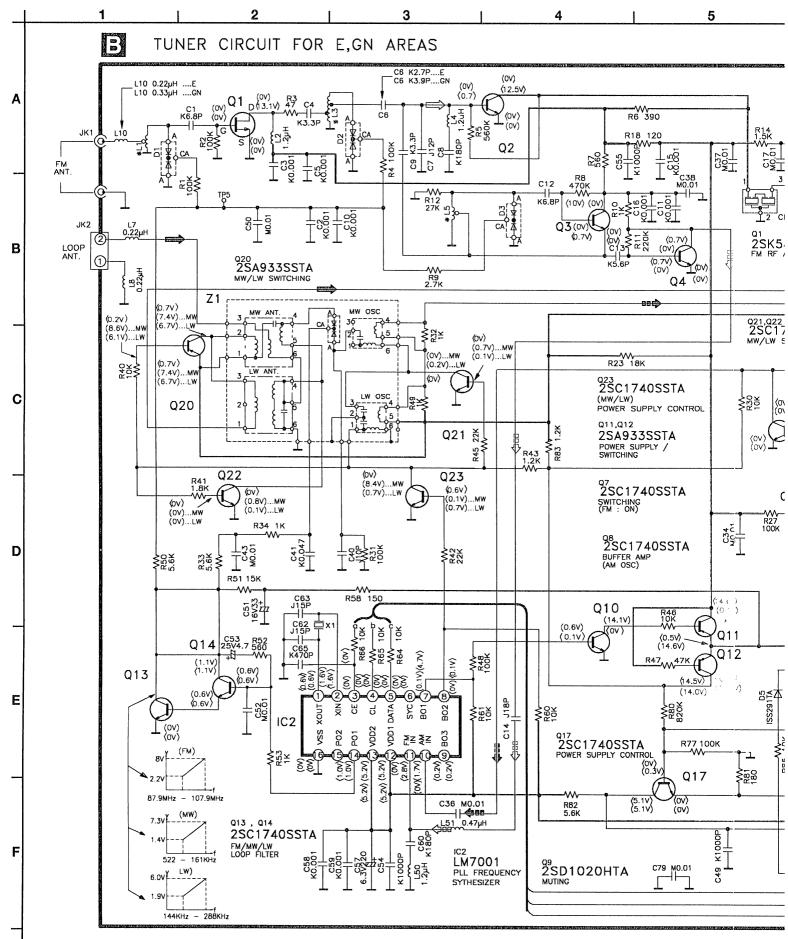
Secondary trouble can be prevented by taking care during repair.

- Cover the parts boxes made of plastics with aluminum foil.
- · Ground the soldering iron.
- Put a conductive mat on the work table.
- Do not touch the pins of IC or LSI with fingers directly.
- · Important safety notice:


Components identified by \triangle mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.


• This schematic diagram may be modified at anytime with the development of new technology.

M SCHEMATIC DIAGRAM



6 7 8 9 10 FL901 M38174M8246 CONTROL SYSTEM AND FL DRIVE FL DISPLAY (RSL0165-F) Q903,Q904 2SC1740SSTA SWITCHING R973 10 50V3.3 \$\$5 \$\$5 \$<u>\$</u>5 D934 RVDMTZ4R7BTA u m nop q r S wxy C917 D914 D913 b. D912 D910~D914 -27.5V~5V -27.5V~5V -27.5V~5V -27.5V~5V -27.5V~5V -27.5V~5V -27.5V~5V - C --27.5V~5V -27.5V~5V -27.5V~5V RVD1SS133TA D911 DI D910 IC901 C934 K1000P SEG11 🕏 SEG12 🗐 SEG14 🕸 SEG12 🗐 SEG13 🚭 Q904 SEGB (SEG9 (SEG10 ((C97 Vo (/ R933 100K C-MONO TO C93 d-MIC SW 36 OV SD 55.2V MBP2 34 4.8V MBP1 33 OV D900 R949 4.7K C918 K1000 e-0.7 R948 4.7K <u>) ov</u> VSS (32.0V XOUT (37.2.5V XIN (30.1.5V~3.5V R950 680 C921 J68P C919 J56P 4.19MHz C922 J68P 5.1V(9) KEY3
5.1V(9) KEY3
5.1V(9) KEY2
5.1V(9) KEY2 XC OUT (3) 0V~ 5V XC IN (3) 1.0V~ 3.0V RESET (3) 4.8V ACDET (8) 0V~ 5V C920 J56P)MLD/PLL CE)MCLK/PLL CLK)MDATA/PLL DATA \$83. 10¥ 10¥ C923 J22P Q903 C924 J18P SQCK
NC
SUBQ
SENSE
FLOCK
TLOCK
STATUS RST BSCKI REST SSDTI 짓 a b c . К100Р MO.01 MO.01 R969 22K R968 22K R952 10K MO.01 R945 68K W-R957 22K R954 22K R956 22K W R958 22K ¥ ₹ R965 1X R952 1C R864 R863 R863 R862 R861 R861 R860 R860 W C927 R967 T 9260 ş R929 **★** þ -a ~b̃ -~c -D901 b-D905 D902 a D904 D901~D906 RVD1SS133TA ∽b ∽e -d 0b -

SCHEMATIC DIAGRAM

6 7 8 9 C23 NO.022....E C23 ZO.022....GN C24 M0.01 C25 16V10 C26 6.3V100 R17 390 **Z**2 46.T R15 680K ₹ C18 (0.1V) (8.9V) K100F R16 820K 0.40/(0.8v) (20.8) (8.6) (8.6) (8.6) (7.0%) 7.0V) 8.6V) Q₆ Q5 Q1 2SK544F-AC FM RF AMP. C45 M0.01 IC1 2SC2786MTA ²5C2787FL1TA FM/AM DET AF IF AMP AN7273W FM/AM IF AMP DET. FM BUFFER (NZ :8) (NZ :9) (NZ :0) (NZ :9) (NZ :0) (NZ :0 (1.5V)(1.8V) (1.5V)(.5V) (ve.)(ve.1) (9.0V) (7.4V) 2SC1740SSTA Q5,Q6 POWER SUPPLY CONTROL 2SC1740SSTA 2SC2787LTA R20 8.2K πŔ R24 15K 2×3 2×3 C31 K100P C28 M0.01 C32 16V10 2SC2787FL1TA SWITCHING (FM OSC) TP2 o 246 MO.01 R28 680K ₹%₽ (0V) (0V) %80 880 880 RYDMIZSRECTA C69 16V100 (0V) (0V) (0V) (0.5V)(0.6V) Q8 C68 M0.01 <u>P-</u>2 C78 M0.015 (2.6V) (2.6V) (0.1 (0.1 (0.1 (0.1 (0.1 (0.1 (2.8v) (2.8v) 33 Q7 (1.9V) (1.5V) R27 100K (2.5V) (0.1V)) (1.9V) (0V) PHASE DET. \$ 68 ₹ 50v0.33 + HR73 +H C73 50v1 STEREO TRIGGER 255 VCO (78K) 1/2 R72 50vo.47 DETECTOR %×\$ 1/2 1/2 C66) IC3 RVIBA1332L (1.6V) (0.3V) (0.3V) (0.3V) (0.3V) (1.6v) (1.6v) 2 (0.2V) (0.1V) (0V) (0V) MO.01 TES **'**Q9 TP8 C67 J0.001 1) (0V) (0V) Ī.8 8<u>₹</u>4 ZŽŽŽ 182281 50V1 200 088 1007 1007 1007 1007 工品
6
6
5
6
6
6
6
6
6
6
6
6
6
6
6
6
7
8
9
6
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9<b CP1 5000.47 C74 C48 K1000F . C75 TGND TO 🖸 +B(1) (+15V) 885 MAIN CIRCUIT MO/ST 3 (CN1) +B(2) (+5V) 4 (PAGÉ 23) MUTEA -WV-R78 8.2K (SL-CH80) STEREO
SD
DATA _{to} C € CLK CE TUL MAIN CIRCUIT (CN2) C80 MO.01 TRCH OUT
AGND
TLCH OUT (PAGE 23) (SL-CH80) **⟨b**⟩ C64 K1000P CP2

10

10 13 11 12 14 TUNER CIRCUIT FOR EG AREA ONLY Q16,Q17 Q11,Q12 L1 2SC1740SSTA 2SA933SSTA FM IFT Ζ1 BUFFER AMP POWER SUPPLY ENV17290G1R JK1 FM ANT. 2SC1740SSTA osc BUFFER MO.01 AM EXT ANT. C73 J47P L2 0.22µH JK2 R71 120 L1 1.2µH LOOP ANT. Q4 2SA933SSTA 1 L3 0.22yH MW/LW SWITCHING **Z2** 88 (7.4V)...M (6.7V)...LW (0.2V) (B.6V)...MW ≩દ્વ≥ (6.1V)...LW (0V) (0.7V)...MW R17 18K (0V)...MW (0.1V)...LW (7 4V)...MV (6.7V)...LW (0.2V)...LW (0V) Q4 LW OSC 2SC1740SSTA POWER SUPPLY CONTROL (FM/MW/LW) Q7 C16 M0.01 ×. R22 22K %§§ R26 1.2K Q5 (8.4V)...MW ^{Q8} 2SC1740SSTA (0V) (8.4V)...MW (0.7V)...LW (0.6v) (0V) (0V)...ww SWITCHING (FM : ON)] (0.7V)...LW (0.1V)...MW (0.7V)...LW R56_1K (OV)...LW Q6 MO.01 2SC1740SSTA \$255 \$255 R51 15K ----₩ R58 (14.6V) (0.1V) Q10 R45 10K (14.1V)ξį (0.6V) (ov) ĺξ Q11 (0.1V) (0.5V) (14.6V) Q14 C53 R52 25V4.7 560 Q12 \$45 778 (1.1V) (1.1V) (0.6V) (0.6V) \$ 8° Q13 (14.5V) (0.5V) (14.0V) (14.6V) (0.6V) (0.6V) MO.52 މξ \$85 IC2 $\Gamma_{\text{(ov)}}$ 2SC1740SSTA POWER SUPPLY CONTROL £z ≨z R68 100K (FM) 8v} \$85± (0.2v) (5.2V) (5.2V) (5.2v) (5.2v) Q15 2.2V 87.9MHz 107.9MHz 7.3V (MW) C23 MO.01 (5.1V) (5.1V) (0V) (0V) R66 5.6K K1000P 57. Hugi 522 - 161KHz LM7001 6.0V/____(LW) 2SD1020HTA PLL FREQUENCY SYTHESIZER Q13 , Q14 1 9V 2SC1740SSTA FM/MW/LW LOOP FILTER 144KHz - 288KHz

15 16 17 18 19 C11 MO.01 **Z3** R4 820K → W (10V) (0.1V) _ 12.6ĕ 14.6ĕ K1000P (0.7V) (0.1V) (0.1V) (0.7V) IC1 Q1,Q2 2SC2787LTA FM IF AMP Q2 AN7273W FM/AM IF AMP, DET. (1.50)(6.50) (9,00) (4,4,4) (9,00) (4,6,7) (8,20) (8,20) (0.1VXOV) (9.0V) (7.4V) R10 (1.5V) ... 2SC1740SSTA C17 J15P POWER SUPPLY CONTROL TEA R9 15K £×\$ C21 K100P C19 M0.01 11220 R13 680K \$<u>2</u>5 (0V) (0V) C36 MO.01 848 680 R74 680K R76 2.2K Q3 (0.5V)(0.6V) C40 M0.015 C47 M0.01 RVIBA1332L C42 50V1 R42 1K £.£.700 Q16 \$8°. Q8 (5.9V) (5.9V) 2.60 R72 100K (2.5V) (0.1V) \$\frac{2}{5}\frac{2}\frac{2}{5}\f (2.84) કું ફુ 66. 3.3.3. 3.6 38 288 T **888** ★ (ov) R35 1¥ TP4 0 C27 K470P #J 858 R34 v PHASE DET. PHASE 1SF Q17 680K R77 2.2K STEREO SWITCH 5071 50vo.33 +# TRIGGER 1/2 VCO (78K) 50V0.47 R41 1K C32 Lв DETECTOR R39 5.6K 1/2 1/2 8.2mH C34 (0.1V) C33 IC3 252 C45 K0.0082 (0.3%) (0 Q11 TP8 Q12 (0.17) (0V) (0V) **♦ 1153** C70 (0.5v) 'Q9 ⋛ġ (0V) (0V) C41. 50V1 K1000P R50 R36 5.6K 692 TGND (1) +B(1) (+15V) (3) MO/ST CP1 5000.47 5000.47 R69 L 270 D5 RVD1SS133TA _{TO} C MAIN CIRCUIT 7.48 Т 1000Р (1) +B(2) (+5V) (CN1) D6 RVD1SS133TA R70 5.6K -VVV-(PAGE 23) (SL-CH80) MUTEA STEREO SIEREO
SD DATA
DATA
CLK
CE
TUL
TRCH OUT
AGND
TLCH OUT
CP2 то 🖸 MAIN CIRCUIT (CN2) (PAGE 23) (SL-CH80) C64 M0.01 **(b)** CP2

NOTES:

< For TUNER CIRCUIT >

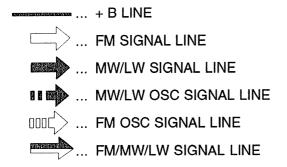
• VR1 : FM stereo adjustment

 The voltage value and waveforms are the reference voltage of this unit measured by DC electronic voltmeter (high impedance) and oscilloscope on the basis of chassis.
 Accordingly, there may arise some error in voltage values and waveforms depending upon the internal impedance of the tester or the measuring unit.

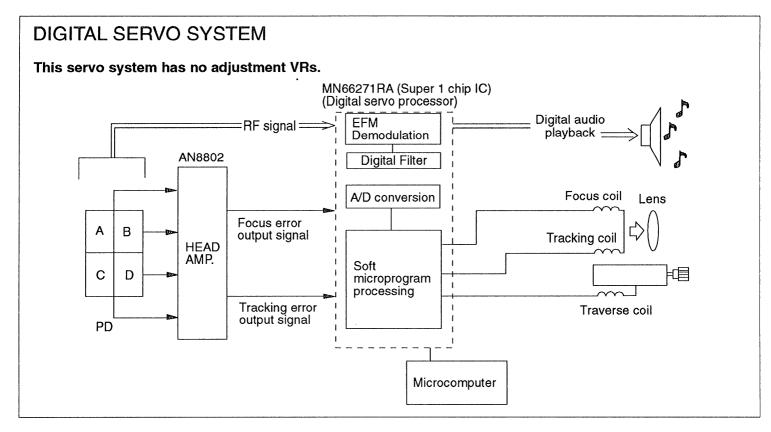
< For Tuner circuit >

No mark ... Tape playback < >... FM () ... MW/LW

CAUTION!

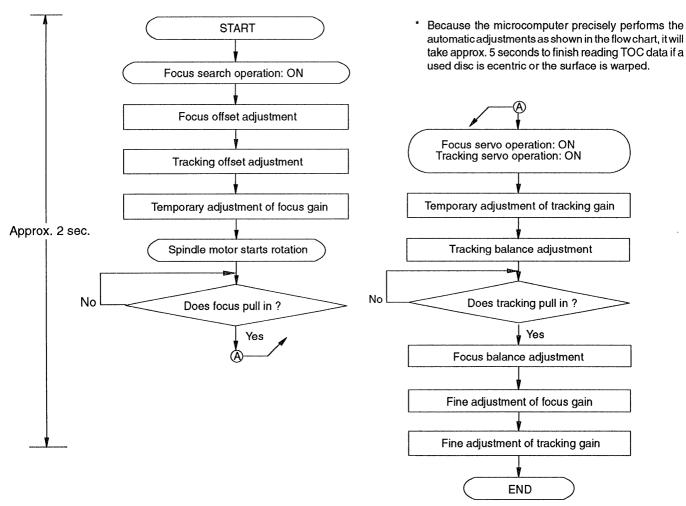

IC and LSI are sensitive to static electricity.

Secondary trouble can be prevented by taking care during repair.


- Cover the parts boxes made of plastics with aluminum foil.
- Ground the soldering iron.
- Put a conductive mat on the work table.
- Do not touch the pins of IC or LSI with fingers directly.
- Important safety notice:

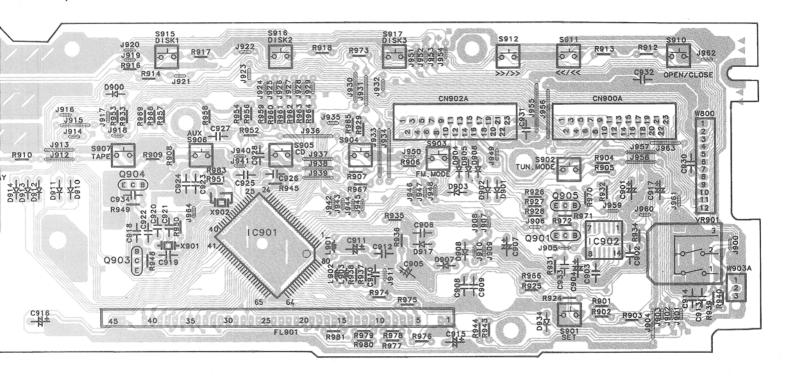
Components identified by \triangle mark have special characteristics important for safety. When replacing any of these components, use only manufacturer's specified parts.

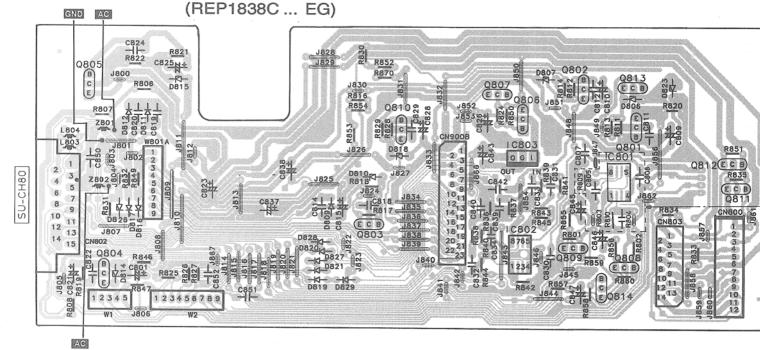
• This schematic diagram may be modified at anytime with the development of new technology.



M DIGITAL SERVO SYSTEM

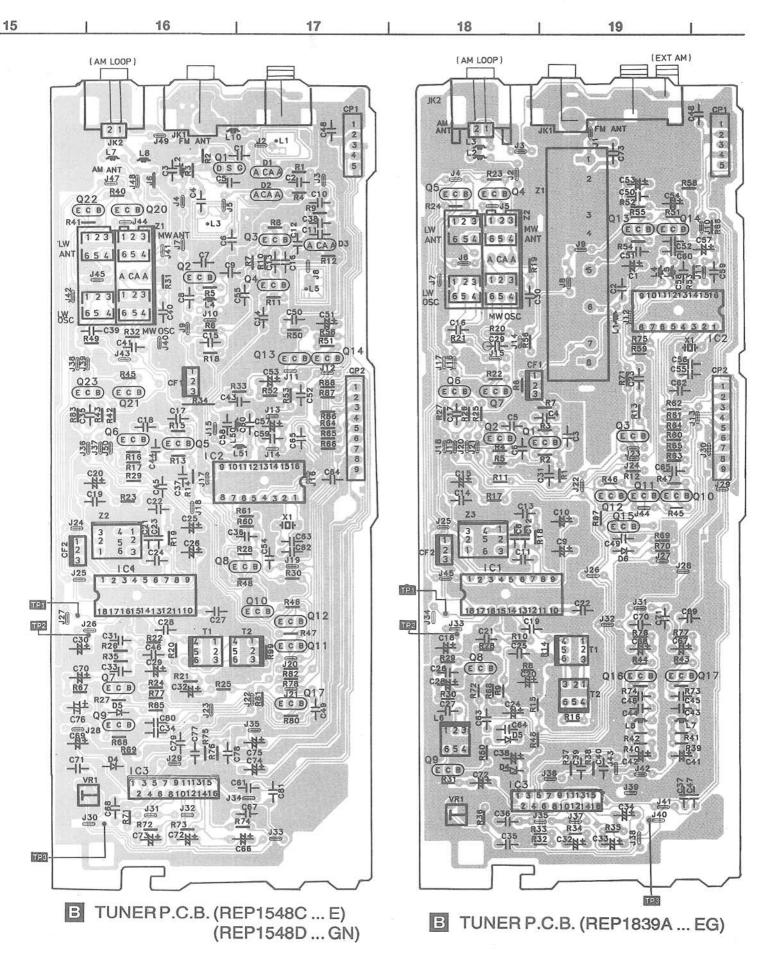
The following flow chart shows the sequence of automatic adjustments.

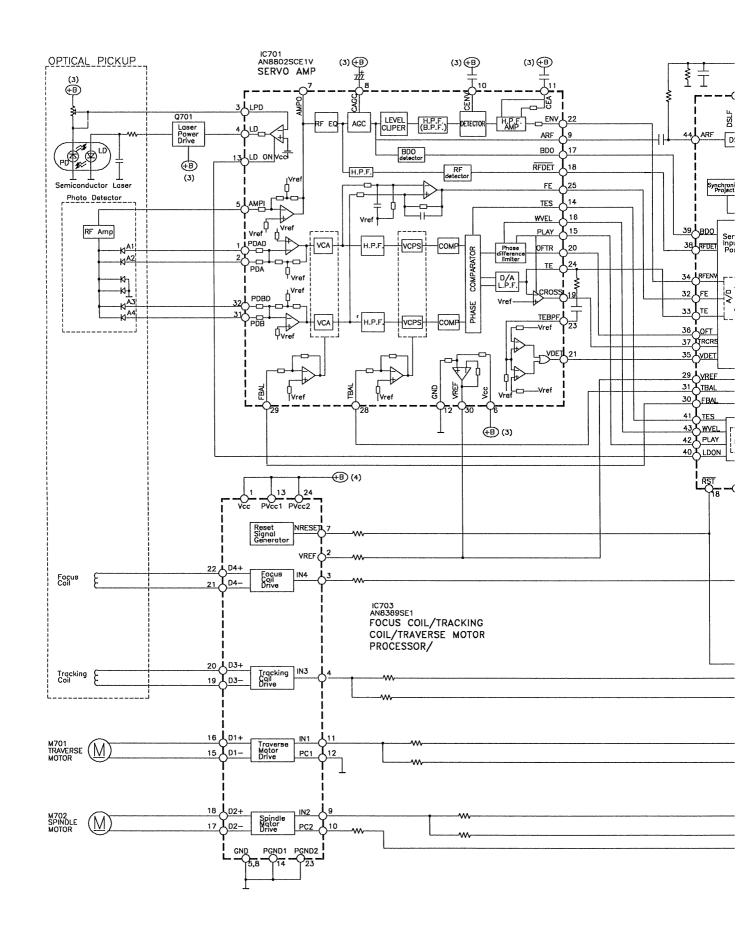

• Flow chart on automatic adjustment sequence

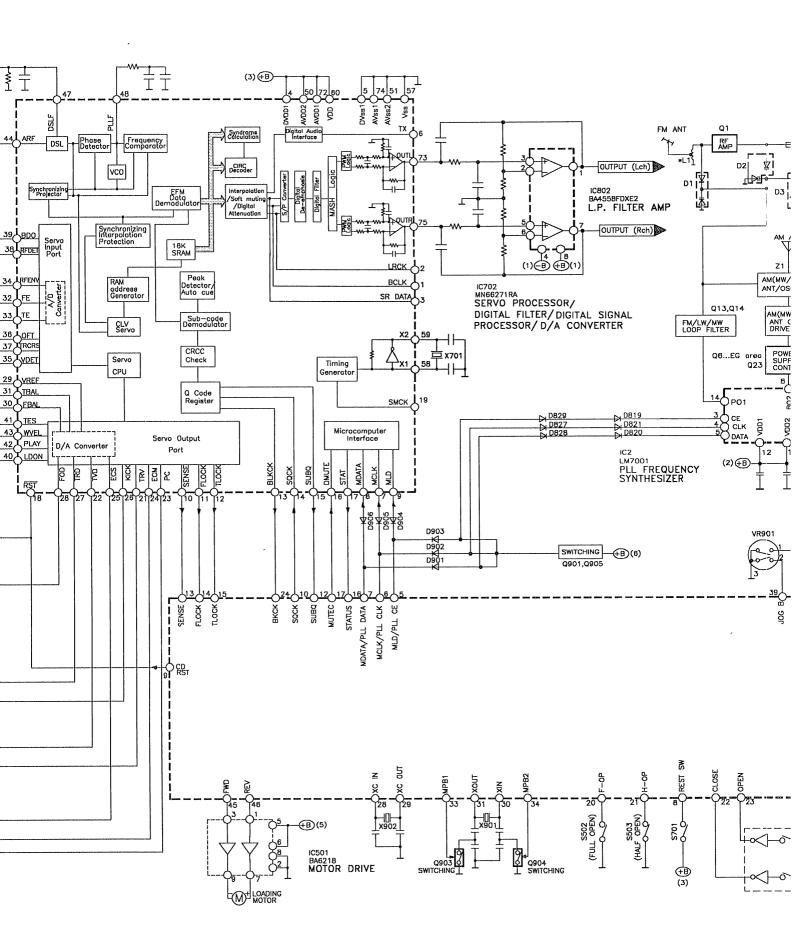

PRINTED CIRCUIT BOARD

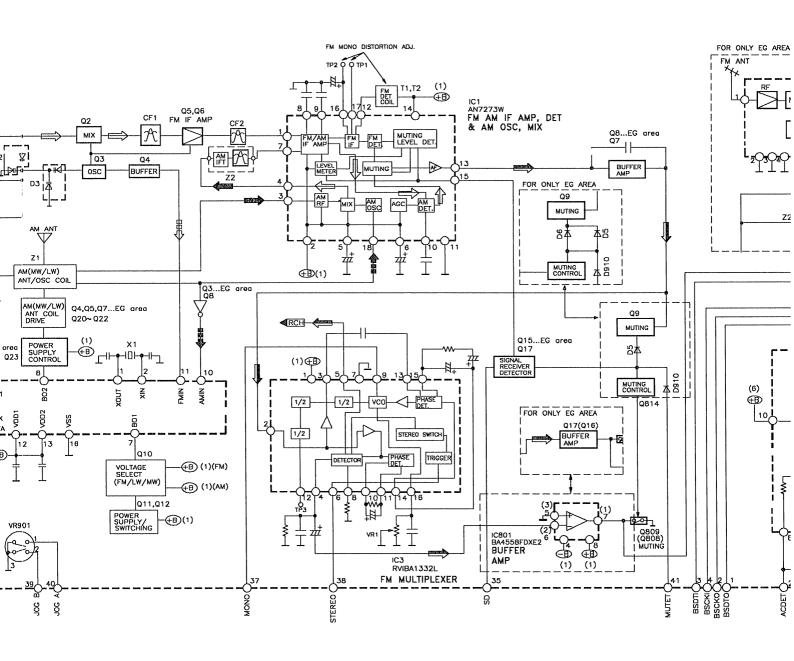
2 1 3 5 D PANEL P.C.B. (REP1836 (RF) A SERVOP.C.B. (REP1650A-N) TJ701 Α -IOI-TP18 R702 5908 CN702 RJ714 23 22 20 10702 B 19 18 17 16 818181 12161 C732 ●TP40 R749 C CN701 C 16 14 12 10 8 6 4 2 BBH97531) (VREF) TJ702 TPI4 TRI3 TP2 TPI MOTOR) **RJ716** RJ717
TP38 1P37 C737
TP169 8 1P37 C737 10703 C736 TP35 M J5 20 24 (TRAVERSE MOTOR) D OPERATION P.C.B. (REP1836D) S918 E 0 0 0 0 R923 ALBAM LAST FADE 123

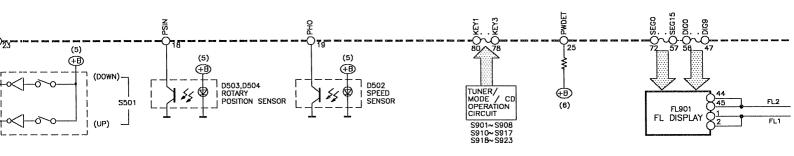
P1836D)

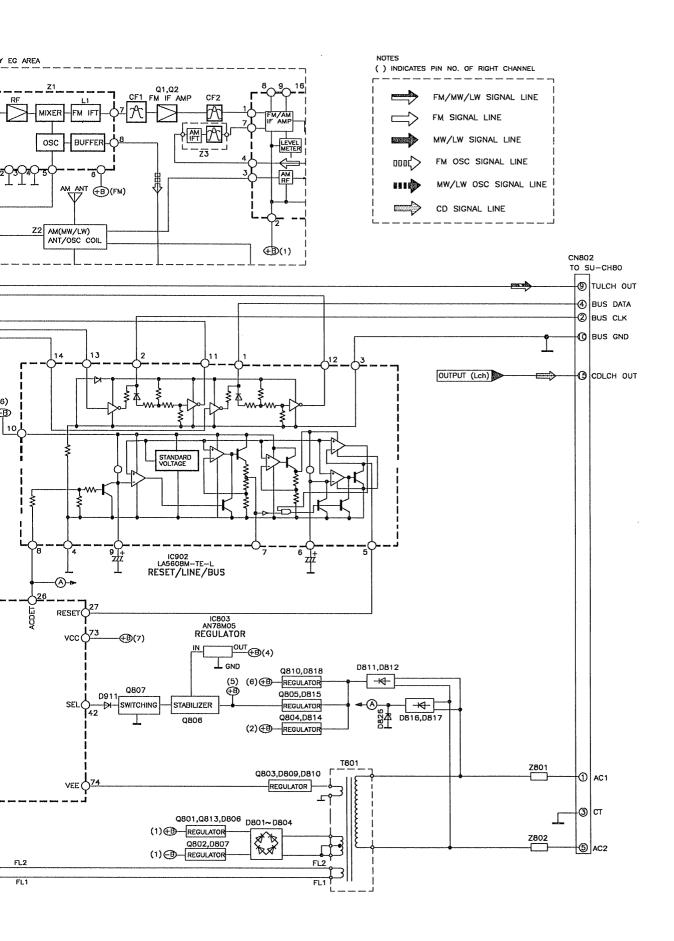





11 12 13 14 15 G LOADING MOTOR P.C.B. Q501 B C E 1 2 3 4 5 6 7 8 9 ① W504A .®W502A W501A S503 S503 S502 PHOTO TR. **⊗** W503A P.C.B. W W501B (R) W502B 5501 \$501 D503 I LED P.C.B. For EG area only TP1 TP2 Q802 R820 R851 R851 2ECB 0812 (E C B) R835 R835 E C B Q811 CN800 987654321 TT4482778 TP3-


TRANSFORMER P.C.B. (REP1838B ... E, GN) (REP1838C ... EG)


BLOCK DIAGRAM



IC901 M38174M8246 SYSTEM CONTROL & FL DRIVE

• FL Display will black out.

lighted up one by one.

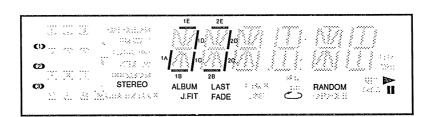
• FL Display will have its segment

MGENERAL INSPECTION

2. To check for all connection and

FL Display connection.

FUNCTION	CHECKING	REMARKS
1. To enter TEST MODE.	Press the "CD" key to select CD position. Press the " (CD STOP) key on the SL-CH80 unit, then simultaneously press the "REPEAT" key on the SL-CH80 unit for about 2 seconds.	All segments of FL display will light up.
	T 2 3 CANCEL AM FMSW12 T 5 6 TOTAL MW ATLS LW MHZ T 6 0 PROGRAM STEREO ALBUM LAST TRACK No. RANDOM KARAOKE TRACK CHARACKE TRACK No. RANDOM KARAOKE TRACK CHARACKE TRACK	

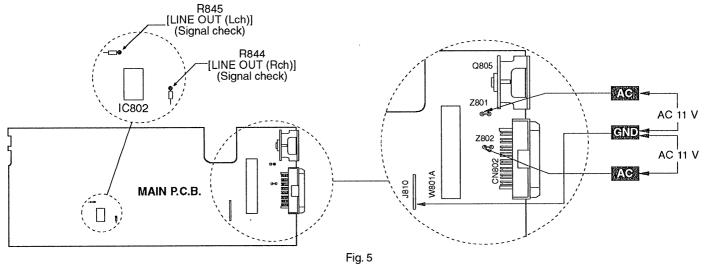

• Press every key(except "CD DISPLAY" and "SET" keys) on the SL-CH80

• The chart below summarizes the Display segment corresponding

• Press the "CD DISPLAY" key on the SL-CH80 unit.

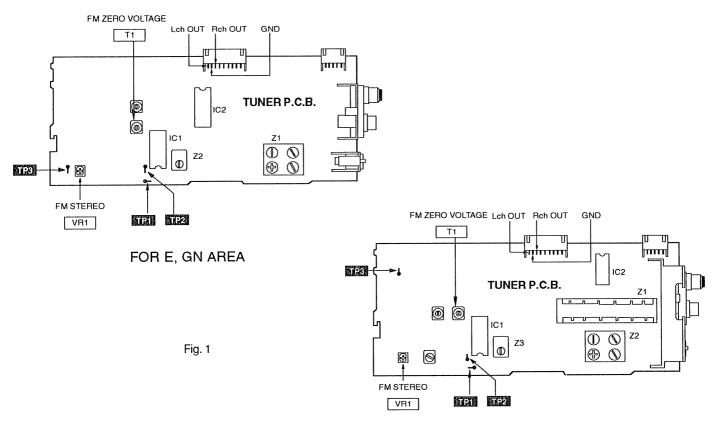
unit one by one.

	to each key pressed.		
Segment Light Up	Key Pressed (From SL-CH80 unit)	Segment Light Up	Key Pressed (From SL-CH80 unit)
<u> </u>	REPEAT	2C	144
RANDOM	RANDOM	(3)	DISC3
2B		(2)	(DISC2)
00	00	(1)	DISCI
\triangleright	\triangleright	1A	TAPE
J.FIT	J.FIT	1B	AUX
ALBUM	ALBUM	1C	CD
LAST FADE	LAST FADE	1D	TUNER/BAND
2E	▲ OPEN/CLOSE	STEREO	FM MODE/BP
2D	ÞÞI	1E	TUNING MODE


1		1
3. To check for tuner auto tuning.	 Press the "TUNER/BAND" key to select "TUNER" position. Press the "□" (CD STOP) key on the SL-CH80 unit, then simultaneously press the "TUNER/BAND" key for about 2 seconds. Press the " ◄◄/◄◄ " or " ▶▶/▶▶ " on the remote control transmitter. 	"C-3" will appear on the FL display for about 2 seconds. Tuner band will set to "FM" and start to auto tuning in each direction.
4. To exit from TEST MODE.	 Press the Power key on the SU-CH80 unit, or press the " □" (CD STOP) on the remote control transmitter, or press the "SET" key on the SL-CH80 unit, or pull out the Power Supply Plug. Pull out the Power Supply Plug to set the "COLD START" from the above TEST MODE. (The memory will be set to the initial condition on the next AC power on.) 	

MEASUREMENTS AND ADJUSTMENTS

- This unit (SL-CH80) is actuated by power supply from the cassette deck/amplifier SU-CH80. If you wish to actuate this unit without using the cassette deck/amplifer SU-CH80 for checking or repairing, follow below procedure
 - Apply AC 11 V between (Z801) (END) (J810) (Z802).


To Check Signals

Connect the oscilloscope or the speaker with built-in amplifier to the section between LINE OUT (Lch) of the resistor R845 and the GND point of the jumper J810 as well as the section between LINE OUT (Rch) of the resistor R844 and the GND point of the jumper J810 and check if the signals are outputing from this unit. (Shown in Fig. 5)

MALIGNMENT POINTS

< TUNER SECTION >

FOR EG AREA

M TUNER SECTION

Control positions and equipment used

- FM signal generator (FM-SG)
- Coil (100 μH)
- · Distortion analyzer
- Dummy antenna (75Ω unbalanced)

Measurement condition

- Volume control..... maximum
- Equalizer control.....flat

Please refer to Fig. 1 for the adjustment points.

Note: For Z1 (AM ANT and OSC coil) and Z2 (AM-IFT) for E and GN area or Z2(AM ANT and OSC coil) and Z3 (AM-IFT) for EG area, they are supplied as adjusted parts. So, do not turn the cores of the parts. It is not necessary to adjust the AM circuit.

triey are supplied as adjusted parts. 30, do

• FM ZERO VOLTAGE ADJUSTMENT

- 1. Test equipment connection is shown in Fig. 2.
- 2. Set the unit to "FM MODE".
- Set the radio frequency display and signal generator to 98.1 MHz.
- 4. Adjust the core of T1 so that voltage measured in signal mode is 0 mV (0 ± 30 mV) in 300 mV range.
- Make sure that the distortion factors of L-ch and R-ch are nearly the same and minimum.

Note: The adjusting screwdriver used should be made of resin.

FM SIGNAL GENERATOR CONDITION

DC electronic voltmeter (EVM)

Digital frequency counter

Resistor (330 kΩ)

Modulation. 100%
Modulation frequency. 1kHz
Output level. 60dB

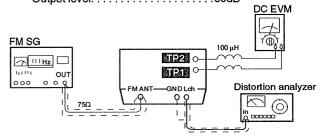
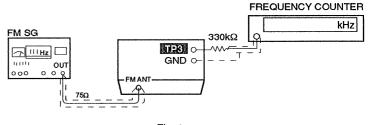
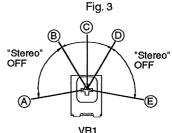


Fig. 2


• FM STEREO ADJUSTMENT (FREE RUN)


- 1. Test equipment connection is shown in Fig. 3.
- 2. Set the unit to "FM AUTO MODE" position.
- Set the radio frequency display and signal generator to 98.1MHz.
- 4. Adjust VR1 for 19 kHz ± 50 Hz on frequency counter reading.
- Tune a stereo broadcast and confirm the frequency stays at 19 kHz.

USING ALTERNATIVE METHOD

- 1. Receive the stereo broadcast.
- 2. Adjust VR 1 until stereo indicator lights up. Fix the arm of VR 1 as shown in Figure 4.

FM SIGNAL GENERATOR CONDITION

 (\widehat{A}) - (\widehat{B}) , (\widehat{D}) - (\widehat{E}) ... "Stereo" OFF position

B - **D**

... "Stereo" ON position (Indicator lights up)

(C)

... Adjust point of pilot circuit

Fig. 4

M CD PLAYER SECTION

Warning:

This product uses a laser diode. Refer to caution statements on page 2.

Caution:

It is very dangerous to look or touch the laser beam. (laser radiation is invisible)

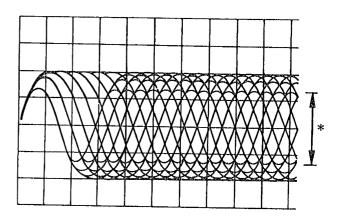
With the unit turned "on", laser radiation is emitted from the pickup lens. Avoid exposure to the laser beam, especially when performing adjustments.

Measuring Instruments and Special Tools

* Test discs

- 1. Playability test disc (SZZP1054C).
- 2. Uneven test disc (SZZP1056C).
- Musical program disc (ordinary).

- * Dual-beam oscilloscope with bandwidth of 30 MHz or better (with EXT. trigger and 1:1 probe).
- * Allen wrench (M2.0) (SZZP1101C).
- * Lock paint (RZZ0L01)


(1) MECHANICAL ADJUSTMENT

- When the traverse deck is replaced, making adjustments is not necessary. (The traverse deck ass'y is already adjusted.)
- Make adjustments to improve playability if the traverse deck has not been replaced.
- 1. Connect the oscilloscope's CH. 1 probe across [170] (RF) (+) and [1702] (V-Ref.) (-) on the servo P.C.B.

Oscilloscope setting: VOLT200mV.

SWEEP..............0.5µs. Input couplingAC.

- 2. Switch the player power **ON**, and play track **19** on the test disc (SZZ1056C).
 - (Playing any other track will prevent the HEX screws from being accessed.)
- 3. Leave the player in play mode.
- Alternately adjust the HEX screws with the 2.0mm allen wrench (SZZP1101C) until the vertical fluctuation of RF signal is minimized and the eye pattern is most stretched. (Refer to Fig. 2 on page 43)
- 5. After completing the adjustment, lock the HEX screws with lock paint (RZZ0L01).

* Most stretched eye pattern

(3) CHECK OF PLAY OPERATION AFTER ADJUSTMENT

* Checking skip Search

- 1. Play an ordinary musical program disc.
- Press the skip button to check for normal skip search operation (in both the forward and reverse directions).

* Checking Manual Search

- 1. Play an ordinary musical program disc.
- 2. Press the manual search button to check for smooth manual search operations at either low or high speed (in both the forward and reverse directions).

* Checking Playability

- Play the 0.7mm black dot and the 0.7mm wedge on the test disc (SZZP1054C) and verify that no sound skip or noise occurs.
- Play the middle tracks of the uneven test disc (SZZP1056C) and verify that no sound skip or noise occurs.

MALIGNMENT POINTS

< CD PLAYER SECTION >

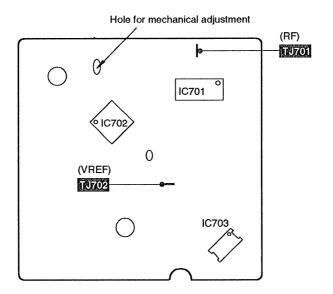


Fig.1

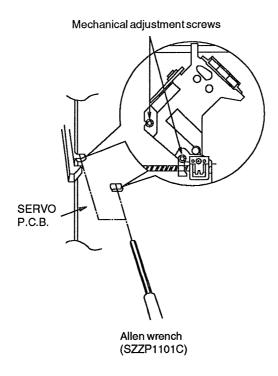


Fig.2

■ DISPLAY FUNCTIONS OF AUTOMATICALLY-ADJUSTED RESULTS (SELF-CHECK FUNCTION)

The unit contains a function which displays the result of the automatically adjustment of the servo circuits (tracking, focus servo, etc.) as an error code on the FL display.

The error code display serves as a repair guide showing the automatically adjustment circuit is at fault. The procedures for displaying the error codes are given below.

Procedures to display the error code

- 1. Check the servo P.C.B. as shown in the Disassembly Instructions, "How to check the Servo and Main P.C.B.".
- 2. Switch the unit to ON. (See page 40)
- 3. Press the "CD" key to select CD function.
- 4. Press the "□" (CD STOP) key on the unit, then simultaneously press " ▶▶/▶▶|" key for about 2 seconds.
- 5. The "C 2" will appear on the FL display for 2 seconds (self-check function mode is activated).
- 6. The "E-00" will appear on the FL display if no error is found.
- 7. The error code provides a rough indication of which servo circuit is malfunctioning.

Error code based troubleshooting

- The unit is satisfactory if the error code is **E-00**.
- Before testing, make sure that the test disc is free of scratches and dirt and optical pickup is clean.

FL error	Symptom	Symptom Probable cause		gnal to check	Normal the values of voltage and waveform	
display	Сутрют		Signal name	Location	PLAY	STOP
			MDATA	IC702 (8) pin	PLAY 4 8V T=13 6 ms 0V	4.8V
			MCLK	IC702 ⑦ pin	PLAY 4 8V T=13 6 ms 0 V	4.8V
	Focus and tracking offset	Clocks X1 and X2, power supply VDD, and reset/RST, all on	MLD	IC702 9 pin	₩₩₩ 0V T=136 ms	
E01	adjustments did not complete in the specified time period.	IC702. ② MDATA, MCLK, MLD and	SENSE	IC702 (10) pin	oV	οV
	in the opening anno penea.	SENSE signals to/from the	/RST	IC702 (18) pin	4.9V	4.9V
		mechanism controller.	X1	IC702 (58) pin	MM	M 1 1V P-P F=16 9344 MHz
			X2	IC702 (59) pin	∰ 4 8V р-р F=16 9344 MHz	MM 4 8V p-p F=16 9344 MHz
			FE	IC702 ③2) pin	PLAY 0 3V P D D D D D D D D D D D D D D D D D D	2.4V
E03 E05		Scratches or contaminants on	TE	IC702 33 pin	PLAY DPD 2ms 0 1V/DIV	2.4V
E07		disc surface.	FOD	IC702 (28) pin	2.4V	2.4V
E09	Disc play unstable	(check waveforms, voltages, and	TRD	IC702 (27) pin	2.4V	2.4V
E0B E0D		part constants). (3) Spindle driver circuit.	KICK	IC702 (26) pin	2.4V	2.4V
EOF		Optical pickup.	/FLOCK	IC702 (1) pin	oV	4.9V
			/RF DET	IC702 ③8 pin	oV	4.8V
			RF	TJ701	PLAY 1 2 V P-P 0 5 µs 0 1 W/DIV	3.4V
			STAT	IC702 17) pin	3.5V	oV

FLerror	C	Probable cause	Signal to check		Normal the values of voltage and waveform	
code display	Symptom	1 Topable cause	Signal name	Location	PLAY	STOP
			FBAL	IC702 ③ pin	2.5 ± 1.25V	2.5 ± 1.25V
E04	Post File (PD Polones)	① Scratches or contaminants on disc surface.	RF	TJ701	PLAY 1 2 V P-P 0 5 µs 0 1 V/DIV	3.4V
E06 E0C Best Eye (PD Balance) adjustment did not complete in specified time period.	Focus and tracking servo circuits (check waveforms, voltages, and part constants). Optical pickup.	FE	IC702 ③ pin	PLAY 0 3V 2ms 0 1V/DIV	oV	
		© Characteristicals	/TLOCK	IC702 (2) pin	oV	oV
			OFT	IC702 36 pin	OV	0V
		(1) Scratches or contaminants on	FE	IC702 32 pin	PLAY 0 3V p-p 2ms 0 1V/DIV	2.4V
E08 Focus or tracking gain adjustment did not complete in the specified time period.	disc surface. (2) Focus and tracking servo circuits (check waveforms, voltages, and	TE	IC702 33 pin	PLAY 0 4V P-P 2ms 0 1V/DIV	2.4V	
		part constants). ③ Optical pickup.	/TLOCK	IC702 (2) pin	oV	oV
			OFT	IC702 36 pin	oV	٥V

MTERMINAL GUIDE OF ICs, TRANSISTORS & DIODES

10 18 page 20 10 11 18	AN8389SE1		02SCE1V 32 Pin 08M-TE-L 14 Pin	RVIBA1332L 1 16	BA4558FDXE2
BA6218	AN78M05	LM7001 16 secretaria 8	M38174M8246 80 Pin	MN66271RA 80 Pin	2SB621ARTA 2SC2001KTA
2SB709S	B _C _E	2SC2786MTA 2SC2787FL1TA 2SC2787LTA 2SD1020HTA	2SB1185E 2SD1273P	2SD2037ETA	2SK544F-AC
B _C E	2SA933SSTA 2SC1740SSTA RVTDTC124EST RVTDTC143EST	Ca Cathod A Anode	1SS291TA MA165TA de RVD1SS133TA	Anode Cathode	GL380TB PT381TB Anode Cathode A — — Ca
MA4270MTA Ca Cathode A Anode	Ca Cathode A	RVDMTZ10BTA RVDMTZ11BTA RVDMTZ15CTA RVDMTZ4R7BTA RVDMTZ5R1BTA RVDMTZ5R6CTA RVDMTZ6R8ATA RVDMTZ8R2CTA	1D3E Ca Cathode Anode	RSQGP1S53V A E C Ca C A E	

TERMINAL FUNCTION OF IC'S

• IC702 (MN66271RA)

Pin No.	Mark	1/0	Function
1	BCLK	0	Serial bit clock terminal (Not used, open)
2	LRCK	0	L/R discriminating signal (Not used, open)
3	SRDATA	0	Serial data (Not used, open)
4	DVDD1	ı	Power supply (digital circuit) terminal
5	DVSS1	_	GND (digital circuit) terminal
6	TX	0	Digital audio interface signal
7	MCLK	١	Microprocessor command clock signal
8	MDATA	ı	Microprocessor command data signal
9	MLD	1	Microprocessor command load signal
10	SENSE	0	Sense signal output (OFT,FESL,MAGEND,NAJEND,POSAD,SFG)
11	/FLOCK	0	Optical servo condition(focus)("L": lead-in)
12	/TLOCK	0	Optical servo condition(tracking)("L": lead-in)
13	BLKCK	0	Sub-code block clock (f=75Hz)
14	SQCK	ı	External clock signal input for sub-code Q register
15	SUBQ	0	Sub-code Q code output
16	DMUTE	ı	Muting input ("H": mute)
17	STAT	0	Status signal output (CRC,CUE,CLVS,TTSTVP,FCLV,SQCK)
18	/RST	l	Reset input
19	SMCK	0	1/2-divided clock signal of crystal oscillating at MSEL = "H" (fSMCK=8.4672MHz) 1/4-divided clock signal of crystal oscillating at MSEL="L" (fSMCK=4.2336MHz)
20	PMCK	0	1/192-divided clock signal of crystal oscillating (fPMCK=88.2kHz) (Not used, open)
21	TRV	0	Traverse servo control output
22	TVD	0	Traverse drive signal output
23	PC	0	Spindle motor ON signal output ("L" : ON)
24	ECM	0	Spindle motor drive signal output (forced mode output)
25	ECS	0	Spindle motor drive signal output (servo error signal output)
26	KICK	0	Kick pu!se cutput
27	TRD	0	Tracking drive output
28	FOD	0	Focus drive output
29	VREF	ı	D/A (drive) output (TVD,ECS,TRD,FOD, FBAL,TBAL) Reference voltage input.
30	FBAL	0	Focus balance adjustment output (Notused, open)

Γ	T	Т	
Pin No.	Mark	1/0	Function
31	TBAL	0	Tracking balance adjustment output
32	FE		Focus error signal input (analog input)
33	TE	ı	Tracking error signal input (analog input)
34	RFENV	ı	RF envelope signal input
35	VDET	1	Vibration detection signal input ("H": detection)
36	OFT	1	Off-track signal input ("H" : off track)
37	TRCRS	ı	Track cross signal input
38	/RFDET	ı	RF detection signal input ("L" : detection)
39	BDO	1	Dropout signal input ("H" : Dropout)
40	LDON	0	Laser on signal output ("H" : ON)
41	TES	0	Tracking error shunt signal output ("H": shunt)
42	PLAY	0	Play signal out ("H" : PLAY)
43	WVEL	0	Double speed status signal output ("H" : DS)
44	ARF	ı	RF signal input
45	IREF	ı	Reference current input
46	DRF	ı	DSL bias (Not used, open)
47	DSLF	1/0	DSL loop filter
48	PLLF	1/0	PLL loop filter
49	VCOF	1/0	VCO loop filter (Not used, open)
50	AVDD2	1	Power supply input (for analog circuit)
51	AVSS2	_	GND (for analog circuit)
52	EFM	0	EFM signal output (Not used, open)
53	PCK	0	PLL extraction clock ouput (Not used, open) (fPCK=4.321 MHz during normal playback)
54	PDO	0	Phase comparison signal of EFM and PCK signals (Not used, open)
55	SUBC	0	Sub-code serial data output (Not used, open)
56	SBCK	ı	Clock input for sub-code serial data (Not used, open)
57	VSS	_	GND
58	X1	ı	Crystal oscillating circuit input (f=16.9344MHz)
59	X2	0	Crystal oscillating circuit output (f=16.9344MHz)
60	VDD	ı	Power supply input (for oscillating circuit)
61	ВҮТСК	0	Byte clock output (Not used, open)
62	/CLDCK	0	Sub-code frame clock signal output (fCLDCK=7.35kHz during normal playback)

Pin No.	Mark	1/0	Interpolation flag output ("H" : interpolation) (Not used, open) Function
63	FCLK	0	Crystal frame clock signal output (fCLK=7.35kHz, double=14.7kHz)
64	IPFLAG	0	
65	FLAG	0	Flag output (Not used, open)
66	CLVS	0	Spindle servo phase synchronizing signal output ("H" : CLV, "L" : rough servo) (Not used, open)
67	CRC	0	Sub-code CRC checked output ("H" : OK, "L" : NG) (Not used, open)
68	DEMPH	0	De-emphasis ON signal output ("H" : ON) (Not used, open)
69	RESY	0	Frame resynchronizing signal output (Not used, open)
70	/RST2	1	Reset input through MASH circuit ("L" : Reset)
71	/TEST	ı	Test input
72	AVDD1	1	Power supply input (for analog circuit)

Pin No.	Mark	1/0	Function
73	OUTL	0	Left channel audio signal output
74	AVSS1	_	GND
75	OUTR	0	Right channel audio signal output
76	RSEL		RF signal polarity assignment input (at "H" level, RSEL="H", at "L" level, RESL="L")
77	CSEL	ı	Crystal oscillating frequency designation input "L": 16.9344MHz "H": 33.8688MHz
78	PSEL	1	Test input (normally "L") (Not used, open)
79	MSEL	ı	Output frequency switching for SMCK terminal "H": SMCK=8.4672MHz "L": SMCK=4.2336MHz (Not used, open)
80	SSEL	1	Output mode switching of SUBQ terminal ("H" : Q code buffer mode)

• IC701 (AN8802SCE1V)

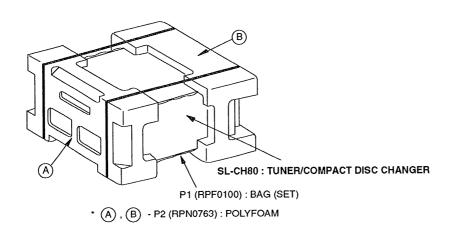
Pin No.	Mark	1/0	Function
1	PDAD	ı	PDA channel signal input with delay
2	PDA	ł	PDA channel signal input without delay
3	LPD	1	Laser PD connection
4	LD	0	Power supply for LD driving
5	AMPI	1	RFamplifierinput
6	vcc	1	Power supply connection
7	AMPO	0	RF amplifier output (Not used, open)
8	CAGC	1	AGC loop filter connection
9	ARF	0	RF AGC output
10	CENV	ı	Capacitor connection for RF detection
11	CEA	ı	Capacitor connection for HPF amplifier
12	GND		Ground connection
13	LDON	ı	ON/OFF input of LD APC("H": ON, "L": OFF)
14	TES	1	Tracking error shunt signal input
15	PLAY	ı	Play signal input ("H" : PLAY)
16	WVEL	ı	Double speed ("H" : double, "L" : single)

Pin No.	Mark	1/0	Function
17	BDO	0	Dropout detection control
18	/RFDET	0	RF detection signal ("L" : detection)
19	CROSS	0	Tracking error zero cross output
20	OFTR	0	Off-track detection ("H" : detection)
21	VDET	0	Vibration detection signal output("H" : detection)
22	ENV	0	Envelope output terminal
23	TEBPF	ı	Vibration detection signal input
24	TE	0	Tracking error signal output
25	FE	0	Focus error signal output
26	РТО	0	Potentioamplifier inversion input (Not used, open)
27	PTI	ı	Potentioamplifier inversion output (Not used, open)
28	TBAL	ı	Tracking balance signal input
29	FBAL	ı	Focus balance signal input
30	VREF	0	Reference voltage output
31	PDB	I	Photo detection Bch input without delay
32	PDBD	ı	Photo detection Bch input with delay

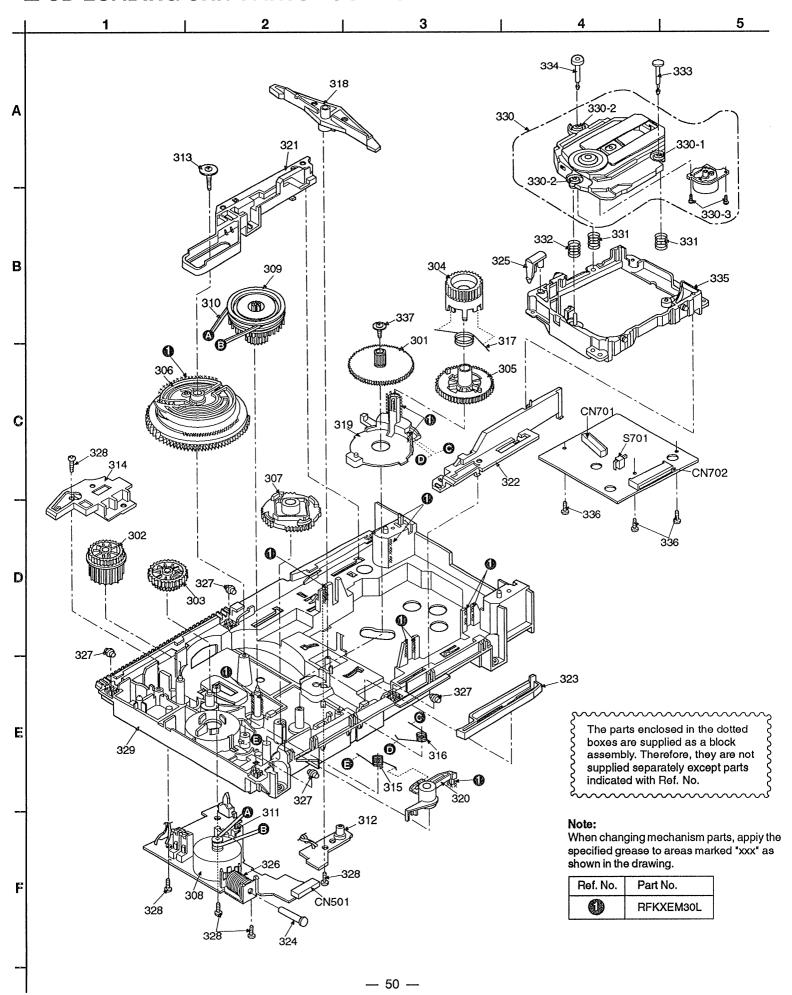
• IC901 (M38174M8246)

Pin No.	Mark	I/O	Function	
1	BSDTO	0	Bus data output	
2	вѕско	0	Bus clock output	
3	BSDTI	ı	Bus data input	
4	BSCKI	1	Bus clock input	
5	MLD/PLL CE	0	Microprocessor command /PLL tuner load signal output	
6	MCLK/PLL CLK	0	Microprocessor command /PLL tuner clock signal output	
7	MDATA/PLL DATA	0	Microprocessor command /PLL tuner data signal output	
8	RESTSW	1	CD Innermost track sense SW(S701) status	
9	CD RST	0	CD reset signal output	
10	SQCK	0	External clock for CD subcode Q register	
11	NC		Notused	
12	SUBQ	ı	CD Subcode Q input	
13	SENSE	ı	CD sense signal input	
14	FLOCK	1	CD focus signal input	
15	TLOCK	1	CD tracking signal input	
16	STATUS	ı	CD status signal input	
17	MUTEC	0	Muting signal output (CD)	
18	PSIN	1	Photo sensor signal input	
19	РНО	ı	Photo sensor signal input (speed detect)	
20	F-OP	1	Tray full open detect signal input	
21	H-OP	ı	Tray half open detect signal input	
22	CLOSE (UP)	-	Traverse up detect signal input	
23	OPEN(DOWN)	ı	Traverse down detect signal input	
24	вкск	0	CD subcode block clock signal input	
25	PWDET	1	Power on detect signal input	
26	ACDET	1	Power down detect signal input	
27	RESET	1	Power on reset signal input	
28	XC IN	ı	Clock input (32.768kHz)	
29	XCOUT	0	Clock output (32.768kHz)	
30	XIN	1	Clock input (4.19MHz)	

Pin No.	Mark	1/0	Function	
31	XOUT	0	Clock output (4.19MHz)	
32	VSS		GND	
33	MBP1	0	Microprocessor beatproof 1	
34	MBP2	0	Microprocessor beatproof 2	
35	SD	ı	Signal received detection terminal	
36	MICSW	ı	Microphone SW detection terminal (GND)	
37	MONO	0	FM mono control signal output	
38	STEREO	ı	FM stereo signal detection terminal	
39	JOGB	ı	Jog dial signal input	
40	JOGA	ı	Jog dial signal input	
41	MUTET	0	Muting signal output (TUNER)	
42	SEL	0	Function (CD/Tuner) select signal output	
43	LED CNT	_	Not used	
44	SOL	0	Solenoid drive signal output	
45	FWD	0	Motor control (FWD)	
46	REV	0	Motor control (REV)	
47	DIG9			
	ı	0	FL digit signal output	
56	DIGo			
57	SEG15			
1 ≀	ł	0	FL segment drive signal output	
72	SEG0			
73	VCC		Power supply terminal (+5V)	
74	VEE		– 28V	
75	AVSS		GND	
76	VREF		Output reference voltage	
77	REG	ı	Regulator signal input	
78	KEY3			
	?	Į	Operation switch signal input	
80	KEY1			


• IC703 (AN8389SE1)

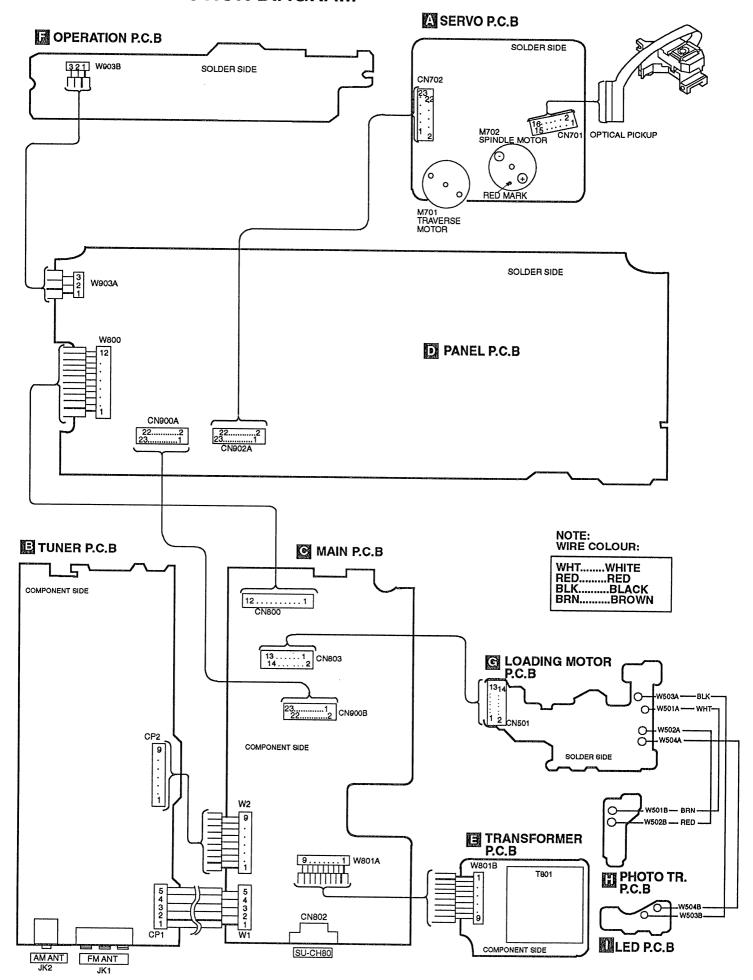
Pin No.	Mark	1/0	Function
1	vcc	ı	Power supply terminal
2	VREF	ı	Reference voltage input
3	IN4	1	Motor driver (4) input
4	IN3	ı	Motor driver (3) input
5	GND		Ground connection
6	NC	_	Ground connection
7	NRESET	ı	Reset input
8	GND		Ground connection
9	IN2	ı	Motor driver (2) input
10	PC2	ı	PC2 (power cut) input
11	IN1	ı	Motor driver (1) input
12	PC1	1	PC1 (power cut) input (Not used, open)


				
Pin No.	Mark	1/0	Function	
17	PVCC1	ı	Power supply (1) for driver	
18	PGND1	_	Ground connection (1) for driver	
19	D1-	0	Motor driver (1) reverse-action output	
20	D1+	0	Motor driver (1) forward-action output	
21	D2-	0	Motor driver (2) reverse-action output	
22	D2+	0	Motor driver (2) forward-action output	
23	D3-	0	Motor driver (3) reverse-action output	
24	D3+	0	Motor driver (3) forward-action output	
25	D4	0	Motor driver (4) reverse-action output	
26	D4+	0	Motor driver (4) forward-action output	
27	PGND2	_	Ground connection (2) for driver	
28	PVCC2	ı	Power supply (2) for driver	

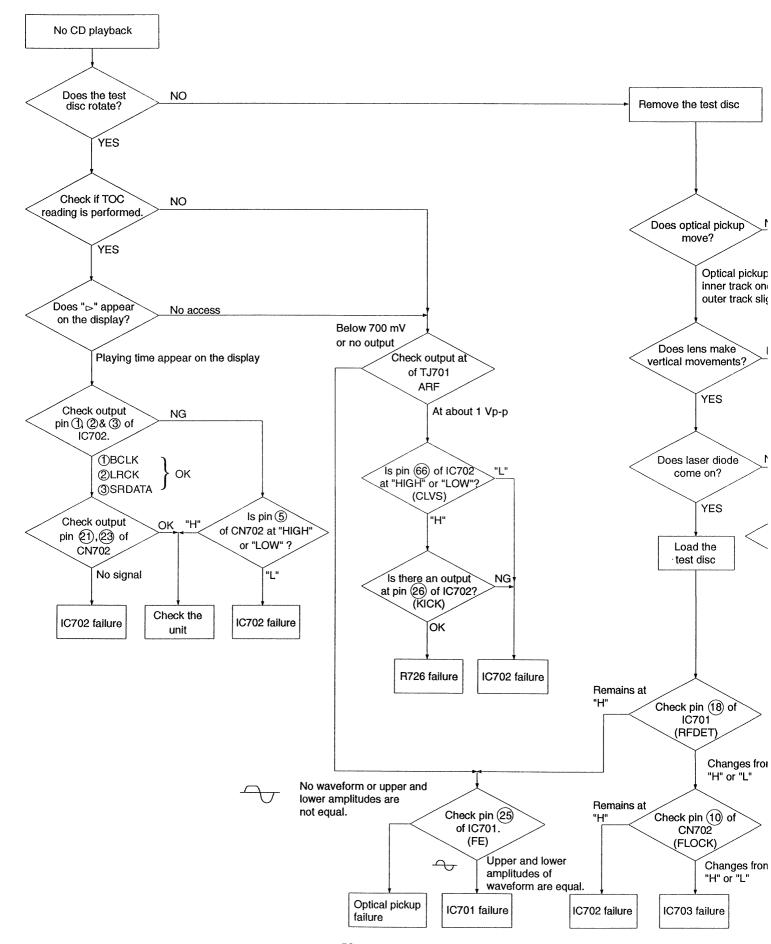
PACKAGING

SL-CH80 (TUNER/COMPACT DISC CHANGER)

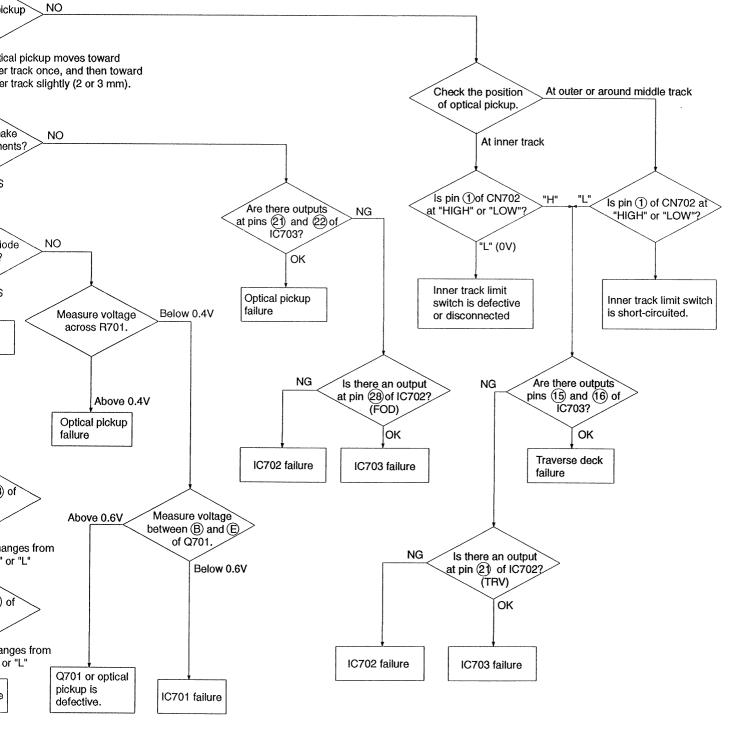
CD LOADING UNIT PARTS LOCATION

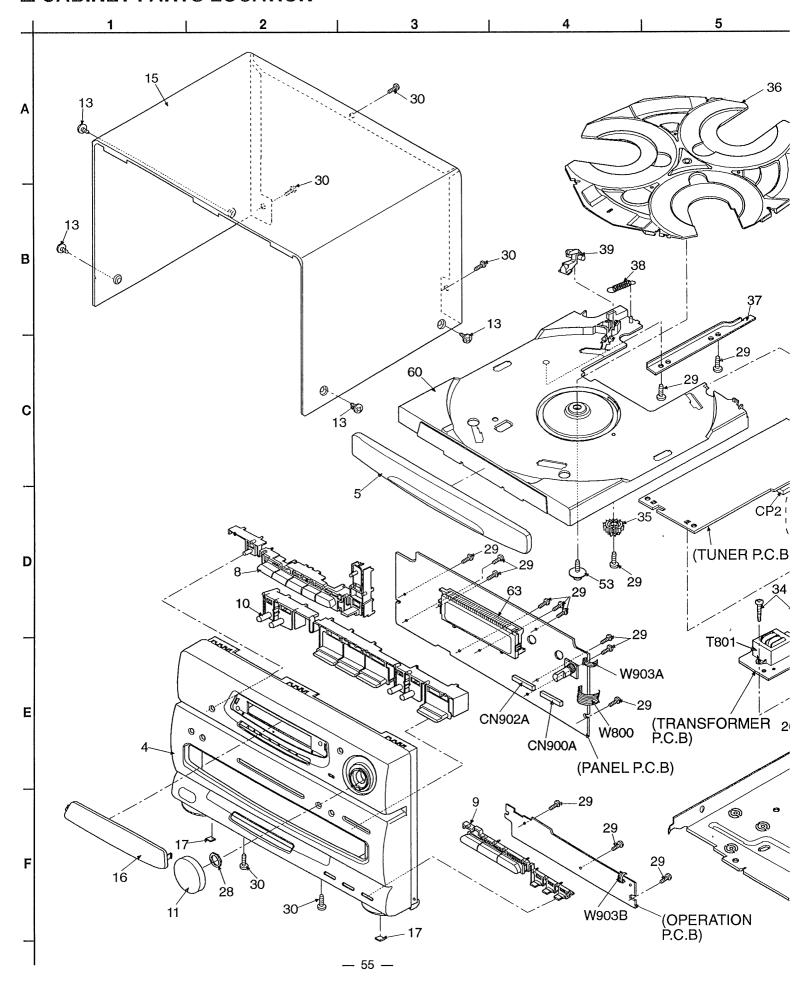


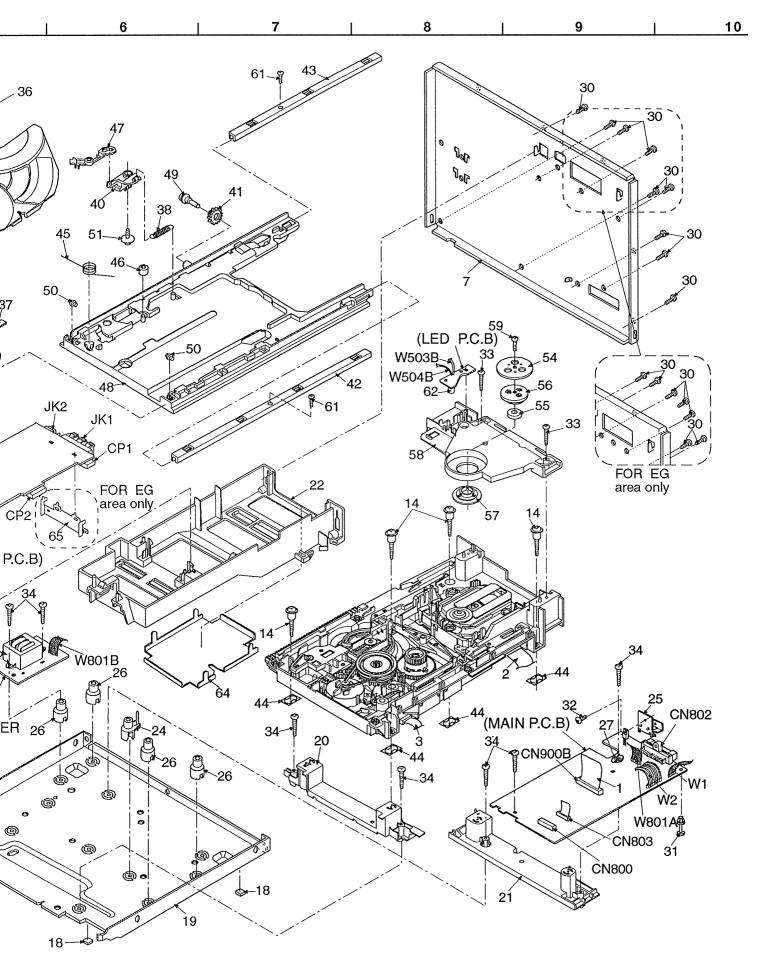
CD LOADING UNIT PARTS LIST


Ref No.	Part No.	Part Name & Description	Remarks
		CD LOADING UNIT	
301	RDG0194	GEAR	
302	RDG0223	GEAR	
303	RDG0224	GEAR	
304	RDG0244	GEAR	
305	RDG0245	GEAR	
306	RDK0022	GEAR	
307	RDK0023	GEAR	
308	RFKPLCH555PK	MOTOR ASS'Y	
309	RDP0058	GEAR	
310	RDV0025	BELT	
311	RMN0204	SENSOR HOLDER	
312	RMN0222	LED HOLDER	
313	RHD30046	SCREW	
314	RMA0653	ANGLE	
315	RME0120	SPRING	
316	RME0121	SPRING	
317	RME0137	SPRING	
318	RML0177	LEVER	
319	RML0288	LEVER	
320	RML0289	LEVER	
321	RMM0097	SLIDE PLATE(1)	
322	RMM0098	SLIDE PLATE(2)	
323	RMM0099	SLIDE PLATE(3)	
324	RMS0398	PLUNGER	
325	RMX0072	LEVER	
326	RSJ0003	SOLENOID(PL501)	
327	RMR0701-K	ROLLER	
328	XTB3+10JFZ	SCREW	
329	RFKJLCH555PB	MECH CHASSIS ASS'Y	
330	RAE0113Z	TRAVERSE UNIT	
330-1	SHGD112	FLOATING RUBBER(A)	
330-2	SHGD113-1	FLOATING RUBBER(B)	
330-3	XQS2+A35FZ	SCREW	
331	RME0109	FLOATING SPRING A	
332	RME0142	FLOATING SPRING B	
333	RMS0123-1	FIXED PIN A	
334	RMS0350	FIXED PIN B	
335	RMR0698-K	TRAVERSE CHASSIS	
336	XTV2+6G	SCREW	
337	RHD26014	SCREW	
			1
	<u> </u>		-

Ref No.	Part No.	Part Name & Description	Remarks
	.,		
	.,		
	WATER CONTRACTOR OF THE PARTY O		
			


WIRING CONNECTION DIAGRAM


M TROUBLESHOOTING GUIDE



disc

M CABINET PARTS LOCATION

MREPLACEMENT PARTS LIST

Notes: * Important safety notice:

Components identified by Mark have special characteristics important for safety.

Furthermore, special parts which have purposes of fire-retardant (resistors), high-quality sound (capacitors), low noise (resistors), etc are used. When replacing any of these components, be sure to use only manufacturer's specified parts shown in the parts list.

- * The parenthesized indications in the Remarks columns specify the areas. (Refer to the cover page for area) Parts without these indications can be used for all areas.
- Warning: This product uses a laser diode. Refer to caution statements on page 2.

ACHTUNG: Die lasereinheit nicht zerlegen.

Die lasereinheit darf nur gegen einc vom herstellar spezifizierte einheit ausgetauscht werden.

* [M] Indicates in the Remarks columns indicates parts supplied by MESA.

Ref No.	Part No.	Part Name & Description	Remarks
		CABINET AND CHASSIS	
1	REE0549	FFC (PANEL-MAIN)	[M]
2	REE0550	FFC (PANEL-CD)	[M]
3	REE0551	FFC (CD-MAIN)	[M]
4	RFKGLCH80PK	FRONT PANEL ASS'Y	[M]
5	RGK0610-K	CHANGER LID	[M]
7	RGR0183B-D	REAR PANEL	[M] (E)
7	RGR0183B-E	REAR PANEL	[M] (EG)
7	RGR0183B-F	REAR PANEL	[M] (GN)
8	RGU1009-K	BUTTON, INPUT SELECT	[M]
9	RGU1012-K	BUTTON, CD OPERATION	[M]
10	RGU1013-K	BUTTON, DISK SELECT	[M]
11	RGW0194-K	KNOB, AI JOG	[M]
13	RHD30007	SCREW	
14	RHD30048	SCREW	[M]
15	RKM0248Z-K	CABINET	[M]
16	RKW0323A-Q	FL WINDOW	[M]
17	SHS3276	LEG FELT	[M]
18	RKA0059-K	LEG RUBBER	[M]
19	RMK0236	BOTTOM CHASSIS	[M]
20	RMR0734-X	CHANGER SUPPORT (F)	[M]
21	RMR0735-X	CHANGER SUPPORT (R)	[M]
22	RMR0738-X	TU PCB SUPPORT	[M]
24	RMR0741-X	PCB SUPPORT (PIN)	[M]
25	RMY0132	HEAT SINK	[M]
26	SHE187-3	PCB SUPPORT	
27	SNE1004-1	EARTHTERMINAL	
28	XNS9D	NUT	
29	XTBS26+10J	SCREW	
30	XTBS3+8JFZ1	SCREW	
31	RMR0406	MAIN PCB SUPPORT	[M]
32	XTB3+12CFN	SCREW	
33	XTB3+16JFZ	SCREW	
34	XTB3+20J	SCREW	
35	RDG0228	GEAR	
36	RGT0014	ROTARY TRAY	
37	RMA0681	ANGLE	
38	RME0123	SPRING	
39	RML0312	LEVER	

men ausgetat	ischt werden.		***************************************
Ref No.	Part No.	Part Name & Description	Remarks
40	RDG0225	GEAR	
41	RDG0227	GEAR	
42	RMA0654	ANGLE(A)	
43	RMA0655	ANGLE(B)	
44	RMG0319-K	RUBBER CUSHION	
45	RME0139	SPRING	
46	RMG0293-C	RUBBER	
47	RML0291	LEVER	
48	RMR0627-K	TRAY BASE	
49	RMS0382	SHAFT	
50	SDRD14	ROLLER	
51	XTW3+6S	SCREW	
53	XTWS3+10T	SCREW	
54	RDF0033	MAGNET HOLDER(A)	
55	RHM245ZA	MAGNET	
56	RMR0334	MAGNET HOLDER(B)	
57	RMR0624-W	DISC HOLDER	
58	RMR0625-W	DISC CLAMPER	
59	XTB3+6JFZ	SCREW	
60	RFKNLCH555PK	DISC TRAY ASS'Y	
61	XTN2+6F	SCREW	
62	RMN0222	LED HOLDER	•
63	RMN0253	FL HOLDER	[M]
64	RSC0373	FTZ SHIELD PLATE	[M]
65	RSC0363	FTZ EARTH TERMINAL	[M] (EG)
		INTEGRATED CIRCUITS	
IC1	AN7273W	IC, FM/AM IF	
IC2	LM7001	IC, PLL	
IC3	RVIBA1332L	IC, MPX	
IC501	BA6218	IC, MOTOR DRIVER	
IC801	BA4558FDXE2	IC, OP AMP	[M] (E, GN)
IC802	BA4558FDXE2	IC, OP AMP	[M]
IC803	AN78M05	IC, REGULATOR	Λ
IC901	M38174M8246	IC, MICON	[M]
IC902	LA5608M-TE-L	IC, RESET IC	

Ref No.	Part No.	Part Name & Description	Remarks
		TRANSISTORS	
Q1	2SK544F-AC	TRANSISTOR	(E, GN)
Q1	2SC2787LTA	TRANSISTOR	(EG)
Q2	2SC2786MTA	TRANSISTOR	(E, GN)
Q2	2SC2787LTA	TRANSISTOR	(EG)
Q3	2SC2787FL1TA	TRANSISTOR	(E, GN)
Q3	2SC1740SSTA	TRANSISTOR	(EG)
Q4	2SC2787FL1TA	TRANSISTOR	(E, GN)
Q4	2SA933SSTA	TRANSISTOR	(EG)
Q5	2SC2787LTA	TRANSISTOR	(E, GN)
Q5	2SC1740SSTA	TRANSISTOR	(EG)
Q6	2SC2787LTA	TRANSISTOR	(E, GN)
Q6	2SC1740SSTA	TRANSISTOR	(EG)
Q7	2SC1740SSTA	TRANSISTOR	
Q8	2SC1740SSTA	TRANSISTOR	
Q9	2SD1020HTA	TRANSISTOR	[M]
Q10	2SC1740SSTA	TRANSISTOR	
Q11	2SA933SSTA	TRANSISTOR	
Q12	2SA933SSTA	TRANSISTOR	
Q13	2SC1740SSTA	TRANSISTOR	
Q14	2SC1740SSTA	TRANSISTOR	
Q15	2SC1740SSTA	TRANSISTOR	(EG)
Q16	2SC1740SSTA	TRANSISTOR	(EG)
Q17	2SC1740SSTA	TRANSISTOR	
Q20	2SA933SSTA	TRANSISTOR	(E, GN)
Q21	2SC1740SSTA	TRANSISTOR	(E, GN)
Q22	2SC1740SSTA	TRANSISTOR	(E, GN)
Q23	2SC1740SSTA	TRANSISTOR	(E, GN)
Q501	RVTDTC143EST	TRANSISTOR	
Q502	RVTDTC143EST	TRANSISTOR	
Q801	2SD2037ETA	TRANSISTOR	[M] <u></u>
Q802	2SA933SSTA	TRANSISTOR	
Q803	2SB621ARTA	TRANSISTOR	<u> </u>
Q804	2SC2001KTA	TRANSISTOR	
Q805	2SD1273P	TRANSISTOR	
Q806	2SB1185E	TRANSISTOR	
Q807	RVTDTC124EST	TRANSISTOR	[M]
Q808	2SD1020HTA	TRANSISTOR	[M]
Q809	2SD1020HTA	TRANSISTOR	[M]
Q810	2SC2001KTA	TRANSISTOR	
Q811	RVTDTC124EST	TRANSISTOR	[M]
Q812	2SB621ARTA	TRANSISTOR	
Q813	2SA933SSTA	TRANSISTOR	
Q814	2SA933SSTA	TRANSISTOR	
Q901	2SC1740SSTA	TRANSISTOR	
Q903	2SC1740SSTA	TRANSISTOR	
Q904	2SC1740SSTA	TRANSISTOR	

Ref No.	Part No.	Part Name & Description	Remarks
Q905	2SC1740SSTA	TRANSISTOR	
		DIODES	
D1	SVC211SPA-AL	DIODE	(E, GN)
D2	SVC211SPA-AL	DIODE	(E, GN)
D3	SVC211SPA-AL	DIODE	(E, GN)
D4	RVDMTZ5R6CTA	DIODE	[M]
D5	1SS291TA	DIODE	(E, GN)
D5	RVD1SS133TA	DIODE	(EG)
D6	RVD1SS133TA	DIODE	(EG)
D501	MA165TA	DIODE	
D502	RSQGP1S53V	PHOTO INTERRUPTOR	
D503	PT381TB	PHOTO TRANSISTOR	
D504	GL380TB	LED	
D801	1D3E	DIODE	[M] <u></u>
D802	1D3E	DIODE	[M] <u></u>
D804	1D3E	DIODE	[M] <u></u>
D805	1D3E	DIODE	[M] <u></u>
D806	RVDMTZ15CTA	DIODE	
D807	RVDMTZ11BTA	DIODE	
D808	1D3E	DIODE	[M] <u></u>
D809	1D3E	DIODE	[M] <u></u>
D810	MA4270MTA	DIODE	\triangle
D811	1D3E	DIODE	[M] <u>^</u>
D812	1D3E	DIODE	[M] <u>(</u>
D814	RVDMTZ5R6CTA	DIODE	[M]
D815	RVDMTZ8R2CTA	DIODE	[M]
D816	RVD1SS133TA	DIODE	
D817	RVD1SS133TA	DIODE	
D818	RVDMTZ6R8ATA	DIODE	[M]
D819	RVD1SS133TA	DIODE	
D820	RVD1SS133TA	DIODE	
D821	RVD1SS133TA	DIODE	
D823	RVDMTZ10BTA	DIODE	
D826	RVDMTZ5R1BTA	DIODE	
D827	RVD1SS133TA	DIODE	
D828	RVD1SS133TA	DIODE	
D829	RVD1SS133TA	DIODE	
D900	RVD1SS133TA	DIODE	
D901	RVD1SS133TA	DIODE	
D902	RVD1SS133TA	DIODE	
D903	RVD1SS133TA	DIODE	
D904	RVD1SS133TA	DIODE	
D905	RVD1SS133TA	DIODE	
D906	RVD1SS133TA	DIODE	
D907	1SS291TA	DIODE	
D908	RVD1SS133TA	DIODE	

Ref No.	Part No.	Part Name & Description	Remarks
D910	RVD1SS133TA	DIODE	
D911	RVD1SS133TA	DIODE	
D912	RVD1SS133TA	DIODE	
D913	RVD1SS133TA	DIODE	
D914	RVD1SS133TA	DIODE	
D917	1SS291TA	DIODE	
D934	RVDMTZ4R7BTA	DIODE	
		VARIABLE RESISTORS	
VR1	EVNDXAA00B14	VR, VOLUME	
VR901	RRV16B24204A	VR, JOG	[M]
		SWITCHES	
S501	RSH2A001-2	SW, UP/DOWN	_
S502	RSH1A005	SW, FULL OPEN	
S503	RSH1A005	SW, HALF OPEN	
S901	EVQ21405R	SW, SET	
S902	EVQ21405R	SW, TUNING MODE	
S903	EVQ21405R	SW, FM MODE/BP	
S904	EVQ21405R	SW, TUNER/BAND	
S905	EVQ21405R	SW, CD	
S906	EVQ21405R	SW, AUX	
S907	EVQ21405R	SW, TAPE	
S908	EVQ21405R	SW, CD DISPLAY	
S910	EVQ21405R	SW, OPEN/CLOSE	
S911	EVQ21405R	SW, SKIP	
S912	EVQ21405R	SW, REV SKIP	
S913	EVQ21405R	SW, RANDOM	
S914	EVQ21405R	SW, REPEAT	
S915	EVQ21405R	SW, DISC 1	
S916	EVQ21405R	SW, DISC 2	
S917	EVQ21405R	SW, DISC 3	
S918	EVQ21405R	SW, LAST FADE	
S919	EVQ21405R	SW, ALBUM	
S920	EVQ21405R	SW, J.FIT	
S921	EVQ21405R	SW, PLAY	
S922	EVQ21405R	SW, PAUSE	
S923	EVQ21405R	SW, STOP	
<u> </u>		CONNECTORS	
CN501	RJS1A6714	CONNECTOR (14P)	
CN800	RJS1A5212	CONNECTOR (12P)	[M]
CN802	RJT065K15	CONNECTOR (15P)	
CN803	RJS1A6814	CONNECTOR (14P)	
CN900	A RJS1A6223-1	CONNECTOR (23P)	

Ref No.	Part No.	Part Name & Description	Remarks
CN900B	RJS1A6823	CONNECTOR (23P)	
CN902A	RJS1A6223-1	CONNECTOR (23P)	
CP1	RJP5G9YA	CONNECTOR (05P)	
CP2	RJP9G9YA	CONNECTOR (09P)	
		COILS & TRANSFORMERS	
L1	RLQZP1R2JT-Y	AXIAL COIL	[M] (EG)
L2	RLQZP1R2JT-Y	AXIAL COIL	[M] (E, GN)
L2	RLQZPR22KT-Y	COIL	(EG)
L3	RLQZPR22KT-Y	COIL	(EG)
L.4	RLQZP1R2JT-Y	AXIAL COIL	[M] (E, GN)
L4	RLQZPR47KT-Y	AXIAL COIL	(EG)
L5	RLQZP1R2JT-Y	AXIAL COIL	[M] (EG)
L6	SLM1B10-1M	A.B. FILTER	(EG)
L7	RLQZPR22KT-Y	AXIAL COIL	(E, GN)
L7	ELELN822KL	RF CHOKE COIL	(EG)
L8	RLQZPR22KT-Y	AXIAL COIL	(E, GN)
L8	ELELN822KL	RF CHOKE COIL	(EG)
L10	RLQZPR22KT-Y	AXIAL COIL	(E)
L10	RLQZPR33KT-Y	AXIAL COIL	(GN)
L50	RLQZP1R2JT-Y	AXIAL COIL	[M] (E, GN)
L51	RLQZPR47KT-Y	AXIAL COIL	(E, GN)
L803	RLQZP3R3KT-Y	AXIAL COIL	
L804	RLQZP3R3KT-Y	AXIAL COIL	
L901	RLQZP3R3KT-Y	AXIAL COIL	
L902	RLQZP2R2KT-Y	AXIAL COIL	
L903	RLQZP2R2KT-Y	AXIAL COIL	
T1	RLI4B016-Z	FM IFT	[M]
T2	RLI4B015-Z	FM IFT	[M]
T801	RTP1J4G003	FLTRANSFORMER	[M] <u>A</u>
		COMPONENT COMBINATIONS	
Z1	RLA6Z002-T	AM COIL BLOCK	(E, GN)
Z1	ENV17290G1R	FM TUNER PACK	(EG)
Z2	RL12Z003-T	AM IFT	[M] (E, GN)
Z2	RLA6Z002-T	AM COIL BLOCK	(EG)
Z3	RLI2Z003-T	AM IFT	[M] (EG)
Z801	BL02RN2R65T2	BEAD CORE	
Z802	BL02RN2R65T2	BEAD CORE	
		CERAMIC FILTERS	
CF1	RLFFETWNA01L	FM CF	(E, GN)
CF1	RLFFETNGA01L	FM CF	(EG)
CF2	RLFFETWNA01L	FM CF	(E, GN)
	RLFFETNGA02L	FM CF	(EG)

Ref No.	Part No.	Part Name & Description	Remarks
		OSCILLATORS	
X1	SVQ49U722T-S	7.2 MHZ X'TAL	
X901	RSXZ4M19M01T	4.19MHZ X'TAL	
X902	RSXD32K7S02	32.768KHZ X'TAL	[M]
		DISPLAY TUBE	
ET 001	DOLO165 E	THE STATE OF THE S	D.C.
FL901	RSL0165-F	FL	[M]
		JACKS	
JK1	RJH8201	JK, ANT TERMINAL	[M] (E, EG)
JK1	RJH5302	JK, ANT TERMINAL	[M] (GN)
JK2	SJS208	JK, AM LOOP ANT TERMINAL	
		WIRES	
W1	REX0586	WIRE ASS'Y (5P)	[M]
W2	REX0587	WIRE ASS'Y (9P)	[M]
		PACKING MATERIALS	
P1	RPF0100	BAG (SET)	[M]
P2	RPN0763	POLYFOAM	[M]
		< SERVO >	
		INTEGRATED CIRCUITS	
IC701	AN8802SCE1V	IC, HEAD AMP	····
IC702	MN66271RA	IC, DIGITAL LSI	
IC703	AN8389SE1	IC, 4-CH DRIVER	
		TRANSISTOR	
Q701	2SB709S	TRANSISTOR	
		SWITCH	
S701	RSM0006-P	SW, RESET	
		CONNECTORS	
CN701	RJU035T016-1	CONNECTOR (16P)	***************************************
CN702	RJS1A6723-1Q	CONNECTOR (23P)	

Ref No.	Part No.	Part Name & Description	Remarks
		OSCILLATOR	
V701	DCV716M0M00T	CEDAMICOSC	
X701	RSXZ16M9M02T	CERAMIC OSC	
		CHIP JUMPERS	
DIZOI	ED IOGEWADAA	0 140W	
RJ701 RJ702	ERJ8GEY0R00A	0 1/10W	
RJ 702 RJ 703	ERJ8GEY0R00A ERJ8GEY0R00A	0 1/10W 0 1/10W	
RJ 703 RJ 704	ERJ8GEY0R00A		
RJ 704 RJ 707	ERJ8GEY0R00A		1
RJ707	ERJ8GEY0R00A	0 1/10W 0 1/10W	
RJ708 RJ709	ERJ8GEY0R00A		
RJ714	ERJ8GEY0R00A		
RJ714 RJ715	ERJ8GEY0R00A	0 1/10W 0 1/10W	
RJ715	ERJ8GEY0R00A	0 1/10W	
RJ716	ERJ8GEY0R00A	0 1/10W	
RJ721	ERJ6GEY0R00A		
RJ721	ERJ6GET0R00A ERJ6GEY0R00A		
RJ724 RJ725	ERJ6GETURUUA ERJ6GEY0R00A		
RJ725		0 1/10W	
	ERJ6GEY0R00A	0 1/10W	***************************************
RJ799	ERJ6GEY0R00A	0 1/10W	
		TECT HIMDEDC	
		TEST JUMPERS	
TJ701	EYF8CU	TEST JUMPER	
TJ702	EYF8CU	TEST JUMPER	

	**		
			
			

MRESISTORS & CAPACITORS

- * Capacitor values are in microfarads (µF) unless specified otherwise, P=Pico-farads (pF), F=Farads.

 * Resistance values are in ohms, unless specified otherwise, 1K=1,000 (OHM).

 * Bracketed indications in Ref. No. columns specify the area (Refer to the first page for area). Parts without these indications can be used for all areas.
- * [M] Indicates in the values & remarks column indicates parts supplied by MESA

Ref. No.	Part No.	Values & Remarks		Ref. No.	Part No.	Values	& Remarks	Ref. No.	Part No.	Values	& Remarks
		RES	ISTORS	R24	ERDS2TJ153T	15K	1/4W(E, GN)	R50	ERDS2TJ103T	10 K	1/4W(EG)
				R24	ERDS2TJ182T	1.8K	1/4W(EG)	R51	ERDS2TJ153T	15K	1/4W
R1	ERDS2TJ104T	100K	1/4W(E, GN)	R25	ERDS2TJ331T	330	1/4W(E, GN)	R52	ERDS2TJ561T	560	1/4W
R1	ERDS2TJ332T	3.3K	1/4W(EG)	R25	ERDS2TJ223T	22K	1/4W(EG)	R53	ERDS2TJ102T	1K	1/4W
R2	ERDS2TJ104T	100K	1/4W(E, GN)	R26	ERDS2TJ102T	1 K	1/4W(E, GN)	R54	ERDS2TJ562T	5.6K	1/4W(EG)
R2	ERDS2TJ122T	1.2K	1/4W(EG)	R26	ERDS2TJ122T	1.2K	1/4W(EG)	R55	ERDS2TJ562T	5.6K	1/4W(EG)
R3	ERDS2TJ470T	47	1/4W(E, GN)	R27	ERDS2TJ104T	100K	1/4W(E, GN)	R56	ERDS2TJ102T	1K	1/4W(EG)
R3	ERDS2TJ684T	680K	1/4W(EG)	R27	ERDS2TJ122T	1.2K	1/4W(EG)	R58	ERDS2TJ151T	150	1/4W
R4	ERDS2TJ104T	100K	1/4W(E, GN)	R28	ERDS2TJ684T	680K	1/4W(E, GN)	R59	ERDS2TJ103T	10K	1/4W(EG)
R4	ERDS2TJ824T	820K	1/4W(EG)	R28	ERDS2TJ102T	1K	1/4W(EG)	R60	ERDS2TJ103T	10K	1/4W
R5	ERDS2TJ564T	560K	1/4W(E, GN)	R29	ERDS2TJ102T	1K	1/4W(E, GN)	R61	ERDS2TJ103T	10K	1/4W
R5	ERDS2TJ391T	390	1/4W(EG)	R29	ERDS2TJ182T	1.8K	1/4W(EG)	R62	ERDS2TJ103T	10 K	1/4W(EG)
R6	ERDS2TJ391T	390	1/4W(E, GN)	R30	ERDS2TJ103T	10K	1/4W(E, GN)	R63	ERDS2TJ104T	100K	1/4W(EG)
R6	ERDS2TJ102T	1K	1/4W(EG)	R30	ERDS2TJ102T	1K	1/4W(EG)	R64	ERDS2TJ103T	10K	1/4W(E, GN
R7	ERDS2TJ561T	560	1/4W(E, GN)	R31	ERDS2TJ104T	100K	1/4W(E, GN)	R64	ERDS2TJ104T	100K	1/4W(EG)
R7	ERDS2TJ471T	470	1/4W(EG)	R31	ERDS2TJ224T	220K	1/4W(EG)	R65	ERDS2TJ103T	10K	1/4W(E, GN
R8	ERDS2TJ474T	470K	1/4W(E, GN)	R32	ERDS2TJ102T	1K	1/4W(E, GN)	R65	ERDS2TJ104T	100K	1/4W(EG)
R8	ERDS2TJ102T	1K	1/4W(EG)	R32	ERDS2TJ152T	1.5K	1/4W(EG)	R66	ERDS2TJ103T	10K	1/4W(E, GN
R9	ERDS2TJ272T	2.7K	1/4W(E, GN)	R33	ERDS2TJ562T	5.6K	1/4W(E, GN)	R66	ERDS2TJ562T	5.6K	1/4W(EG)
R9	ERDS2TJ153T	15K	1/4W(EG)	R33	ERDS2TJ152T	1.5K	1/4W(EG)	R67	ERDS2TJ102T	1K	1/4W(E, GN
R10	ERDS2TJ102T	1K	1/4W(E, GN)	R34	ERD25TJ102T	1K	1/4W(E, GN)	R67	ERDS2TJ824T	820K	1/4W(EG)
R10	ERDS2TJ561T	560	1/4W(EG)	R34	ERDS2TJ683T	68K	1/4W(EG)	R68	ERDS2TJ224T	220K	1/4W(E, GN
R11	ERDS2TJ224T	220K	1/4W(E, GN)	R35	ERDS2TJ182T	1.8K	1/4W(E, EG)	R68	ERDS2TJ104T	100K	1/4W(EG)
R11	ERDS2TJ102T	1K	1/4W(EG)	R35	ERDS2TJ102T	1K	1/4W(EG)	R69	ERDS2TJ681T	680	1/4W(E, GN
R12	ERDS2TJ273T	27K	1/4W(E, GN)	R36	ERDS2TJ562T	5.6K	1/4W(EG)	R69	ERDS2TJ271T	270	1/4W(EG)
R12	ERDS2TJ103T	10K	1/4W(EG)	R37	ERDS2TJ562T	5.6K	1/4W(EG)	R70	ERDS2TJ562T	5.6K	1/4W(EG)
R13	ERDS2TJ122T	1.2K	1/4W(E, GN)	R38	ERDS2TJ562T	5.6K	1/4W(EG)	R71	ERDS2TJ681T	680	1/4W(E, GN
R13	ERDS2TJ684T	680K	1/4W(EG)	R39	ERDS2TJ562T	5.6K	1/4W(EG)	R71	ERDS2TJ121T	120	1/4W(EG)
R14	ERDS2TJ152T	1.5K	1/4W(E, GN)	R40	ERDS2TJ103T	10K	1/4W(E, GN)	R72	ERDS2TJ683T	68K	1/4W(E, GN
R14	ERDS2TJ822T	8.2K	1/4W(EG)	R40	ERDS2TJ562T	5.6K	1/4W(EG)	R72	ERDS2TJ104T	100K	1/4W(EG)
R15	ERDS2TJ684T	680K	1/4W(E, GN)	R41	ERDS2TJ182T	1.8K	1/4W(E, GN)	R73	ERDS2TJ102T	1K	1/4W(E, GN
R15	ERDS2TJ331T	330	1/4W(EG)	R41	ERDS2TJ102T	1K	1/4W(EG)	R73	ERDS2TJ684T	680K	1/4W(EG)
R16	ERDS2TJ824T	820K	1/4W(E, GN)	R42	ERDS2TJ223T	22K	1/4W(E, GN)	R74	ERDS2TJ562T	5.6K	1/4W(E, GN
R16	ERDS2TJ222T	2.2K	1/4W(EG)	R42	ERDS2TJ102T	1K	1/4W(EG)	R74	ERDS2TJ684T	680K	1/4W(EG)
R17	ERDS2TJ391T	390	1/4W(E, GN)	R43	ERDS2TJ122T	1.2K	1/4W(E, GN)	R75	ERDS2TJ562T	5.6K	1/4W(E, GN
R17	ERDS2TJ183T	18K	1/4W(EG)	R43	ERDS2TJ561T	560	1/4W(EG)	R75	ERDS2TJ103T	10K	1/4W(EG)
R18	ERDS2TJ121T	120	1/4W(E, GN)	R44	ERDS2TJ561T	560	1/4W(EG)	R76	ERDS2TJ562T	5.6K	1/4W(E, GN
R18	ERDS2TJ103T	10K	1/4W(EG)	R45	ERDS2TJ223T	22K	1/4W(E, GN)	R76	ERDS2TJ222T	2.2K	1/4W(EG)
R19	ERDS2TJ103T	10K	1/4W(E, GN)	R45	ERDS2TJ103T	10K	1/4W(EG)	R77	ERDS2TJ104T	100K	1/4W(E, GN
R19	ERDS2TJ104T	100K	1/4W(EG)	R46	ERDS2TJ103T	10K	1/4W(E, GN)	R77	ERDS2TJ222T	2.2K	1/4W(EG)
R20	ERDS2TJ822T	8.2K	1/4W(E, GN)	R46	ERDS2TJ473T	47K	1/4W(EG)	R78	ERDS2TJ822T	8.2K	1/4W(E, GN
R20	ERDS2TJ102T	1K	1/4W(EG)	R47	ERDS2TJ473T	47K	1/4W(E, GN)	R80	ERDS2TJ824T	820K	1/4W(E, GN
R21	ERDS2TJ102T	1K	1/4W	R47	ERDS2TJ104T	100K	1/4W(EG)	R81	ERDS2TJ181T	180	1/4W(E, GN
R22	ERDS2TJ561T	560	1/4W(E, GN)	R48	ERDS2TJ104T	100K	1/4W(E, GN)	R82	ERDS2TJ562T	5.6K	1/4W(E, GN
R22	ERDS2TJ223T	22K	1/4W(EG)	R48	ERDS2TJ681T	680	1/4W(EG)	R83	ERDS2TJ122T	1.2K	1/4W(E, G)
R23	ERDS2TJ183T	18K	1/4W(E.GN)	R49	ERDS2TJ102T	1K	1/4W(E, GN)	R85	ERDS2TJ103T	10K	1/4W(E, G)
R23	ERDS2TJ103T	10K	1/4W(E, GN) 1/4W(EG)	R50	ERDS2TJ562T	5.6K	1/4W(E, GN)	R86	ERDS2TJ104T	100K	1/4W(E, GN

Ref. No.	Part No.	Values	& Remarks	Ref. No.	Part No.	Values	& Remarks	Ref. No.	Part No.	Values	& Remarks
R87	ERDS2TJ104T	100K	1/4W(E, GN)	R855	ERDS2TJ102T	1K	1/4W	R954	ERDS2TJ223T	22K	1/4W
R88	ERDS2TJ104T	100K	1/4W(E, GN)	R856	ERDS2TJ102T	1K	1/4W	R956	ERDS2TJ223T	22K	1/4W
R99	ERDS2TJ222T	2.2K	1/4W(E, GN)	R857	ERDS2TJ223T	22K	1/4W	R957	ERDS2TJ223T	22K	1/4W
R501	ERDS2TJ271	270	1/4W	R858	ERDS2TJ103T	10K	1/4W	R958	ERDS2TJ223T	22K	1/4W
R801	ERDS2TJ104T	100K	1/4W	R859	ERDS2TJ222T	2.2K	1/4W	R959	ERDS2TJ102T	1K	1/4W
R802	ERDS2TJ104T	100K	1/4W	R860	ERDS2TJ222T	2.2K	1/4W	R960	ERDS2TJ102T	1K	1/4W
R803	ERDS2TJ103T	10K	1/4W(E, GN)	R870	ERDS2TJ330T	33	1/4W	R961	ERDS2TJ102T	1K	1/4W
R804	ERDS2TJ103T	10K	1/4W(E, GN)	R901	ERDS2TJ153T	15K	1/4W	R962	ERDS2TJ102T	1K	1/4W
R806	ERDS2TJ330T	33	1/4W	R902	ERDS2TJ153T	15K	1/4W	R963	ERDS2TJ102T	1K	1/4W
R807	ERDS2TJ330T	33	1/4W	R903	ERDS2TJ153T	15K	1/4W	R964	ERDS2TJ102T	1K	1/4W
R808	ERDS2TJ330T	33	1/4W	R904	ERDS2TJ152T	1.5K	1/4W	R965	ERDS2TJ102T	1K	1/4W
R809	ERDS2TJ223T	22K	1/4W(E, GN)	R905	ERDS2TJ222T	2.2K	1/4W	R966	ERDS2TJ101T	100	1/4W
R810	ERDS2TJ223T	22K	1/4W(E, GN)	R906	ERDS2TJ272T	2.7K	1/4W	R967	ERDS2TJ101T	1K	1/4W
	ERDS2TJ2251 ERDS2TJ471T	470	1/4W(E, GN)	R907	ERDS2TJ392T	3.9K	1/4W		 		
R811		 		R908	ERDS2TJ562T	5.6K	1/4W	R968	ERDS2TJ223T	22K	1/4W
R812	ERDS2TJ101T	100	1/4W	R909	ERDS2TJ822T	8.2K	1/4W	R969	ERDS2TJ223T	22K	1/4W
R813	ERDS2TJ122T	1.2K	1/4W	R910	ERDS2TJ153T	15K	1/4W	R970	ERDS2TJ103T	10K	1/4W
R814	ERDS2TJ102T	1K	1/4W	ļ	·			R971	ERDS2TJ222T	2.2K	1/4W
R816	ERDS2TJ470T	47	1/4W	R912	ERDS2TJ152T	1.5K	1/4W	R972	ERDS2TJ103T	10K	1/4W
R817	ERDS2TJ101T	100	1/4W	R913	ERDS2TJ222T	2.2K	1/4W	R973	ERDS2TJ103T	10K	1/4W
R818	ERDS2TJ152T	1.5K	1/4W	R914	ERDS2TJ272T	2.7K	1/4W	R974	ERDS2TJ104T	100K	1/4W
R819	ERDS2TJ122T	1.2K	1/4W	R915	ERDS2TJ392T	3.9K	1/4W	R975	ERDS2TJ104T	100K	1/4W
R820	ERDS1FVJ181T	180	1/2W A	R916	ERDS2TJ562T	5.6K	1/4W	R976	ERDS2TJ104T	100K	1/4W
R821	ERDS2TJ101T	100	1/4W	R917	ERDS2TJ822T	8.2K	1/4W	R977	ERDS2TJ104T	100K	1/4W
R822	ERDS1FVJ391T	390	1/2W 🛕	R918	ERDS2TJ153T	15K	1/4W	R978	ERDS2TJ104T	100K	1/4W
R824	ERDS2TJ331T	330	1/4W	R919	ERDS2TJ152T	1.5K	1/4W	R979	ERDS2TJ104T	100K	1/4W
R825	ERDS2TJ103T	10K	1/4W	R920	ERDS2TJ222T	2.2K	1/4W	R980	ERDS2TJ104T	100K	1/4W
R826	ERDS2TJ103T	10K	1/4W	R921	ERDS2TJ272T	2.7K	1/4W	R981	ERDS2TJ104T	100K	1/4W
R827	ERDS2TJ103T	10K	1/4W	R922	ERDS2TJ392T	3.9K	1/4W	R983	ERDS2TJ106T	10M	1/4W
R828	ERDS2TJ101T	100	1/4W	R923	ERDS2TJ562T	5.6K	1/4W				
R829	ERDS2TJ122T	1.2K	1/4W	R924	ERDS2TJ101T	100	1/4W			CAP	ACITORS
R830	ERDS2TJ330T	33	1/4W	R925	ERDS2TJ101T	100	1/4W				
R831	ERDS2TJ332T	3.3K	1/4W	R926	ERDS2TJ222T	2.2K	1/4W	C1	ECBT1H6R8KC5	6.8P	50V(E, GN)
R832	ERDS2TJ222T	2.2K	1/4W	R927	ERDS2TJ222T	2.2K	1/4W	C1	ECEA1CU330B	33	16V(EG)
R833	ERDS2TJ271T	270	1/4W	R928	ERDS2TJ222T	2.2K	1/4W	C2	ECBT1H102KB5	1000P	50V(E, GN)
R834	ERD25FVJ6R8T	6.8	1/4W	R929	ERDS2TJ103T	10K	1/4W	C2	ECBT1C103MS5	0.01	16V(EG)
R835	ERDS2TJ821T	820	1/4W	R931	ERDS2TJ103T	10K	1/4W	C3	ECBT1H102KB5	1000P	50V(E, GN)
R836	ERDS2TJ104T	100K	1/4W	R932	ERDS2TJ102T	1K	1/4W	C3	ECBT1C103MS5	0.01	16V(EG)
R837	ERDS2TJ104T	100K	1/4W	R933	ERDS2TJ102T	100K	1/4W	C4	ECBT1H3R3KC5	3.3P	50V(E, GN)
R838	ERDS2TJ223T	22K	1/4W	R934	ERDS2TJ820T	82	1/4W	C4	ECBT1H102KB5	1000P	50V(EG)
R839	ERDS2TJ223T	22K	1/4W	R935	ERDS2TJ104T	100K	1/4W	C5	ECBT1H102KB5	1000P	50V(E, GN)
R840	ERDS2TJ223T	22K	1/4W	R936	ERDS2TJ331T	330	1/4W	C5	ECBT1H470J5	47P	50V(EG)
R841	ERDS2TJ223T	22K	1/4W	R937	ERDS2TJ183T	18K	1/4W	C6	ECBT1H2R7KC5	2.7P	50V(E)
R842	ERDS2TJ273T	27K	1/4W	R938	ERDS2TJ823T	82K	1/4W	C6	ECBT1C103MS5	0.01	16V(EG)
R843	ERDS2TJ273T	27K	1/4W	R939	ERDS2TJ473T	47K	1/4W	C6	ECBT1H3R9KC5	3.9P	50V(GN)
R844	ERDS2TJ273T ERDS2TJ332T	3.3K	1/4W	R939 R940	ERDS2TJ473T	47K	1/4W	C7	ECBT1H120JC5	12P	50V(GN)
R845	ERDS2TJ332T	3.3K	1/4W	R940	ERDS2TJ101T	100	1/4W	C8	ECBT1H181KB5	180P	50V(E, GN)
R845 R846	ERDS2TJ232T	2.2K	1/4W 1/4W	R943	ERDS2TJ101T	100	1/4W	C8	ECBT1H150JC5	15P	50V(E, GN)
				R945	ERDS2TJ683T	68K	1/4W	C9	ECBT1H3WC5	3.3P	50V(EG)
R847	ERDS2TJ103T	10K	1/4W	R945 R948	ERDS2TJ683T ERDS2TJ472T	4.7K	1/4W 1/4W	C9			
R849	ERDS2TJ222T	2.2K	1/4W	R948 R949	ERDS2TJ472T	4.7K	1/4W		ECEA0JU101B	1000	6.3V(EG)
R850	ERDS2TJ103T	10K	1/4W	R949 R950	ERDS2TJ472T ERDS2TJ681T	680	1/4W	C10	ECEA1CKA100D	1000P	50V(E, GN)
R851	ERDS2TJ153T	15K	1/4W	R950	ERDS2TJ68TT ERDS2TJ334T	330K	1/4W 1/4W	C10	ECEA1CKA100B	10000	16V(EG)
R852	ERDS2TJ330T	33	1/4W	R951	ERDS2TJ103T	10K	1/4W	C11	ECBT1H102KB5	1000P	50V(E, GN)
R853	ERDS2TJ470T	47	1/4W	R952 R953	ERDS2TJ103T	1K	1/4W	C11	ECBT1C103MS5	0.01	16V(EG)
R854	ERDS2TJ470T	47	1/4W	L K933	EKD95131051	11/	1/4 ¥¥	C12	ECBT1H6R8KC5	6.8P	50V(E, GN)

Ref. No.	Part No.	Values	& Remarks	Ref. No.	Part No.	Values	& Remarks	Ref. No.	Part No.	Values	& Remarks
C12	ECKR1H223ZF5	0.022	50V(EG)	C40	ECBT0J153MS5	0.015	6.3V(EG)	C76	ECEA1HKA010B	1	50V(E, GN)
C13	ECBT1H5R6KC5	5.6P	50V(E, GN)	C41	ECFR1C473KR	0.047	16V(E, GN)	C77	ECBT0J153MS5	0.015	6.3V(E, GN)
C13	ECKR1H223ZF5	0.022	50V(EG)	C41	ECEA1HKA010B	1	50V(EG)	C78	ECBT0J153MS5	0.015	6.3V(E, GN)
C14	ECBT1H180JC5	18P	50V(E, GN)	C42	ECEA1HKA010B	1	50V(EG)	C79	ECBT1C103MS5	0.01	16V(E, GN)
C14	ECBT1C103MS5	0.01	16V(EG)	C43	ECBT1C103MS5	0.01	16V(E, GN)	C80	ECBT1C103MS5	0.01	16V(E, GN)
C15	ECBT1H102KB5	1000P	50V(E, GN)	C43	ECBT1H102KB5	1000P	50V(EG)	C81	ECBT1C103MS5	0.01	16V(E, GN)
C15	ECEA1CKA100B	10	16V(EG)	C44	ECBT1C103MS5	0.01	16V(E, GN)	C501	ECA1AKF820E	82	10V
C16	ECBT1H102KB5	1000P	50V(E, GN)	C44	ECBT1H102KB5	1000P	50V(EG)	C801	ECEA1HU010B	1	50V
C16	ECBT1C103MS5	0.01	16V(EG)	C45	ECBT1C103MS5	0.01	16V(E, GN)	C805	ECBT1H101KB5	100P	50V(E, GN)
C17	ECBT1C103MS5	0.01	16V(E, GN)	C45	ECBT1C822KS5	8200P	16V(EG)	C806	ECBT1H101KB5	100P	50V(E, GN)
C17	ECBT1H150JC5	15P	50V(EG)	C46	ECBT1C103MS5	0.01	16V(E, GN)	C807	ECBT1E103ZF5	0.01	25V
C18	ECBT1H101KB5	100P	50V(E, GN)	C46	ECBT1C822KS5	8200P	16V(EG)	C808	ECBT1E103ZF5	0.01	25V
C18	ECEA1HKA010B	1	50V(EG)	C47	ECBT1C103MS5	0.01	16V(EG)	C809	ECEA1CU101B	100	16V
C19	ECBT1C103MS5	0.01	16V	C48	ECBT1H102KB5	1000P	50V	C810	ECEA1CU470B	47	16V
C20	ECEA1CKA100B	10	16V	C49	ECBT1H102KB5	1000P	50V	C811	ECBT1H102KB5	1000P	50V
C21	ECBT1H150JC5	15P	50V(E, GN)	C50	ECBT1C103MS5	0.01	16V	C812	ECBT1H102KB5	1000P	50V
C21	ECBT1H101KB5	100P	50V(EG)	C51	ECEA1CU330B	33	16V(E, GN)	C813	ECKR1H103ZF5	0.01	50V 🛕
C22	ECBT0J223NS5	0.022	6.3V(E, GN)	C51	ECBT1C103MS5	0.01	16V(EG)	C814	ECKR1H103ZF5	0.01	50V
C22	ECBT1E223ZF5	0.022	25V(EG)	C52	ECBT1C103MS5	0.01	16V	C815	ECEA1HU470B	47	50V
C23	ECBT0J223NS5	0.022	6.3V(E)	C53	ECEA25M4R7RB	4.7	25V	C817	ECKR1H103ZF5	0.01	50V <u>1</u>
C23	ECBT1C103MS5	0.01	16V(EG)	C54	ECBT1H102KB5	1000P	50V(E, GN)	C818	ECKR1H103ZF5	0.01	50V
C23	ECBT1E223ZF5	0.022	25V(GN)	C54	ECEA1CU330B	33	16V(EG)	C819	ECKR1H103ZF5	0.01	50V
C24	ECBT1C103MS5	0.01	16V(E, GN)	C55	ECPT1H102KB5	1000P	50V(E, GN)	C820	ECKR1H103ZF5	0.01	50V
C24	ECEA1HKAR47B	0.47	50V(EG)	C55	ECBT1H150JC5	15P	50V(EG)	C821	ECEA1AU101B	100	10V
C25	ECEA1CKA100B	10	16V(E, GN)	C56	ECBT1H150JC5	15P	50V(EG)	C822	ECBT1E103ZF5	0.01	25V
C25	ECBT1C103MS5	0.01	16V(EG)	C57	ECEA0JU221B	220	6.3V	C823	ECEA1CU222E	2200	16V
C26	ECEA0JU101B	100	6.3V(E, GN)	C58	ECBT1H102KB5	1000P	50V	C824	ECKR1H103ZF5	0.01	50V
C26	ECBT0J223NS5	0.022	6.3V(EG)	C59	ECBT1H102KB5	1000P	50V	C825	ECEA1AU101B	100	10V
C27	ECBT0J223NS5	0.022	6.3V(E, GN)	C60	ECBT1H181KB5	180P	50V	C826	ECEA1HU010B	1	50V
C27	ECBT1H471KB5	470P	50V(EG)	C61	ECBT1C103MS5	0.01	16V(E, GN)	C828	ECEA1AU101B	100	10V
C28	ECBT1C103MS5	0.01	16V(E, GN)	C62	ECBT1H150JC5	15P	50V(E, GN)	C829	ECBT1E103ZF5	0.01	25V
C28	ECEA1HKA010B	1	50V(EG)	C62	ECBT1H471KB5	470P	50V(EG)	C830	ECBT1E103ZF5	0.01	25V
C29	ECEA1HKAR47B	0.47	50V(E, GN)	C63	ECBT1H150JC5	15P	50V(E, GN)	C831	ECBT1H331KB5	330P	50V
C29	ECFR1C473MR	0.047	16V(EG)	C63	ECBT1C103MS5	0.01	16V(EG)	C832	ECBT1H331KB5	330P	50V
C30	ECEA1HKA010B	1	50V(E, GN)	C64	ECBT1H102KB5	1000P	50V(E, GN)	C833	ECBT1H121KB5	120P	50V
C30	ECBT1H100JC5	10P	50V(EG)	C64	ECBT1C103MS5	0.01	16V(EG)	C834	ECBT1H121KB5	120P	50V
C31	ECBT1H101KB5	100P	50V(E, GN)	C65	ECBT1H471KB5	470P	50V(E, GN)	C837	ECEA1EU102E	1000	25V
C31	ECBT1C103MS5	0.01	16V(EG)	C65	ECBT1H102KB5	1000P	50V(EG)	C838	ECEA1EU101B	100	25V
C32	ECEA1CU100B	10	16V(E, GN)	C66	ECEA1HKAR33B	0.33	50V(E, GN)	C839	ECBT1H102KB5	1000P	50V
C32	ECEA1HU010B	1	50V(EG)	C67	ECQP1102JZT	1000P	100V(E, GN)	C840	ECBT1H102KB5	1000P	50V
C33	ECBT0J223NS5	0.022	6.3V(E, GN)	C67	ECEA1HKA3R3B	3.3	50V(EG)	C842	ECBT1E103ZF5	0.01	25V
C33	ECEA1HKAR47B	0.47	50V(EG)	C68	ECFR1C103MR	0.01	16V(E, GN)	C843	ECEA1HKA010B	1	50V
C34	ECBT1C103MS5	0.01	16V(E, GN)	C68	ECEA1HKA3R3B	3.3	50V(EG)	C845	ECEA1HU010B	1	50V
C34	ECEA1HKAR33B	0.33	50V(EG)	C69	ECEA1CU101B	100	16V(E, GN)	C846	ECEA1HKA010B	1	50V
C35	ECBT1H150JC5	15P	50V(E, GN)	C69	ECBT1H102KB5	1000P	50V(EG)	C847	ECEA1EKA4R7B		25V
C35	ECQP1102JZT	1000P	100V(EG)	C70	ECEA1HKA010B		50V(E, GN)	C850	ECQV1H334JZ3	0.33	50V
C36	ECBT1C103MS5	0.01	16V(E, GN)	C70	ECBT1H102KB5	1000P	50V(EG)	C851	ECBT1H101KB5	100P	50V
C36	ECFR1C103MR	0.01	16V(EG)	C71	ECBT1C103MS5		16V	C852	ECBT1H101KB5	100P	50V
C37	ECBT1C103MS5	0.01	16V	C72	ECEA1HUR47B	0.47	50V(E, GN)	C901	ECEA1HKAR33B		50V
C38	ECFR1C103MR	0.01	16V(E, GN)	C72	ECEA1HKA010B		50V(EG)	C902	ECBT1C103MS5	0.01	16V
C38	ECEA1CU101B	100	16V(EG)	C73	ECEA1HU010B	1 470	50V(E, GN)	C903	ECBT0J223NS5	0.022	6.3V
C39	ECBT1C103MS5	0.01	16V(E, GN)	C73	ECBT1H470J5	47P	50V(EG)	C904	ECEA1HKAR22B		50V
C39	ECBT0J153MS5	0.015	6.3V(EG)	C74	ECEA1HKA010B	 	50V(E, GN)	C905	EECS5R5H473	0.047	5.5V
C40	ECBT1H100JC5	10P	50V(E, GN)	C75	ECEA1HKA010B	1	50V(E, GN)	C906	ECBT1H102KB5	1000P	50V

Ref. No.	Part No.	Values	& Remarks	Ref. No.	Part No.	Values	& Remarks	Ref. No.	Part No.	Values	& Remarks
C907	ECEA0JU102B	1000	6.3V	R728	ERJ6GEYJ392V	3.9K	1/10W	C743	ECUZNE104MBN	0.1	25V
C908	ECBT1H561KB5	560P	50V	R730	ERJ6GEYJ331V	330	1/10W	C744	ECUE1E822KBN	8200P	25V
C909	ECBT1H561KB5	560P	50V	R731	ERJ6GEYJ392V	3.9K	1/10W	C745	ECUE1C473MBN	0.047	16V
C910	ECBT1H561KB5	560P	50V	R734	ERJ6GEYJ101V	100	1/10W	C746	ECUE1H050DCN	5P	50V
C911	ECEA0JKA101B	100	6.3V	R735	ERJ6GEYJ101V	100	1/10W	C747	ECUE1H222KBN	2200P	50V
C912	ECBT1H102KB5	1000P	50V	R736	ERJ6GEYJ101V	100	1/10W	C748	ECUV1H471KBM	470P	50V
C913	ECBT1H101KB5	100P	50V	R738	ERJ6GEYJ223V	22K	1/10W				
C914	ECBT1H101KB5	100P	50V	R739	ERJ6GEYJ681V	680	1/10W				
C915	ECEA1HKA3R3B	3.3	50V	R741	ERJ6GEYJ562V	5.6K	1/10W				
C916	ECEA1HKA3R3B	3.3	50V	R742	ERJ6GEYJ562V	5.6K	1/10W				
C917	ECEA1HKA010B	1	50V	R743	ERJ6GEYJ562V	5.6K	1/10W				
C918	ECBT1H102KB5	1000P	50V	R744	ERJ6GEYJ103V	10K	1/10W				
C919	ECBT1H560J5	56P	50V	R745	ERJ6GEYJ155V	1.5M	1/10W				
C920	ECBT1H560J5	56P	50V	R748	ERJ6GEYJ182V	1.8K	1/10W				
C921	ECBT1H680J5	68P	50V	R749	ERJ8GEYJ103V	10K	1/8W				
C922	ECBT1H680J5	68P	50V								
C923	ECBT1H220JC5	22P	50V			CAP	ACITORS				
C924	ECBT1H180JC5	18P	50V								
C925	ECBT1C103MS5	0.01	16V	C701	ECEA0JKA220	22	6.3V				
C926	ECBT1H101KB5	100P	50V	C702	ECEA1HKA010I	1	50V				
C927	ECBT1C103MS5	0.01	16V	C703	ECEA0JKA101I	100	6.3V				
C928	ECBT1C103MS5	0.01	16V	C704	ECUZ1E104MBN	0.1	25V				
C930	ECBT1C103MS5	0.01	16V	C705	ECEA1HKA010I	1	50V				
C931	ECBT1C103MS5	0.01	16V	C706	ECUE1H101JCN	100P	50V				
C932	ECBT1C103MS5	0.01	16V	C707	ECUV1E273KBN	0.027	25V				
C933	ECBT1H102KB5	1000P	50V	C708	ECUE1H472KBN	4700P	50V				
C934	ECBT1H102KB5	1000P	50V	C709	ECUE1C473KBN	0.047	16V				
				C710	ECUE1H152KBN	1500P	50V	A			
		< S	ERVO >	C711	ECUZ1E104MBN	0.1	25V				
		RES	SISTORS	C712	ECUZ1E104MBN	0.1	25V				
				C713	ECUV1C104MBM	0.1	16V				
R701	ERJ6GEYJ100	10	1/10W	C714	ECEA0JKA101I	100	6.3V				
R702	ERJ6GEYJ471V	470	1/10W	C715	ECEA0JKA470I	47	6.3V				
R703	ERJ6GEYJ823	82K	1/10W	C716	ECUE1H561KBN	560P	50V				
R704	ERJ6GEYJ102A	1K	1/10W	C717	ECUZ1E104MBN	0.1	25V				
R705	ERJ6GEYJ103V	10K	1/10W	C718	ECUV1C224KBM	0.22	16V				
R706	ERJ6GEYJ102A	1K	1/10W	C721	ECUE1H270JCN	27P	50V				
R707	ERJ6GEYJ473V	47K	1/10W	C722	ECUE1H270JCN	27P	50V				
R708	ERJ6GEYJ104V	100K	1/10W	C723	ECEA1AKA221I	220	10V				
R709	ERJ6GEYJ683V	68K	1/10W	C724	ECUV1C104MBM	0.1	16V				
R711	ERJ6GEYJ154V	150K	1/10W	C725	ECUE1H102KBN	 	50V				
R712	ERJ6GEYJ221V	220	1/10W	C726	ECUE1H102KBN	1000P	50V				
R714	ERJ6GEY0R00A	0	1/10W	C727	ECEA1HPK010I	1	50V				
R717	ERJ6GEYJ102A	1K	1/10W	C728	ECEA1HPK010I	1	50V				
R718	ERJ6GEYJ102A	1K	1/10W	C730	ECUZ1E104MBN	ļ	25V				
R719	ERJ6GEYJ102A	1K	1/10W	C731	ECEA0JK221I	220	6.3V				
R720	ERJ6GEYJ102A	1K	1/10W	C732	ECEA0JK221I	220	6.3V	ļ			
R721	ERJ6GEYJ101V	100	1/10W	C733	ECUZ1E104MBN		25V	ļ			
R722	ERJ6GEYJ563V	56K	1/10W	C734	ECEA1AKA221I	220	10V			<u> </u>	
R723	ERJ6GEYJ182V	1.8K	1/10W	C735	ECUZNE104MBN		25V				
R724	ERJ6GEYJ333V	33K	1/10W	C736	ECUZNE104MBN ECUZNE104MBN		25V 25V			ļ	
R725	ERJ6GEYJ472V	4.7K	1/10W	C737	ECUZNETU4MBN ECUV1C154KBN		25 V 16 V	<u> </u>			
R726	ERJ6GEYJ473V	47K	1/10W	C742	ECUVICI34KBN ECUVIE273KBN		25V				
R727	ERJ6GEYJ103V	10K	1/10W	C/42	LCU VIEZISKEN	0.027	4J ¥	L	1	<u> </u>	in Singanore