Service Manual ORDER NO. CRT1916 **CD MECHANISM MODULE** - This service manual describes operation of the CD mechanism incroporated in models listed in the table below. - When performing repairs use this manual together with the specific manual for model under repair. | Model | Service Manual | CD Mechanism Module | CD Mechanism Unit | |-----------------------|----------------|---------------------|-------------------| | CDX-P1220S/UC, ES, EW | CRT1878 | CXK4500 | CXA9006 | | CDX-FM1227S/UC, ES | CRT1877 | CXK4500 | CXA9006 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1 | | ### **CONTENTS** | 1. SERVICING PRECAUTIONS | 2 | |---------------------------|----| | 2. DISASSEMBLY | 2 | | 3. MECHANICAL DESCRIPTION | 6 | | 4. CIRCUIT DESCRIPTION | 11 | PIONEER ELECTRONIC CORPORATION PIONEER ELECTRONICS SERVICE INC. PIONEER ELECTRONIC [EUROPE] N.V. PIONEER ELECTRONICS ASIACENTRE PTE.LTD. PIONEER ELECTRONICS ASIACENTRE PTE.LTD. 4-1, Meguro 1-Chome, Meguro-ku, Tokyo 153, Japan 1760, Long Beach, CA 90801-1760 U.S.A. Haven 1087 Keetberglaan 1, 9120 Melsele, Belgium 501 Orchard Road, #10-00, Lane Crawford Place, Singapore 0923 © PIONEER ELECTRONIC CORPORATION 1996 K-FFD. AUG. 1996 Printed in Japan ### 1. SERVICING PRECAUTIONS - Do not carry out any work holding the upper surface of the magazine insert slot on the mechanism, marked by an arrow, since it deforms easily. - 2) When the Stage Mechanism is positioned below the 11th level, it protrudes below the chassis. Do not leave it in this position as it may become damaged. # 2. DISASSEMBLY #### Removing the Pick-up Unit - 1. Attach the Short Pin onto the Flexible P.C.Board of the Pick-up Unit.(Fig.2) - 2. Remove the Flexible P.C.Board from the connector.(Fig.2) - 3. Remove the Torsion Spring which is pressed against the leading edge of the Feed Screw.(Fig.3) - 4. Remove the Screw and Pulley Cover.(Fig.3) - Remove the Belt and the Pick-up Unit with the Feed Screw still attached.(Fig.3) - 6. Lift the Tabs of the rack section of the Holder and remove the Feed Screw. While doing so, be careful not to lose the Bearings on the ends of the Feed Screw. (Fig. 3) #### Removing the CD Core Unit (Fig.2) - 1. After procedures 1 and 2 for removing the Pick-up Unit, remove the connector. - Remove the Elevation Motor Assy lead wires marked with an arrow which are soldered onto the CD Core Unit. - Remove screw (A), screw (B) and screws (C)(2 screws), then remove the CD Core Unit. #### Precautions for Installing the CD Core Unit If the sensor lever of the Linear Position Sensor (Slide Volume: VR801) of the CD Core Unit is not inserted properly in the U-shaped Groove the elevation operation may not function properly. When installing the CD Core Unit in the CD Mechanism Unit insert the Linear Position Sensor (Slide Volume: VR801) securely in the U-shaped Groove. #### Removing the Carriage Motor Assy (Fig.3) After procedures 3 and 4 for removing the Pick-up Unit, remove the Belt, and the Carriage Motor Assy. Fig.2 #### Removing the Spindle Motor Assy - 1. Turn the Tray Motor using an 8V DC voltage supply, and move the Tray Extending Arm. - 2. Remove screw (D) and remove the Clamp Spring. - 3. Remove the Clamper. - 4. Remove the two screws (E) and remove the Spindle Motor. # Precautions for Installing the Spindle Motor Assy When installing the Spindle Motor Assy be sure the lead wires trail forward the magazine insert slot. Furthermore, make sure that the Side Pressure Holder is correctly pressed against the Shaft. #### Removing the Tray Motor Assy - 1. Remove screw (F). - 2. Remove the Polyslider and the Two-level Gear. - 3. With the Stage Mechanism positioned in the upper half (1st to 6th discs), fully operate the Front Lever in the direction to lower the Stage Mechanism. By operating the Front Lever, move the Stage Mechanism until the "E" stamped on the Front Lever is aligned with the "E" on the Frame Unit. - 4. Remove screw (G). - 5. Operate the Front Lever again all the way to the right to move the Stage Mechanism to the intermediate stage. - 6. Remove the Tray Motor Bracket (not shown in diagram). - 7. Remove the two screws and remove the Tray Motor Assy (not shown in diagram). **TOP VIEW** #### Removing the Elevation Motor Assy - 1. Remove the Jointed Arm Spring. - 2. Remove the two screws (H) and remove the Motor Bracket. - 3. Remove the two screws and remove the Elevation Motor Assy (not shown in diagram). #### Removing the Stage Mechanism - 1. Remove the Two-level Gear. - 2. Remove the screw (J), and remove the Rack. - 3. With the Stage Mechanism positioned in the upper half (1st to 6th discs), fully operate the Front Lever in the direction to lower the Stage Mechanism, then fully operate the lever in the opposite direction. The Front, Rear, and Sensor Levers can then be removed all at once. - 4. Remove the nine screws (K), and screw (L) and then remove the Upper Frame. Do this carefully, as the Coil Spring of the Multiple Insertion Prevention Mechanism may fall off. - 5. Remove the Spring, then slightly lift the Upper Frame. - 6. Remove the Torsion Spring. - 7. Remove the Panta-arm from the Upper Frame. - Note: The Upper Frame can be removed more easily if the Stage Mechanism is in an upper position. - 8. Remove the five screws (M) and screw (N) and remove the Stage Mechanism by separating the front and back of the Frame. ## 3. MECHANICAL DESCRIPTION #### Inserting the Magazine - Inserting the magazine while countering the spring force of the EJECT Lever, the Lock Arm will slide along the groove on the reverse side of the magazine and lock into place (due to the Torsion Spring on the reverse side of the Lock Arm). - 2. The magazine lock is detected when the Sensor Arm moves along the EJECT Lever Cam Section and presses against the MAG Switch (S803) located on the CD Core Unit. Initially, the Sensor Arm is held by the cam section of the EJECT Lever until the Magazine Lock Arm is pushed off by the groove on the reverse side of the magazine. When the Lock Arm is pushed off the cam section is released, but is held again by the Lock Arm. When the magazine lock is released, the Sensor Arm presses the MAG Switch (S803). #### Elevation Operation Moving the Rear Lever all the way over to the "D" position bring the Stage Mechanism to the center position and activates the upper/lower switching. Moving the lever in the opposite direction from the "D" position will move the Stage Mechanism downward. Similarly, moving the lever to the "U" position and then lock in the opposite direction will move the Stage Mechanism upwards. Fig.9 State the not inserted Magazine yet Immediately Magazine Lock Fig.10 Fig.12 #### Elevation Detection When the Rear Lever is driven the Front Lever and Sensor Lever are also driven via the Jointed Arm. The voltage is detected, and drive initiated, when the knob of the Linear Position Sensor (Slide Volume: VR801) enters the U-shaped Groove of the Sensor Lever. However, the Rear Lever of the CX-653 has a hole in the shape of a dogleg (<). Thus, the Stage Mechanism could be positioned in the upper or lower half and the Linear Position Sensor would be located in the same position. To distinguish the upper half from the lower half, the system uses an Upper/Lower Detection Switch (S854) in the Stage Chassis, as well as using the values output from the Linear Position Sensor (Slide Volume: VR801). Caution: Do not apply a large force to the Switching Arm in the direction shown by the arrow. Doing so may damage the Upper/Lower Detection Switch (S854) Fig.13 Fig.14 #### Operation from the Tray Dispenser to the Clamp When the Loading Motor drives the Cam Gear, the Tray is pulled out by the Tray Extending Arm which moves along the gear cam, and clamping is performed by sliding the Clamp Lever. During disk loading the Carriage Chassis and Spindle Motor hold positions where they do not get in the way of the Tray. However when the Cam Gear starts to turn (after completion of tray dispension) the Clamp Lever moves and the Shaft of the Carriage Chassis is lifted by the Stepped Holes and the Carriage Chassis is drawn to the Stage Chassis. The Spindle Motor then move to the disk and lifts it from the Tray. Fig.15 #### Stabilizing the Elevation Rattle During clamping, the Clamp Lever slides and moves the Carriage Chassis. At the some time, the Stopper of the Clamp Lever enters the Stopper of the Frame, controlling the up and down motion of the stage section. Due to the elevation structure, the shaft of the Stage Chassis is pushed down and the stage section is stabilized. The Elevation Motor doesn't stop when the lowered position is detected, but a fixed interval after the limit of motion of the structure has been reached. At this point, if some rattling space as shown in figure 16 is not provided, the shaft of the Stage Chassis pushes on the Clamp Lever directly (marked with ★). No force is transmitted to the Carriage Chassis and rattling occurs, resulting in a deterioration of the anti-vibration characteristics. Therefore, to reduce the rattling at each section an improvement in the anti-vibration characteristics is made by providing enough rattling space to reduce the rattling at each section and ensuring that the force is transmitted in the order of the Stage Chassis → Carriage Chassis → Clamp Lever → Frame. * The spring and Torsion Spring of the Panta-arm is set in such a manner that these relationships do not fall out of place. #### Disk Detection DSP Switch (S852) is turned ON and OFF by the DSP Switch Lever driven by the Cam Gear which controls the tray extending motion. The Photo Sensor (Q851, D851) is timed with this ON and OFF status, detecting the existence and non-existence of the disk as well as the type of disk. #### ● Tray Extension and Retraction Detection #### A) Clamp When the clamp motion of the Clamp Lever is complete the Jointed Arm moves and the protruding section of the arm pushes the TRP Switch (S851) ON via the Leaf Spring. #### B) Tray retraction When the tray retracts the Switch Arm, which operates on the same fulcrum as the Tray Extending Arm, moves and the TRP Switch (S851) is pushed ON by the protruding section of the arm via the Leaf Spring. Fig.17 #### Over-extension Prevention Structure of the Tray In standby mode the Stoppers are maintained in a neutral position by the upper and lower Springs. When the Tray is being dispensed the Stoppers are pushed apart by their Tapers. In this condition, even if an impact force is applied and the Tray is pushed outward, the Tray does not actually get dispensed due to the straight section of the Stopper. Further, since force F2 of the lower Spring is set smaller that force F1 of the upper Spring (F1>F2) while the Stoppers are being pushed apart, the dispensed Tray is being pushed downward at all times (F=F1-F2), preventing vertical rattling of the Tray due to vibrations. Fig.18 #### Magazine Ejection When the Lever is driven beyond the lowest position of the elevation the bent section of the Rear Lever pushes on the boss of the Lock Arm, releasing the lock. The magazine is ejected by the EJECT Lever. Fig.19 #### 4. CIRCUIT DESCRIPTION # 4.1 POWER SUPPLY UNIT CONFIGU-RATION The power supply unit of this system consists of 4 power sources, VD(8.6V), 5VA(5V), 5VLR(5V) and VREF(5V). VD : Main power source. Generated in the expansion board. 5VA: Power source for IC101, IC201 and the Pickup Unit. Generated by the regulator IC (IC701) from VD. 5VLR: Audio midpoint voltage. Generated by the regulator IC (IC604) from VD. VREF: Power source for Linear Position Sensor. A/D reference voltage of the microcomputer. Usually taken from the microcomputer's VDD line via on enabling switch. #### **4.2 MECHANISM OPERATION** #### 1) Elevation Operation The microcomputer determines the present elevation position from the voltage value (EPVO) obtained from the potential divider VR801. The voltage of the position of the requested disk is calculated from figure 20 and the ELV Motor is controlled so that the EPVO voltage is matched to the value obtained from the calculation. | | min | typ. | max | MAG | U/L | |-------------------------|-------------|-------------|-------------|--------|--------| | DISC1 Voltage position | EREF- 88LSB | EREF- 87LSB | EREF- 86LSB | | | | DISC2 Voltage position | EREF- 57LSB | EREF- 56LSB | EREF- 55LSB | Vc | OFF | | DISC3 Voltage position | EREF- 25LSB | EREF- 24LSB | EREF- 23LSB | 1 | | | DISC4 Voltage position | EREF+ 6LSB | EREF+ 7LSB | EREF+ 8LSB |] | | | DISC5 Voltage position | EREF+ 37LSB | EREF+ 38LSB | EREF+ 39LSB | 1 | | | DISC6 Voltage position | EREF+ 68LSB | EREF+ 69LSB | EREF+ 70LSB | 1 | | | UP Switching position | EREF+104LSB | EREF+107LSB | EREF+110LSB | Not de | efined | | DOWN Switching position | EREF+119LSB | | | 7 | | | DISC7 Voltage position | EREF+ 73LSB | EREF+ 74LSB | EREF+ 75LSB | | | | DISC8 Voltage position | EREF+ 42LSB | EREF+ 43LSB | EREF+ 44LSB | | | | DISC9 Voltage position | EREF+ 11LSB | EREF+ 12LSB | EREF+ 13LSB |] L | ON | | DISC10 Voltage position | EREF- 20LSB | EREF- 19LSB | EREF- 18LSB | 1 | | | DISC11 Voltage position | EREF- 51LSB | EREF- 50LSB | EREF- 49LSB | 1 | | | DISC12 Voltage position | EREF- 82LSB | EREF- 81LSB | EREF- 80LSB | 1 | | | EJECT Voltage position | | | EREF-106LSB | Н | | When a magazine is inserted *1LSB = 20mV (5/256 V) Vc = 0.83 V Fig.20 #### 2) Tray Extension and Retraction The microcomputer detects tray retraction, tray extension and clamp completion by the MSW signal waveform (voltage) created by potential division of the voltage DSP Switch and the voltage TRP Switch and controls the Tray Motor. Fig.21 #### 3) 0.6mm UP/DOWN Operation In order to secure clearance with the neighboring disk the Stage Mechanism is driven down by the ELV Motor (M852) when clamping is complete. The microcomputer detects the completion of clamping, and when the Tray Motor is brought to a full stop, the ELV Motor (M852) is forcibly driven for a 240 ms interval in the downward direction. When the tray is being retracted, the ELV Motor (M852) is controlled to match the value of EPVO calculated during the elevation operation. The tray retraction operation is started when the Tray has been moved to the prescribed position. Each motor is driven by the driver IC302(LB1836M). LB1836M is an IC which usually operates through the combination of H and L of the 4 lines I1, I2, I3 and I4. With this system, I1=I3 and control is realized through a combination of H and L of the 3 lines I1, I2 and I4. | 41 | Dica | Dete | ation | |----|------|------|-------| | 41 | DISC | vete | ction | The MSW signal is not only used for the timing of the disk extension and retraction motion but also for determinating the existence and non-existence of a disk and the disk type (8cm or 12cm). The disk detection operations are carried out while the Tray is being pulled out of the magazine. Disk detection is determined when the light passes through (DISC waveform L:less than 1.5V) or is interrupted (DISC waveform H:1.5V or above) with an array of LEDs and photo transistors above and below the Tray. | ELV Motor | Tray Motor | I1, 3 | 12 | 14 | |-----------|------------|-------|----|----| | Forward | Brake | Н | Н | L | | Reverse | Stand-by | L | L | Н | | Brake | Forward | Н | L | Н | | Stand-by | Reverse | L | Н | L | | Brake | Brake | Н | Н | Н | | Stand-by | Stand-by | L | L | L | * ELV Motor Forward : Disc No.1-6 EL : Disc No.7-12 EL ELV-down (Disc No. Up) ELV-up (Disc No. Down) Tray Motor Forward: Tray Ejection The DISC waveform is continuously monitored within the intervals A and B above and if a L is detected even once, that interval is determined as L. If a L is not detected at all then that interval is determined as H in the following. | | Α | В | |---------|---|---| | 1 2 c m | Н | Н | | 8 c m | L | Н | | No Disk | _ | L | Fig.22 # 4.3 PRE-AMP SECTION (UPC2572GS: IC101) This section processes the pickup output signals to create the signals for the servo, demodulator & control. The pickup output signals are I-V converted by the pre-amp with built in photo-detector in the pickup, and added by the RF amp (IC101) to obtain the RF, FE, TE, TE zero cross, and other signals. The main component is the UPC2572GS and each section is explained below. Because this system has a single power supply (+5V), the reference voltage for this IC, the PU and the servo circuit is the voltage REFO (+2.5V). The REFO signal is obtained by buffering REFOUT from the servo LSI (IC201: UPD63702GF) and is available from Pin 19 of IC101. All measurements should be done using this REFO as reference. Note: During measurement, do not short REFO and GND. Fig.23: UPC2572GS BLOCK DIAGRAM #### 1) APC Circuit (Automatic Power Control) When the laser diode is driven with constant current, the optical output has large negative temperature characteristics. So the current must be controlled to hold the output constant with the monitor diode. The circuit that carries out this function is the APC circuit. The LD current is obtained by measuring the voltage between LD1 and ground and the value of this current is about 35mA. Fig.24: APC CIRCUIT #### 2) RF Amp, RF AGC Amp The photo-detector outputs (A+C) and (B+D) are added, amplified, and equalized in IC101 and output to the RFI pin. (The eye pattern can be checked at this pin.) The RFI voltage low-frequency component is: $RFI = (A+B+C+D) \times 3.22$ R111 is the offset resistor for holding the RFI signal in the pre-amp's output range. The RFI signal is AC coupled and input to Pin 4 (RFIN pin). This IC contains an RF AGC circuit, which holds the RFO output at Pin 2 at a fixed level (1.2 \pm 0.2Vp-p). This RFO signal is used in the EFM, DFCT, and MIRR circuits. #### 3) EFM Circuit This circuit, "squares" up the analog RF signal into a digital EFM signal. In order to ensure minimum errors it is necessary to use a feedback circuit to match the DC level of the threshold to the center of the RF waveform. This circuit uses the fact that the EFM signal should have no DC component. By feeding back the EFM signal's DC level the threshold level changes until the DC level is zero and the threshold, by definition, is at the exact center of the RFO waveform. The filtering in the feedback has been adjusted to ensure minimum error. The EFM signal is output from Pin 35. The signal is a 2.5Vp-p amplitude signal centering on REFO. #### 4) DFCT (Defect) Circuit The DFCT circuit detects defects on the disc surface, and outputs a "H" signal from Pin 33. If there is dirt on the disc, drop outs may appear. The DFCT signal output is input to the servo LSI HOLD pin and the focus and tracking servo drives are held while the DFCT output is "H" in order to improve playability. #### 5) RFOK Circuit This circuit produces the signal indicating the focus close state during play and the timing for closing the focus servo. This signal is output from Pin 32. This RFOK signal output is input to the servo LSI RFOK pin and the focus close command is issued by the servo LSI. This signal is high during play when the focus is closed. Fig.25: RF AMP, RF AGC, EFM, DFCT, RFOK CIRCUIT #### 6) Focus Error Amp The photo-detector outputs (A+C) and (B+D) are passed through a differential amp, and an error amp and (A+C-B-D) is output from Pin 28 as the FE signal. The FEY voltage low-frequency component is: FEY = $$(A+C-B-D) \times \frac{20k}{10k} \times \frac{90k}{68.8k} \times \frac{R108}{17.2k}$$: (PU FE level \times 5.02) An S curve of about 1.6Vp-p is obtained with REFO as the reference. The final-stage amp cutoff frequency is 12.4kHz. Fig.26: FOCUS ERROR AMPLIFIER #### 7) Tracking Error Amp The photo-detector E and F outputs are passed through a differential amp and an error amp and (E-F) is output from Pin 24 as the TE signal. The TEY voltage low-frequency component is: TEY = (E-F) $$\times \frac{63k}{(31k + 16k)} \times \frac{R109}{17k}$$: (PU TE output level \times 5.36) The TE waveform of about 1.5Vp-p with REFO as the reference is obtained as the TE output (Pin 24). The final-stage amp cutoff frequency is 19.5kHz. #### 8) Tracking Zero Crossing Amp The tracking zero crossing signal (below, TEC signal) is the TE waveform (Pin 24 voltage) amplified four times and is used to find the zero crossing points of the tracking error with the UPD63702GF servo LSI. This zero crossing point is found for the following two reasons. - (1) To count tracks for carriage moves and track jumps - (2) To detect the direction in which the lens is moving for tracking closing (This is used in the tracking brake circuit, described Page 20 b).) The TEC signal frequency range is 500Hz - 19.5kHz. TEC voltage = TE level \times 4 In other words, the TEC signal level is calculated at 6Vp-p. This level exceeds the op-amp's output range and the signal is clipped, but this can be ignored because this signal is used by the servo LSI only at the zero crossing point. Fig.27 : TRACKING ERROR AMPLIFIER & TRACKING ZERO CROSSING AMPLIFIER #### 9) MIRR (Mirror) Circuit The MIRR signal shows the on track and off track data and is output from Pin 31. When the laser beam is On track: MIRR = "L" Off track: MIRR = "H" This signal is used in the brake circuit, described Page 20. #### **UPC2572GS** RFO DETECT (A) (PEAK) - (BOTTOM) AGC RFIN -(4 MIRR COMP (B) воттом DC SHIFT (z)1.5V Fig.28: MIRR CIRCUIT Fig.29: MIRR CIRCUIT & SIGNAL DIAGRAM 10) 3TOUT Circuit This circuit detects variations of the RF signal when an external interference is input into the focus servo loop and outputs the phase difference between the FE signal and the RF level variation signal from Pin 30. The signal has been passed through a low-pass filter (fc = 40Hz). This signal is used for the FE bias automatic adjustment, described Page 23. Fig.30: 3T OUT CIRCUIT # 4.4 SERVO SECTION (UPD63702GF: IC201) This section can be divided into two parts. One is the servo processing section, which handles such servo controls as error signal equalizing, in focus, track jump, and carriage move. The other is the signal processing section, which handles data decoding, error correction, and interpolation processing. This IC converts the FE and TE signals from analog to digital and outputs the focus, tracking, and carriage drive signals via the servo block. Also, the EFM signal from the pre-amp is decoded in the signal processing section and finally output as audio signals after D/A conversion. (This IC has a built in audio digital-analog converter.) The decoding process also creates the spindle servo error signals, which is fed to the spindle servo block to create the spindle drive signal. The focus, tracking, carriage, and spindle drive signals are then amplified by IC301, XLA6997FM and fed to their respective actuators and motors. #### 1) Focus Servo System The main focus servo equalizer is in the UPD63702GF. Figure 31 is the focus servo block diagram. In the focus servo system, the lens must be brought within the in-focus range for focus closing. Therefore, the lens is raised and lowered according to the triangular focus search voltage to find the focus point. During this time the spindle motor is kicked and kept rotating at a set speed. The servo LSI monitors the FE signal and the RFOK signal and automatically carries out the focus close operation at the appropriate point. Focus closing is carried out when the following four conditions are all met. - (1) The lens is moving from far to near toward the disc surface. - (2) RFOK = H - (3) The FZD signal (within the IC) is latched at high. - (4) FE = 0 (REFO reference) Fig.31: FOCUS SERVO BLOCK DIAGRAM #### CX-653 When the above conditions are all met and the focus is closed, the XSO signal is shifted from high to low, then 40ms later, the microcomputer begins to monitor the RFOK signal that is passed through the low pass filter. When the RFOK signal is judged to be low, the microcomputer carries out various actions such as protection. Figure 32 shows the series of operations for focus closing (for the case where focus cannot be closed.) Also, in focus-mode-selection during test mode when the display is 01, if the focus close button is pressed, the S curve, search voltage, and actual lens movements can be checked. Fig.32: FOCUS CLOSING SEQUENCE #### 2) Tracking Servo System The main tracking servo equalizer is in the UPD63702GF. Figure 33 is the tracking servo block diagram. Fig.33: TRACKING SERVO BLOCK DIAGRAM #### a) Track Jump When the LSI receives the track jump command from the microcomputer, the track jump is carried out automatically by the auto sequence function within the LSI. This system has six types of track jumps used for searches: 1, 4, 10, 32, 32 × 2, and 32 × 3. In test mode, in addition to these jumps, CRG moves can be executed and checked by mode selection. For track jumps, the microcomputer sets half of the total number of jumps (2 tracks for a 4 track jump) and counts the set number of tracks using the TEC signals. From the point when it has counted the set number of tracks, it outputs the brake pulse for a fixed period of time (set by the microcomputer) to stop the lens. In this way, it can close the tracking and continue normal play. To improve the servo loop re-closing performance just after track jump, the brake circuit comes on for 60ms after the end of the brake pulse and the tracking servo gain is increased. Fast forward and reverse operations in normal mode are realized by executing consecutive single track jumps. The speed is about 10 times as high as in normal play. Fig.34: SINGLE TRACK JUMP Fig.35: MULTI-TRACK JUMP #### CX-653 #### b) Brake Circuit This relies on determining which direction the lens is moving and only outputting the portion of the drive waveform which acts to oppose this motion. Direction of motion is deduced from TEC and the MIRR signal and knowledge of their phase relation. Note: Equalizer output assumed to have same phase as TEC. Fig.36: TRACKING BRAKE CIRCUIT #### 3) Carriage Servo System The carriage servo supplies the tracking equalizer's low-frequency component (lens position information) output to the carriage equalizer and after applying a fixed amount of gain, outputs the drive signal from the servo LSI. This signal is applied to the carriage motor through the driver IC. When the lens offset reaches a certain level during play, the entire PU must be moved in the forward direction. Therefore, the equalizer gain is adjusted to output a voltage higher than the carriage motor starting voltage. In actual operations, a certain threshold level is set for the equalizer output within the servo LSI and the drive voltage is output from the servo LSI only when the equalizer output level exceeds that threshold level. This reduces power consumption. Also, due to disc eccentricity and other factors, the equalizer output voltage may cross the threshold level a number of times before the entire PU starts to move. In this case, the drive voltage waveform, (which is applied) from the LSI, becomes pulsative. Fig.37: CARRIAGE SERVO CIRCUIT Fig.38: CARRIAGE WAVEFORM #### 4) Spindle Servo System The spindle servo has the following modes. - (1) Kick: The mode used for disc rotation acceleration during setup - (2) Offset: - a) Used during setup from the end of kick until the AGC end - b) Used during play when the focus is unlocked until it is recovered - Both of these are for holding the disc rotation rate near the normal rotation rate. - (3) Adaptive servo: CLV servo mode for normal operation In the EFM demodulation block, the frame sync signal and internal frame counter output signal are sampled each WFCK/16 and a signal is produced indicating whether or not they match. Only after this signal is in non-match mode eight consecutive times, is the system treated as out of sync, at other times it is treated as in sync. In this adaptive servo mode, a servo mode for pulling the system into sync is automatically selected when the system is out of sync and the regular servo is automatically selected when the system is in sync. (4) Brake: The mode for stopping the spindle motor rotation The brake voltage is output by the microcomputer from the servo LSI. At this time, the EFM wave form is monitored within the LSI and if the longest EFM pattern exceeds a certain interval (when the rotation is slow enough), a flag is registered within the LSI and the microcomputer switches the brake voltage off. If the flag is not registered within a certain period of time, the microcomputer switches from brake mode to stop mode which lasts for a fixed period of time. In this case, ejection of the disc can only occur after this period of time. (5) Stop: The mode used during power on and ejection At this time, the voltage across the spindle motor is 0V. (6) Rough servo: The mode used for carriage feed (carriage move during a long search) The linear speed is calculated from the EFM wave form and a high level or low level is input to the spindle equalizer. In test mode, this mode is also used for the grating check. Fig.39: SPINDLE SERVO BLOCK DIAGRAM # 4.5 AUTOMATIC ADJUSTMENT FUNC-TIONS This system uses a pre-amp (UPD2572GS) and servo LSI (UPD63702GF) to automate all circuit adjustment. All adjustments are carried out automatically each time a disc is inserted or the CD mode is selected with the source key. Here is how each automatic adjustment works. Fig.40: AUTOMATIC GAIN CONTROL #### 1) FZD Cancel Setting This setting is to make the focus closing reliable. When the power is switched on, the FE offset level is read and a voltage opposite to this offset value is written to the CRAM in the IC to cancel the offset. In this way, the FZD threshold level can be set to a constant value (+150mV) and one of the conditions within the IC for focus closing "that the FZD signal is latched at high" can be fulfilled reliably. #### 2) TE Offset Automatic Adjustment This function adjusts the pre-amp TE amp offset to 0 V when the power is switched on. The adjustment procedure is: - (1) The TE offset (LD off) is read by the microcomputer via the servo LSI (offset = TE1). - (2) The microcomputer calculates the voltage to be corrected from the value of TE1 and sets the output of Pin 65 of the servo LSI (signal name: TOFST). The concrete calculation method is as follows. TOFST2 = TOFST1 + TE1 \times R110/R109 #### 3) Tracking Balance Automatic Adjustment This adjustment equalizes the difference in sensitivity of the E channel and F channel of the TE output. In actual practice, the TE waveform is adjusted to be vertically symmetrical about REFO. The adjustment procedure is: - (1) After focus closing, the lens is kicked in the radial direction to reliably generate the TE waveform. - (2) At this time, the microcomputer reads the peak and bottom of the TE waveform through the servo LSI. - (3) The microcomputer calculates the value of the offset and the correction voltage to output from Pin 66 of the servo LSI (signal name: TBAL). - (4) The voltage output from the servo LSI is input to Pin 37 of the pre-amp (IC101: UPC2572). This pin is the TEVCA amp control voltage pin. The gain for the E channel and F channel within the preamp is varied according to the input voltage to adjust the tracking balance and make the TE waveform vertically symmetrical about REFO. #### 4) FE Bias Automatic Adjustment This adjustment is made to maximize the RFI level during play by optimizing the focus point. This adjustment utilizes the phase difference between the RF waveform 3T level signal and the focus error signal. Since an external interference is input into the focus loop, this adjustment uses the same timing as the auto gain control, explained below. The adjustment procedure is: - External interference is injected into the focus loop by command from the microcomputer (within the servo LSI). - (2) The RF signal 3T component level variation is detected within the pre-amp. - (3) The phase difference between the FE signal due to external interference input and the above 3T component is detected, to sense the focus deviation direction, and the result is output as a DC voltage from Pin 30 (3T-OUT) of the pre-amp. - (4) The 3T-OUT voltage is input to Pin 75 (A/D port) of the servo LSI and the microcomputer reads the 3T-OUT voltage through the servo LSI. - (5) The microcomputer calculates the required correction and adjusts the focus loop offset in the servo LSI. In the same manner as the auto gain control, this adjustment is repeated a number of times to raise the adjustment precision. #### 5) Auto Gain Control (AGC) This adjustment has already been used in the previous generation of CD modules. This function automatically adjusts the focus and tracking servo loop gain. The adjustment procedure is: - (1) External interference is injected into the servo loop. - (2) The error signals (FE, TE) when the external interference is injected are passed through a band pass filter and the G1 and G2 signals are obtained. - (3) The microcomputer reads the G1 and G2 signals through the servo LSI. - (4) The microcomputer calculates the required correction and adjusts the loop gain within the servo To raise the adjustment precision, the same adjustment procedure is repeated a number of times. #### 6) Initial Adjustment Values All the automatic adjustments use the previous adjustment value as the initial value as long as the microcomputer power supply is not cut off (the backup is not cut off). If the backup is cut off, automatic adjustment does not start from the previous adjustment value, but rather from the default setting. #### 7) The Coefficient Display for Adjustment Result The results of all automatic adjustments can be displayed and checked in test mode. The coefficient displays for each automatic adjustment are as follows. FZD cancel, TE.OFST cancel, T.BAL, FE.bias Reference value = 32 (A coefficient of 32 indicates that no adjustment was necessary). The display is in units of about 40mV. Example: FZD cancel coefficient = 35 35-32 = 3 3×40 mV = 120mV Since the corrected value is approximately + 120mV, the FE offset before (2) Focus and tracking gain adjustment Reference value: Focus = 13, tracking = 20 The coefficient display shows the gain derease relative to the reference value. adjustment was - 120mV. Example: AGC coefficient = 40 Gain = 20log (20/40) = - 6dB