

ORDER NO.
RRV2345

DUAL DRIVE AMPLIFIER M-AX10

THIS MANUAL IS APPLICABLE TO THE FOLLOWING MODEL(S) AND TYPE(S).

Type	Model		Rower Requirement
	M-AX10		
KU/CA	\bigcirc	AC120V	
NY	\bigcirc	AC230V	

CONTENTS

1. SAFETY INFORMATION 2
2. EXPLODED VIEWS AND PARTS LIST 3
3. SCHEMATIC DIAGRAM 12
4. PCB CONNECTION DIAGRAM $\cdot \ldots \ldots \ldots \ldots \ldots \ldots \ldots ~ 24 ~$
5. PCB PARTS LIST .. 36
6. ADJUSTMENT .. 41
7. GENERAL INFORMATION 42
7.1 IC .. 42
7.2 PROTECTION CIRCUIT 52

7.3.1 PRODUCT OVERVIEW 54
7.3.2 CIRCUIT DESCRIPTION 55
8. PANEL FACILITIES AND SPECIFICATIONS $\cdots 58$

1. SAFETY INFORMATION

This service manual is intended for qualified service technicians; it is not meant for the casual do-ityourselfer. Qualified technicians have the necessary test equipment and tools, and have been trained to properly and safely repair complex products such as those covered by this manual.
Improperly performed repairs can adversely affect the safety and reliability of the product and may void the warranty. If you are not qualified to perform the repair of this product properly and safely, you should not risk trying to do so and refer the repair to a qualified service technician.

WARNING
This product contains lead in solder and certain electrical parts contain chemicals which are known to the state of California to cause cancer, birth defects or other reproductive harm.

Health \& Safety Code Section 25249.6 - Proposition 65

NOTICE

(FOR CANADIAN MODEL ONLY)
Fuse symbols (fast operating fuse) and/or \rightarrow (slow operating fuse) on PCB indicate that replacement parts must be of identical designation.

REMARQUE
(POUR MODÈLE CANADIEN SEULEMENT)
Les symboles de fusible - \# (fusible de type rapide) et/ou - \forall (fusible de type lent) sur CCI indiquent que les pièces de remplacement doivent avoir la même désignation.

(FOR USA MODEL ONLY)

1. SAFETY PRECAUTIONS

The following check should be performed for the continued protection of the customer and service technician.

LEAKAGE CURRENT CHECK

Measure leakage current to a known earth ground (water pipe, conduit, etc.) by connecting a leakage current tester such as Simpson Model 229-2 or equivalent between the earth ground and all exposed metal parts of the appliance (input/output terminals, screwheads, metal overlays, control shaft, etc.). Plug the AC line cord of the appliance directly into a 120 V AC 60 Hz outlet and turn the AC power switch on. Any current measured must not exceed 0.5 mA .

AC Leakage Test

ANY MEASUREMENTS NOT WITHIN THE LIMITS OUTLINED ABOVE ARE INDICATIVE OF A POTENTIAL SHOCK HAZARD AND MUST BE CORRECTED BEFORE RETURNING THE APPLIANCE TO THE CUSTOMER.

2. PRODUCT SAFETY NOTICE

Many electrical and mechanical parts in the appliance have special safety related characteristics. These are often not evident from visual inspection nor the protection afforded by them necessarily can be obtained by using replacement components rated for voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in this Service Manual.
Electrical components having such features are identified by marking with a \triangle on the schematics and on the parts list in this Service Manual.
The use of a substitute replacement component which does not have the same safety characteristics as the PIONEER recommended replacement one, shown in the parts list in this Service Manual, may create shock, fire, or other hazards.

Product Safety is continuously under review and new instructions are issued from time to time. For the latest information, always consult the current PIONEER Service Manual. A subscription to, or additional copies of, PIONEER Service Manual may be obtained at a nominal charge from PIONEER.

2. EXPLODED VIEWS AND PARTS LIST

NOTES: - Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.

- The \triangle mark found on some component parts indicates the importance of the safety factor of the part.

Therefore, when replacing, be sure to use parts of identical designation.

- Screws adjacent to $\boldsymbol{\nabla}$ mark on the product are used for disassembly.

2.1 PACKING

(1) PACKING PARTS LIST

Mark	No.	Description	Part No.
NSP	1	Literature Bag	AHG-117
	2	Instruction Manual (E)	ARB7217
NSP		Warranty Card	See Contrast table (2)
NSP	4	Warranty Card	See Contrast table (2)
	5	Styrol Protector L	AHA9014
	6	Styrol Protector R	AHA9015
	7	Packing Case	See Contrast table (2)
	8	Door Sheet	AHG7064
	9	Mirror Mat	RHC1024
	10	Polyester Bag	VHL1004
	11	Recycle Label	See Contrast table (2)

(2) CONTRAST TABLE

M-AX10/KU/CA and M-AX10/NY are constructed the same except for the following:

Mark	No.	Symbol and Description	Part No.		Remarks
			M-AX10/KU/CA	M-AX10/NY	
NSP	3	Warranty Card	ARY7045	Not used	
NSP	4	Warranty Card	Not used	ARY7022	
	7	Packing Case	AHD7875	AHD7874	
	11	Recycle Label	ARW7091	Not used	

2.2 EXTERIOR

for KU type

(1) EXTERIOR PARTS LIST

Mark	No.	Description	Part No.
	1	C.AMP (L) ASSY	See Contrast table (2)
	2	C.AMP (R) ASSY	See Contrast table (2)
	3	POWER SUPPLY ASSY	See Contrast table (2)
\triangle	4	Power MOS FET (Q1,Q2,Q5, Q6)	IRFP140
\triangle	5	Power MOS FET (Q3,Q4, Q7, Q8)	IRFP9140
	6	Electric Capacitor(C1-C4)	ACH7156
\triangle	7	Power Transformer	See Contrast table (2)
\triangle	8	Fuse (FU1)	See Contrast table (2)
	9	16P FFC 60V (J17)	ADD7155
\triangle	10	Wire with 2P Housing (J18)	ADX7336
\triangle	11	Cable (J9,J10)	ADX7337
NSP	12	Cable (J23,J24)	See Contrast table (2)
	13		
	14	PCB Holder (PLS)	AEC7316
	15	Plate	AEE7030
	16	Stay L (MET)	ANA9006
	17	Stay S (MET)	ANA9007
	18	Side Frame R	ANA9008
	19	Side Frame L	ANA9009
	20	Panel Stay (MET)	AND7033
NSP	21	Bottom Plate	ANF7012
	22	PCB Holder	ANG1474
	23	Transistor Cover L	ANG1724
	24	L Type Plate	ANG7248
	25	Earth Plate	ANG9102
NSP	26	Heat Sink (AL)	ANH7105
	27	Sub Inner Plate (MET)	ANK7080
	28	AC Code Cover (MET)	ANK9024
	29	Insulator	ANL7012
	30	Cord Clamper	RNH-184
NSP	31	Spacer	AEB7168
NSP	32	Spacer	AEB7170
NSP	33	Damping Plate	AMR7280
NSP	34	Damping Plate	AMR7281
	35	Cushion A	PED1001
NSP	36	Sheet	PED1006
NSP	37	Tape	PNM-045
NSP	38	Tape	PNM1160
NSP	39	Tape	PNM1249
NSP	40	Washer (Plastic)	RBF-085
	41	
	42	Screw	ABA1011
	43	Screw	ABA1082
	44	Screw (Steel)	ABA1192
	45	Screw (Steel)	ABA1193

Mark	No.	Description	Part No.
	46	Screw (Steel)	ABA1207
	47	Screw (Steel)	ABA7006
	48	Screw (Steel)	ABA7045
	49	M4 SH Screw	ABA7051
	50	PCB Spacer (3×12)	AEC1372
	51	Washer (PVC)	RBF1034
	52	Screw	VBA1056
	53	Side AL L	AAH7033
	54	Side AL R	AAH7034
	55	Top Plate F (AL)	AAH7035
	56	Top Plate R (AL)	AAH7036
	57	Bonnet Escutcheon	AAK7658
	58	Rear Mole R	AAP7056
	59	Rear Mole L	AAP7057
	60	Innner Plate (MET)	ANK7081
	61	Screw	BBT30P100FCC
	62	Screw	BBT30P080FCC
	63	
	64	Screw	IBZ40P140FCC
	65	Screw	BBZ40P180FCC
	66		
	67	Screw	IBZ30P060FCC
	68	Screw	IBZ30P080FCC
	69	Screw	IBZ40P080FCC
	70	PCB Holder (MET)	ANG9101
	71	Screw	PMZ40P060FCU
	72	Screw	VBZ35P080FMC
	73	Washer (CU)	WG40FCC
	74	Washer	WH30FUC
	75	Binder	ZCA-SKB90BK
	76	Screw	ABA1050
	77	Screw	IBZ40P080FCC
	78	Screw	ABA1208
	79	Trans Shield	ANK7074
	80	Screw	VCZ30P100FMC
\triangle	81	Fuse (FU2,FU3)	See Contrast table (2)
\triangle	82	Fuse Holder	See Contrast table (2)
	83	Screw	BBZ40P080FCC
	84	UL Caution Card	AAX-313
NSP	85	IPC Caution Label	See Contrast table (2)
NSP	86	Fuse Card	See Contrast table (2)
NSP	87	Fuse Card	See Contrast table (2)
NSP	88	Micro Fuse Caution Card	See Contrast table (2)
	89	65 Label	See Contrast table (2)
NSP	90	FCC Label	See Contrast table (2)
NSP	91	Fuse Card	See Contrast table (2)

Refer to next page about Contrast table (2).

(2) CONTRAST TABLE

M-AX10/KU/CA and M-AX10/NY are constructed the same except for the following:

Mark	No.	Symbol and Description		Part No.	
			R-AX10/KU/CA	M-AX10/NY	Remarks
	1	C. AMP(L) ASSY	AWX7673	AWX7280	
	2	C. AMP(R) ASSY	AWX7674	AWX7281	
\triangle	3	POWER SUPPLY ASSY	AWX7664	AWX7662	
\triangle	7	Power Transformer	ATS7277	ATS7251	
	8	Fuse (FU1)	VEK1029	REK-106	
NSP	12	Cable (J23,J24)	(10A)	(4A)	
\triangle	81	Fuse (FU2,FU3)	ADX7335	Not used	
\triangle	82	Fuse Holder	AEK7069	Not used	
NSP	85	IPC Caution Label	(20A)		
NSP	86	Fuse Card	AKR7002	Not used	
			AAX7784	Not used	
NSP	87	Fuse Card	AAX7795	Not used	
NSP	88	Micro Fuse Caution Label			
	89	65 Label	AAX7796	Not used	
NSP	90	FCC Label	AAX7810	Not used	
NSP	91	Fuse Card	ARW7050	Not used	

2.3 REAR PANEL

(1)REAR PANEL PARTS LIST

Mark	No.	Description	Part No.
NSP	1	V.AMP (L) ASSY	AWX7278
	2	V.AMP (R) ASSY	AWX7279
	3	INPUT (L) ASSY	AWX7273
	4	INPUT (R) ASSY	AWX7274
	5	JOINT ASSY	AWX7283
	6	Ground Terminal	AKE-046
	7	Speaker Terminal $1 P$ (CN1,CN2,CN5,CN6)	AKE7009
	8	Speaker Terminal 1P (CN3,CN4,CN7,CN8)	AKE7010
	9	23P FFC 60V (J5,J6)	ADD7154
\triangle	10	AC Cord with Plug	See contrast tabel (2)
	11	11P Housing Wire (J3,J4)	ADX7278
	12		
	13	Connector Assy (J7)	PG10MM-F15
	14	Connector Assy (J8)	PG10MM2F15
	15	Rear Panel (MET)	ANC7820
	16	Rear Panel Plate R	See contrast tabel (2)
	17	Rear Panel Plate L	See contrast tabel (2)
	18	PCB Holder (MET)	ANG9101
	19	Shield Plate(PLS)	ANK7076
	20	AC Shield L	ANK9025
	21	Shield Cover	ANK9026
NSP	22	Spacer	AEB7169
NSP	23	Tape	AEH7008
NSP	24	Damping Plate	AMR7278
NSP	25	Damping Plate	AMR7281
NSP	26	Tape	PNM1249
	27	Fiber Washer	RBF1045
	28	Screw	ABA1192
	29	Screw	BBT30P100FCC
	30	Screw	ABA1207
NSP	31	Rivet	AEC-441
	32	Nylon Rivet	AEC7242
	33	PCB Spacer (14)	DEC1387
	34	Card Spacer	DEC1772
	35	PC Support	VEC1549
	36	Cushion A	PED1001
	37	Screw	BBZ30P080FCC
	38	Screw	IBZ30P060FCC
	39	Nut	NK70FCU
	40	Binder	ZCA-SKB90BK
	41	Input Plate (MET)	ANG7274
	42	Locking Card Spacer	VEC1596
	43	Ferrite Core	See contrast tabel (2
	44	Screw	ABA1011
	45	AC Shield Case (PLS)	ANK7075
NSP	46	Earth Lead Wire	DE025BF0
	47	AC Cord Spacer	ANG1153

(2) CONTRAST TABLE

M-AX10/KU/CA and M-AX10/NY are constructed the same except for the following:

Mark	No.	Symbol and Description	Part No.		Remarks
			M-AX10/KU/CA	M-AX10/NY	
\triangle	10	AC Cord with Plug	ADG7041	ADG7038	
	16	Rear Panel Plate R	ANC7288	ANC7285	
	17	Rear Panel Plate L	ANC7289	ANC7286	
	43	Ferrite Core	Not used	ATX1031	

2.4 FRONT PANEL

- FRONT PANEL PARTS LIST

Mark	No.	Description	Part No.
NSP	1	SW ASSY	AWX7282
NSP	2	VR ASSY	AWX7334
	3	FRONT ASSY	AWX7276
NSP	4	LED ASSY	AWX7277
NSP	5	Cord with Plug	ADH7022
NSP	6	Cord with Plug (J20)	DE005VF0
	7	Magnet	AMF7003
	8	Door Hinji L (PLS)	AMR9199
	9	Door Hinji R (PLS)	AMR9200
	10	Door Assy (MET)	ANG9100
	11	Inner Panel (AL)	ANB7184
	12	Damper Assy	AXA9013
NSP	13	Spacer	AEB7169
NSP	14	Damping Plate	AMR7282
NSP	15	Tape	PNM1249
$\begin{aligned} & \text { NSP } \\ & \text { NSP } \end{aligned}$	16	Cushion A	REB1060
	17	Cushion B	REB1061
	18	LED Lens	AAK2459
	19	LED Filter S(PLS)	AAK7657
	20	LED Film (PLS)	AAK7669
	21	Display Panel L (PLS)	AAK9044
	22	Cover	AAK9045
	23	LED Filter L (PLS)	AAK9046
	24	Mode Panel (PLS)	AAK9047
	25	Mode Lens (PLS)	AAK9048
	26	Panel S (PLS)	AAK9049
	27	Door Cushion	AED9014
	28	Tape	AEH7009
	29	Door Yoke (MET)	ANB7187
	30	Name Plate G (AL)	PAN1377
	31	Cushion A	PED1001
	32	Knob S (PLS)	AAB7200
	33	Knob M (AL)	AAB7201
	34	Block	ANL7015
	35	Power Button (ABS)	VNK4159
	36	Side Panel L (AL)	AAH7037
	37	Side Panel R (AL)	AAH7038
	38	Panel Base (PLS)	AMB9020
	39	Door Panel (AL)	ANB7182
	40	Front Panel (AL)	ANB7183
	41	Screw	BBT30P080FCC
	42	Screw	BBZ30P080FCC
	43	Screw	IBZ30P060FCC
	44	Screw	IBZ30P080FCC
	45	Nut	NK90FCU
	46	Screw	PMH30P060FMC
	47	Screw	PSZ20P060FMC
	48	Screw (STEEL)	ABA1050
	49	Washer (PLS)	ABF7007

3. BLOCK DIAGRAM AND SCHEMATIC DIAGRAM

3.1 OVERALL CONNECTION DIAGRAM AND JOINT ASSY

1. THE \triangle MARK FOUND ON SOME COMPONENT PARTS INDICATES THE IMPORTANCE OF THE SAFETY FACTOR OF THE PART. therefore, when replacing, be sure to use parts of IDENTICAL DESIGNATION.

Note : When ordering service parts, be sure to refer to "EXPLODED VIEWS and PARTS LIST" or "PCB PARTS LIST".
3.2 POWER SUPPLY, SW ASSY

NOTES

1. RESISTORS

INDICATED IN Ohm $1 / 10 \mathrm{~W}+5 \%$ TOLERANGE ANH7100
UNLESS OTHERWISE NOTED K; KOhm
$\begin{aligned} \text { " } F \text { " } & \text { (NON-FRAMABLE TYPE } \\ \text { "MUF" } & \text { RD1/4MUF TYPE }\end{aligned}$
2. CAPACITORS

IND ICATED IN CAPACITY (UF) /VOLTAGE (V)
"YF"; CKCYF TYPE "TY";CFTYA TYPE
" ZL" ; CEHAZL TYPE "HAT";CEHAT TYPE
3. THE \triangle MARKS

THE PARTS WITH A \triangle MARK CAN NOT BE REPLACED
BY OTHER PARTS,
BECAUSE OF THE SAFTY IMPORTANCE.

3.4 INPUT (L), INPUT (R) ASSY

TES

1. RES I STORS

INDICATED IN Ohm $1 / 1$ QW $\pm 5 \%$ TOLERANCE
UNLESS OTHERWISE NOTED $\mathrm{K} ; \mathrm{KOhm}$ UNLESS OTHERWISE NOTED K;KOhm R:RDR1/4W TYPE
2. CAPACITORS

IND ICATED IN CAPAC ITY (UF) /VOLTAGE (V)
UNLESS OTHERWISE NOTED p:pF 3. THE $₫$ MARKS
" TA"; TANTALUM TYPE "YF";CKSQYF TYPE
" TY" ; CFTYA TYPE "ZA": CEHAZA TYPE
" ZL" ; CEHAZL TYPE
"OS" OS "CON OTHERS:CEAT TYPE
" $\mathrm{CH}^{\prime \prime}$; CCSQCH TYPE

SIGNAL ROUTE
\Rightarrow : AUDIO SIGNAL

3.5 V.AMP (L) ,V.AMP (R) ASSY

H
V. AMP(L) ASSY (AWX7278)

SIGNAL ROUTE
\Rightarrow : AUDIO SIGNAL

CN716

	M-AX10/NY	M-AX10/KU/CA
Power Amp Assy	AWH7002	AWH7003
V. AMP (L) Assy	AW $\times 7278$	\leftarrow
V. AMP (R) Assy	AW $X 7279$	\longleftarrow
C. AMP (L) Assy	AW $\times 7280$	AW $\times 7673$
C. AMP (R) Assy	AWX7281	AWX7674

NOTES 1. RESISTORS
INDICATED IN Ohm $1 / 10 \mathrm{~W} \pm 5 \%$ TOLERANCE UNLESS OTHERWISE NOTED
k: kOhm, RM: RDM TYPE, R:RDR TYPE
2. CAPACITORS

INDICATED IN CAPACITY (UF) NOLTAGE (V) UNLESS OTHERWISE NOTED p:pF INDICATED WITHOUT VOLTAGE IS 50V EXCEPT ELECTROLYTIC CAPACITOR. GA : CEGA, TY: CFTYA, CH : CCSQCH, ZA : CEHAZA, SR:CSZSR
3. NO MARK ELECTROLYTIC CAPACITORS:CEAT

NO MARK DIODES ARE 1 SS355
4. Voltage
indicated in dc voltage
5. THE M MARK FOUND ON SOME COMPONENT PARTS INDICATES THE IMPORTANCE OF THE SAFETY FACTOR OF THE PART.
THEREFORE, WHEN REPLACING, BE SURE TO USE PARTS OF
IDENTICAL DESIGNATION.
6. TRNSISTOR' S RANK

2SC2240: (BL) 2SC5170:(FG) 2SC2712:(GR) 2SC3326:(AB)
2SA970: (BL) 2SA1929: (FG) 2SA1162: (GR)

3.6 C.AMP (L), C.AMP (R) ASSY

4. PCB CONNECTION DIAGRAM

1. Part numbers in PCB diagrams match those in the schematic diagrams.
2. A comparison between the main parts of PCB and schematic

Symbol In PCB Diagrams	Symbol In Schematic Diagrams	Part Name
OOO		Transistor
		Transistor with resistor
OOO	$\begin{array}{\|ccccc} \hline D & G & S & D & G \\ 0 & S \\ 0 & 0 & O & 0 & 0 \\ & & 0 \\ & & & & \\ & & & & \\ \hline & & & & \\ \hline \end{array}$	Field effect transistor
000000	$\sum_{0}\left\{\sum _ { i } ^ { s } \left\{\xi_{0}\right.\right.$	Resistor array
000		3-terminal regulator

3. The parts mounted on this PCB include all necessary parts for several destinations.
For further information for respective destinations, be sure to check with the schematic diagram.
4. View point of PCB diagrams.

Connector Capacitor

4.1 JOINT, SW, LED, VR ASSY

2

E LED ASSY

(ANP7281-A)

4.2 POWER SUPPLY ASSY

B POWER SUPPLY ASSY

Q812	Q808	Q804	IC801	IC802	IC805
Q810	Q806	Q802		IC804	IC803
Q811	Q807	Q803			
Q809	Q805	Q801			

3

B power supply assy

4.3 FRONT ASSY

D
FRONT ASSY
SIDE A

IC903 IC902 Q946 Q943
Q949 Q947
Q945 Q942

4.4 INPUT(L) ASSY

G INPUT(L) ASSY

G. $\operatorname{INPUT}(\mathrm{L}) \operatorname{ASSy}$

4.5 INPUT(R) ASSY

B

4.6 V. AMP(L) ASSY

H v. AMP(L) ASSY
SIDE A

П v. AMP(L) ASSY

4.7 V. AMP(R) ASSY

SIDE B
K v.AMP(R) ASSY

5. PCB PARTS LIST

NOTES: • Parts marked by "NSP" are generally unavailable because they are not in our Master Spare Parts List.

- The \triangle mark found on some component parts indicates the importance of the safety factor of the part.

Therefore, when replacing, be sure to use parts of identical designation.

- When ordering resistors, first convert resistance values into code form as shown in the following examples.

Ex. 1 When there are 2 effective digits (any digit apart from 0), such as 560 ohm and 47 k ohm (tolerance is shown by $J=5 \%$, and $K=10 \%$).

```
560\Omega -> 56\times10' -> 561.................................................RDI/4PU 5 6 1 J
47k\Omega }->\mathrm{ | 47×103 }->473\mathrm{ .................................................RDI/4PU 4 7 3 J
0.5\Omega -> R50............................................................................RN2H R 5 0 K
l\Omega -> 1R0 ............................................................................RSlP 1 R 0 K
```

Ex. 2 When there are 3 effective digits (such as in high precision metal film resistors).
$5.62 \mathrm{k} \Omega \rightarrow 562 \times 10^{1} \rightarrow 5621$... RN1/4PC 5621 F

CONTRAST OF PCB ASSEMBLIES

Mark	Symbol and Description	Part No.		Remarks
		M-AX10 /KU/CA	M-AX10 /NY	
NSP	POWER AMP ASSY	AWH7003	AWH7002	
	-V. AMP (L) ASSY	AWX7278	AWX7278	
	-V. AMP (R) ASSY	AWX7279	AWX7279	
	-C. AMP (L) ASSY	AWX7673	AWX7280	
	-C. AMP (R) ASSY	AWX7674	AWX7281	
NSP	AF COMPLEX (A) ASSY	AWM7410	AWM7410	
	- INPUT (L) ASSY	AWX7273	AWX7273	
	-INPUT (R) ASSY	AWX7274	AWX7274	
NSP	-SW ASSY	AWX7282	AWX7282	
NSP	- JOINT ASSY	AWX7283	AWX7283	
NSP	- VR ASSY	AWX7334	AWX7334	
NSP	AF COMPLEX (B) ASSY	AWM7507	AWM7506	
	-POWER SUPPLY ASSY	AWX7664	AWX7662	
	-FRONT ASSY	AWX7276	AWX7276	
NSP	-LED ASSY	AWX7277	AWX7277	

| C.AMP (L) ASSY

AWX7673and AWX7680 are constructed the same except for the following:

Mark	Symbol \& Description	Part No.		Remarks
		AWX7673	AWX7680	
\triangle	IC501,IC502	AEK7022	Not used	IC Protector (10A/125V)

L C.AMP (R) ASSY

AWX7674and AWX7681 are constructed the same except for the following:

Mark	Symbol \& Description	Part No.		Remarks
		AWX7674	AWX7681	
\triangle	IC601,IC602	AEK7022	Not used	IC Protector (10A/125V)

B POWER SUPPLY ASSY

AWX7664and AWX7662 are constructed the same except for the following:

Mark	Symbol \& Description	Part No.		Remarks
		AWX7664	AWX7662	
\triangle	R849-R852	Not used	RS2LMF222J	

Mark No. Description
Part No.

A JOINT ASSY

COILS AND FILTERS
L711,L712
RTF1167
CAPACITORS
C711,C712
CEAT100M50
RESISTORS
Other Resistors
OTHERS
CN711,CN712 10P MT CONNECTOR 1-173981-0 CN713,CN714 11P PLUG
711,712 PCB BINDER
KM200TA11
VEF1040

B POWER SUPPLY ASSY (AWX7664)

SEMICONDUCTORS

\triangle	IC803
\triangle	IC801,IC802
\triangle	IC804,IC805
\triangle	Q815,Q816,Q819,Q820
\triangle	Q803,Q804,Q811,Q812
	Q805,Q806
	Q807,Q808
	Q821
\triangle	Q813,Q814,Q817,Q818
\triangle	Q801,Q802, Q809,Q810
	D821-D828
\triangle	D801-D804
\triangle	D805-D812,D833-D837
	D829-D832
	D813-D816,D841-D844
	D817-D820
\triangle	D838

COILS AND FILTERS
L801,L802
CAPACITORS
\triangle C851 ($0.01 \mu \mathrm{~F} / 250 \mathrm{~V})$
C803,C804,C833
C829-C832,C836
C813-C820
C809-C812
C821-C824
C838,C840
C839,C841 C825-C828 C834

C837
C805-C808 C842
C801,C802
RESISTORS
\triangle R803,R804 R813,R814
\triangle R831,R839
\triangle R815-R818

AEK7019
AEK7021
BA178M24T
2SA1255
2SA1837
2SA970
2SC2240
2SC2712
2SC3138
2SC4793
1SS355
F10KF20
S5566G(TPB2)
UDZ16B
UDZ24B
UDZ36B
UDZS10B

RTF1167

ACE7014
CEANP1R0M50
CEAT100M50
CEAT100M63
CEAT471M2A
CEATR10M2A
CEHAT100M50
CEHAZA220M25
CEHAZL101M50
CEHAZL182M35
CEHAZL331M35
CEHAZL471M50
CFTYA224J50
CKCYF103Z50

RD1/4LMF470J
RD1/4MUF124J
RS1/10S100J
RS1/10S101J

Mark	No. \quad Description		Part No.
\triangle	R819-R822	RS1/10S301J	
\triangle	R836-R838		RS1/10S3R3J
\triangle	R805-R808	RS1LMF103J	
	Other Resistors	RS1/10S $\square \square \square J$	

OTHERS

CN805,CN806 10P MT CONNECTOR 1-173981-0 CN804 16P CONNECTOR 9604S-16C H851,H852 FUSE CLIP AKR1004 811-822

USE CLIP ANH7100
\triangle CN851
AC CODE SOCKET RKP1751
\triangle CN852
AMP U-P CONNECTOR
RKP1833
\triangle CN853 AMP U-P CONNECTOR RKP1834
805
PCB BINDER
VEF1040
KN801-KN803 EARTH METAL FITTING VNF1084

SW ASSY
SWITCHES AND RELAYS
\triangle S701
ASG-553

CAPACITORS

\triangle C701 $(0.01 \mu \mathrm{~F} / 250 \mathrm{~V})$
ACE7014

OTHERS

\triangle CN701 AMP U-P CONNECTOR RKP1833

FRONT ASSY
SEMICONDUCTORS

	IC904
IC902	AT24C01-10PC
\triangle IC903	BA178M05T
IC901	BA178M15T
Q952	PD5508B9
	2SA1048
Q903,Q904	
Q901,Q902	2SC2458
Q943,Q946	2SC2705
Q907-Q914,Q942,Q945	2SJ146
Q918	DTA124EK
	DTA143EK
Q915-Q917,Q919,Q926,Q928	
Q930,Q947-Q951	DTC124EK
Q932-Q935	DTC124EK
D933-D935,D953	DTC124ES
D927	1SS355
	DAN202K
D936	
D901-D914	DAP202K
D929-D932	NSCW100-8511
D951,D952	SLP6118C51H

COILS AND FILTERS
X901 (4.19MHz)
VSS1014
SWITCHES AND RELAYS
ASD7014
S901-S904
VSG1009

CAPACITORS

C921,C922,C942
CEHAZA220M25
C961,C963,C964
CEHAZA470M6R3
CEJA100M35
CEJA2R2M50

Mark	No.	Description	Part No.
	C305-	C308,C323-C326	CCSQCH270J50
	C311,	C312	CEAT470M25
	C315-	C318	CEGA471M50
	C309,	C310	CEHAZA470M10
	C331		CFTYA683J50
	C337,	C338	CSZSR100M16
RESISTORS			
	R303,	R304	RDM1/2P221J
	R345		RDM1/2P3600F
	R343,	R344	RDM1/2P7500F
	R341,R	R342	RDM1P3001F
	R379,	R380	RDR1/4PM470J
	R301,	R302	RDR1/4VM104J
	R315		RS1/10S1001D
\triangle	R349-R	R352	RS1/10S101J
	R314		RS1/10S1101D
	R386		RS1/10S30R0D
	R385		RS1/10S33R0D
	R313,	R316,R325-R328	RS1/10S3900D
	R347,R	R348	RS1/10S5100D
	VR301	,VR302 (220ת)	ACP7002
	Other	Resistors	RS1/10S $\square \square \square J$
OTHERS			
	CN303	23P CONNECTOR	9604S-23C
	J301	2WIRE SHIELD HOUSING	ADX7258
	J302	2WIRE SHIELD HOUSING	ADX7259
	KN301	EARTH METAL FITTING	VNF1084
C. AMP (L) ASSY (AWX7673)			
SEMICONDUCTORS			
\triangle	IC501,	IC502 IC PROTECTOR(10A)	AEK7022
\triangle	Q503,	Q504	2SA1162
	Q507-Q	Q10	2 SC 2712
\triangle	Q517,	Q518	2SC3138
	Q513,	Q15	2SK1132
	Q511,	Q512	DTA124EK
	Q505,	506	DTC143EK
	Q501,	2502, Q519, Q520	IMX1
	D501,	502	1SS355
	D503,	504	BR3371XJ30A
COILS AND FILTERS			
	L501		RTF1167
SWITCHES AND RELAYS			
	RY501	,RY502	ASR1035
CAPACITORS			
	C505, ${ }^{\text {c }}$	506	CEANP470M10
	C507		CEAT100M50
	C508		CEHAZA220M25
	C511,	512	CEHAZL471M50
	C501-C	504	CFTYA224J50
	C509		CFTYA474J50
	C517,	518	CKSQYF104Z50
	C515,	516 (47 F/10V)	RCH1139
RESISTORS			
	R519,R	2520,R535,R536	RS1/10S1502F
	R501,R	R502	RS1/10S1602F

Mark	No. Description	Part No.
	R503,R504	RS1/10S6801F
	R521,R522,R537,R538	RS1/10S8201F
\triangle	R509-R512,R531-R534	RS2LMFR22J
	R513,R514	RS3LMF2R2J
	VR501,VR502 (4.7K 2)	ACP7003
	Other Resistors	RS1/10S $\square \square \square \mathrm{J}$

OTHERS

CN502	23P CONECTOR	9604S-23C
CN507,CN508	2P TOP POST	B2B-EH
501	PCB BINDER	VEF1040
KN501,KN502 EARTH METAL FITTING	VNF1084	

」 INPUT (R) ASSY
 SEMICONDUCTORS

	IC201
IC202	DAC8043FP
	Q201,Q202
Q207,Q208,Q213,Q214	OP275GP
\triangle	2SA1048
	2SA1145
	Q203-Q206

COILS AND FILTERS
L201
RTF1167
SWITCHES AND RELAYS
RY201-RY203 VSR1008
CAPACITORS

C201,C202,C205-C208 (220pF)	ACE7012
C240 (47 $\mu \mathrm{F})$	ACH7116
C203,C204	CCCSL560K2H
C235	CCSQCH100D50
C232-C234	CCSQCH101J50

C228 CCSQCH470J50
C229,C230 CEAT100M50
C221,C222
C231
C225,C226

C215-C218	CEHAZL471M50
C219,C220,C223,C224	CFTYA104J50
C209,C210	CQHA561J2A
C241,C242 $\quad(22 \mu \mathrm{~F})$	RCH1077
C211-C214 $\quad(47 \mu \mathrm{~F} / 10 \mathrm{~V})$	RCH1139
C227 $\quad(100 \mu \mathrm{~F} / 6.3 \mathrm{~V})$	

RESISTORS

R237,R238

RDR1/4VM1001F
RDR1/4VM2400F RDR1/4VM3001F RDR1/4VM391J RDR1/4VM473J

Mark No. Description
Part No.

L C. AMP (R) ASSY (AWX7674)

SEMICONDUCTORS

\triangle IC601,IC602 IC PROTECTOR(10A) AEK7022
\triangle Q603,Q604 2SA1162
Q607-Q610 2SC2712
\triangle Q617,Q618 2 SC3138
Q613,Q615 2SK1132
Q611,Q612 DTA124EK
Q605,Q606 DTC143EK
Q601,Q602,Q619,Q620 IMX1
D601,D602 1SS355
D603,D604 BR3371XJ30A

COILS AND FILTERS

L601
SWITCHES AND RELAYS
RY601,RY602
ASR1035

CAPACITORS

C605,C606 CEANP470M10
C607
C607
C608
C611,C612
C601-C604
C609
C617,C618
C615,C616 (47 $\mu \mathrm{F} / 10 \mathrm{~V}$)

RESISTORS

R619,R620,R635,R636 RS1/10S1502F
R601,R602
R603,R604
R621,R622,R637,R638
\triangle R609-R612,R631-R634
R613,R614
VR601,VR602 (4.7k Ω)
Other Resistors
ACP7003
RS1/10S $\square \square \square J$

OTHERS

CN602	23P CONNECTOR	9604S-23C
CN607,CN608	2P TOP POST	B2B-EH
601	PCB BINDER	VEF1040
KN601,KN602	EARTH METAL FITTING VNF1084	

6. ADJUSTMENT

6.1 IDLE CURRENT ADJUSTMENT

The idle current is adjusted in two steps: coarse and fine. Note that the adjustment value for fine adjustment depends on the elapsed time from the coarse adjustment.
For the points to be adjusted or measured, see Table 6-1 and Fig. 61.

For the adjustment timing and values, see Table 6-2.
Be sure to turn VR501, VR502, VR601 and VR602 fully counterclockwise before turning the power on.

Table 6-1 Adjustment points of idle current

Channel	L High ch	L Low ch	R High ch	R Low ch
Adjustment point	VR501	VR502	VR601	VR602
Measurement point	CN505	CN505	CN605	CN605
	Between pins 1 and 2	Between pins 3 and 4	Between pins 1 and 2	Between pins 3 and 4

Table 6-2 Adjustment values of idle current

	Adjustment Timing		Adjustment value (Pin voltage)
Coarse Adjustment	Power ON immediately		$14.5 \mathrm{mV} \pm 1.0 \mathrm{mV}$
		More than 5 min. and less than 10 min.	$16.0 \mathrm{mV} \pm 0.5 \mathrm{mV}$
Fine Adjustment	Elapsed time from the coarse adjustment	More than 10 min. and less than 15 min.	$15.5 \mathrm{mV} \pm 0.5 \mathrm{mV}$
		More than 15 min. and less than 30 min.	$15.0 \mathrm{mV} \pm 0.5 \mathrm{mV}$
		More than 30 min.	$14.5 \mathrm{mV} \pm 0.5 \mathrm{mV}$

6.2 DC OFFSET ADJUSTMENT

Adjust the DC offset with the power on immediately before fine adjustment of the idle current.
For the points to be adjusted or measured, and the adjustment values, see Table 6-3 and Fig. 6-1.

Table 6-3 DC offset adjustment method

Channel	Adjustment Point	Measurement Point	Adjustment Value
L High ch	VR301		
L Low ch	VR302	Apply channel speaker	
terminals (Red, Black)	OV $\pm 10 \mathrm{mV}$		
R High ch	VR401		
R Low ch	VR402		

6.3 OPERATION CHECK OF THE PROTECTION CIRCUIT

While supplying a sine wave of $1 \mathrm{~Hz}, 1.2 \mathrm{Vrms}$ in DUAL MODE, with ATT.THROUGH OFF, increase the volume level and check that the protection circuit activates before the level reaches the maximum value. It works about before twelve o'clock position.

CAUTION : This check mode may damage the speaker(s) when it is connected to the output terminal. It is recommended that output terminal is open at this check mode.

Fig. 6-1 Adjustment and measurement points

7. GENERAL INFORMATION

7.1 IC

- The information shown in the list is basic information and may not correspond exactly to that shown in the schematic diagrams.
- List of IC

PD5508B9, DAC8043FP

PD5508B9 (FRONT ASSY : IC901)

- Control Microcomputer

- Pin Function

No.	Mark	Pin Name	I/O	Pin Function
1	P53	VR2	1	
2	P17/Srdy/A10	LD	O	
3	P16/CLK/A9	CLK	O	Serial I/O pins
4	P15/Sout/A8	SRD	0	Serial
5	P14/Sin/A7	IND. IN1	0	
6	P13/T1/A6	IND. IN2	\bigcirc	Timer output
7	P12/T0/A5	IND. SEPA	0	Timer output
8	P11/A4	IND.BRD	0	
9	P10	IND. DUAL	0	
10	P27/IN7	IND. ATT.THROUGH	O	
11	P26/IN6	IND. ATT. HOLD	0	
12	P25/IN5	INPUT2	0	
13	P24/IN4	DACVR	0	Analog input
14	P23/IN3/A3	SEPARATE	0	Analog input
15	P22/IN2/A2	INVERT	0	
16	P21/IN1/A1	SPRYH	\bigcirc	
17	P20/IN0/A0	SPRYG	0	
18	Vref/CE	Vref	-	Reference voltage input
19	Xin	Xin	1	Clock input
20	Xout	Xout	O	Clock output
21	Vss	Vss	-	Power supply voltage input
22	Vcc	Vcc	-	Power supply voltage input
23	P50/Xcin	VR4	I	
24	P51/Xcout	VR5	1	
25	RESET	RESET	1	Reset input
26	P30/INT0/A11	BACKUP	1	External inrerrupt input
27	P31/INT1/A12	BRD.	1	External inrerupt input
28	P32/CNTR0/OE	DAL.	1	Timer input
29	P33/CNTR1/Vpp	VR1	1	Timer input
30	P40/A13	SEPA	1	
31	P41/A14	FMT	0	
32	P42	ILL2	0	
33	P43	ILL1	0	
34	P00/D0	SDA	1/O	
35	P01/D1	SCL	O	
36	P02/D2	MD WKUP	1	
37	P03/D3	ATT. THROUGH	1	Key ON wake-up function
38	P04/D4	ATT. HOLD	1	Key ON wake-up function
39	P05/D5	INPUT	1	
40	P06/D6	ILL.	1	
41	P07/D7	P-DET	1	
42	P52	VR3	1	

Following item "1."~"7." (P.43~P.51) describe about the specifications of IC901 PD5508B9.

- SPECIFICATIONS

1. Basics

1.1 Reset

Perform the reset when connecting the AC power supply.

Fig. Flow chart of RESET

Perform reading from the EEPROM while RAM is being initialized after the AC power is turned on (port 25 (Pin25) (RESET): L). Set the read data to RAM using "initcont" after resetting is completed. (See "2. Initializing.(P.44)")

1.2 BACKUP Mode

Backup is performed when the AC power is turned off.
SPRYH (port 16) and SPRYG (port 17) are set to "L" 10 ms after the BACKUP port becomes "L."
All the indicators and lamps go dark.
Execution of the BACKUP processes (port processing and register processing) begins 30 ms later.
Last memory writing to the EEPROM is performed each time a key is operated, but not performed in the backup processes.

Port processing

1) I/O ports are specified as output ports.
2) Output ports are set to "L."

Backup targets

INPUT1/2, ATT.THROUGH, ATT. HOLD (The level value is also backed up when ON), ILL.
(The VOLUME level and mode settings at the mechanical switch are checked each time the power is turned on.)

	BRD.	DUAL	PRO.
ILL	Bright / dark / off		
INPUT	$1 / 2$		-
ATT. THR	ON/OFF		
ATT. HOLD	-	-	ON/OFF
ATT. LEVEL	-	-	At ATT. HOLD ON only

As writing to ROM may require 40 ms at maximum, 5 V will be supplied to the microcomputer for about 100 ms after the AC power is turned off at the hardware.

The data to be written are composed of the following 3 bytes:

1	Bit 0	ILL1	ON/OFF	
	Bit 1	ILL2	ON/OFF	
	Bit 2	INPUT	1/2	
	Bit 3	ATT. THROUGH	ON/OFF	
	Bit 4	ATT. HOLD	ON/OFF	
	Bit 5	SEPARATE	ON/OFF	
	Bit 6	DUAL	ON/OFF	
	Bit 7	BRIDGE	ON/OFF	
2		VOLUME position (5 bit)		
		*At ATT. HOLD ON only		
3		BACKUP code		

Communication is made using ports 34 (SDA) and 35 (SCL) as output ports.

1.3 Last Memory

Last memory writing to the EEPROM (IC904:AT24C01-100C) is performed each time a key is operated.
Input-independent last memory is not provided.
The ILL and ATT.THROUGH settings remain the same in switching between INPUT 1 and 2.

1.4 TEST Mode

None

1.5 SILENT Mode

The unit can enter SILENT mode in a condition other than the following:

- The BACKUP port is "L." (BACKUP mode)
- A volume operation is being processed. \square
- A key input is being processed. \qquad (normal operation mode)
- Caution status for mode switching (caution indication state at the operation of OPERATION MODE SW during Power-On state)

When 200 ms have elapsed after such a process is completed, the unit can enter SILENT mode.

The unit restarts upon key input, a volume operation, mode switching, or P-DET input.
The timer is set for 5-second restarting.
When 200 ms have elapsed after the restarting process is completed, the unit can enter SILENT mode again.
(SILENT mode : The control μ-com enter the low power consumption mode and stops the oscillation of system clock.)

1.6 POWER ON/OFF
 (1) POWER ON

After POWER ON, port $16(\mathrm{SPRYH})(\operatorname{Pin} 16)$ is set to " L " and port 31 (FMT)(Pin31) is set to "H."
Port 31 (FMT) is set to "L" after 3 seconds, and muting is set to OFF.
After another 5 seconds (8 seconds after POWER ON), ports 16 (SPRYH) and 17 (SPRYG)(Pin17) are set to "H," and relay is set to ON.

(2) POWER OFF

Port 16 (SPRYH)(Pin16) is set to "L" 10 ms after POWER OFF (port 26 (BACKUP)(Pin26) becomes "L").

Ports that must be processed other than port 16 are operated immediately after this.

26 (BACKUP)

16 (SPRYH)

2. Initializing

The main routine starts after reset processing.
Normal processing starts after the initializing process is completed with "initcont".

The data read during the reset processing are written to RAM. (See the "1. Basics"(P.43).)
If the MODE switch was not operated during the POWER OFF period, the read data are written to RAM.
If the MODE switch was operated during the POWER OFF period, the default settings are made.

Default: INPUT1

ATT.THROUGH	OFF
ATT.HOLD	OFF
ILL	Bright

Then the timers are set.
Refer to the next page Fig.1.

IC901 PD5508B9

Fig. 1 Timing chart of initializing process from the reset

3. Key Input (IC901)

IC901 PD5508B9

Key input, indicators and processes

Key Input Port	ACT	Indicator Process Port	Contents of Process		
			DUAL	BRIDGE	SEPARATE
37 (ATT. THROUGH)	L	$\begin{aligned} & 10 \\ & \text { (IND ATT. THROUGH) } \end{aligned}$	Alternates " H " and "L" alternately at each key input.	Alternates " H " and "L" alternately at each key input.	Alternates " H " and "L" alternately at each key input. Key disabled with ATT.HOLD ON.
39 (INPUT)	L	$\begin{array}{\|l} 5 \text { (IND IN1) } \\ 6 \text { (IND IN2) } \end{array}$	Sets INDIN1 and INDIN2 to " H " and "L" alternately at each key input.	Sets INDIN1 and INDIN2 to "H" and "L" alternately at each key input.	Key disabled. Both INDIN1 and INDIN2 always lit ("H").
$\begin{aligned} & 38 \\ & \text { (ATT. HOLD) } \end{aligned}$	L	11 (IND ATT. HOLD)	Key disabled. Always "L".	Key disabled. Always "L".	Alternates " H " and "L" at each key input. Key disabled with ATT. THROUGH ON.
$\begin{aligned} & 40 \\ & (\mathrm{ILL}) \end{aligned}$	-	None	-	-	-

Key Input Port	ACT	Indicator Process Port	Contents of Process			
			DUAL		BRIDGE	SEPARATE
37 (ATT. THROUGH)	L	13 (DAC VR)	$\begin{array}{\|l\|l\|} \hline \text { ON } & : " H " ~ \\ \text { OFF } \end{array}$		$\begin{aligned} & \text { ON : "H" } \\ & \text { OFF } \end{aligned}$	ON : "H" (VOL invalid) OFF : "L" (VOL valid) Key disabled with ATT. HOLD ON.
39 (INPUT)	L	12 (INPUT2)	INPUT1: "L" INPUT2 : "H"		INPUT1 : "L" INPUT2 : "H"	Fixed at L.
$\begin{aligned} & 38 \\ & \text { (ATT. HOLD) } \end{aligned}$	L	-	Key disabled.		Key disabled.	ON : HOLD data valid VOL invalid OFF: VOL valid Key disabled with ATT. THROUGH ON.
$\begin{aligned} & 40 \\ & \text { (ILL) } \end{aligned}$	L	$\begin{aligned} & 32 \text { (ILL2) } \\ & 33 \text { (ILL1) } \end{aligned}$	Cycles Bright/Dark/Off at each key input. Factory setting: Bright (H, L)			

3.1 Key Inputs

A key input becomes valid after 40 ms , to eliminate chatter.
The ATT.THROUGH key input from OFF to ON becomes valid when the key is held pressed for 2 seconds.

3.2 Switch inputs

The MODE switch (rotary switch) setting is read when the power is turned on.
The switch operation with POWER ON is invalid.
(See "7. WARNING."(P.50))

4. KEY PROCESSING (IC901)

4.1 ATT.THROUGH Switching

The ATT.THROUGH key input from ON to OFF becomes valid when the key is held pressed for 2 seconds.
Any other key input during these 2 seconds is invalid.
When switching from OFF to ON, the key input becomes valid at normal timing.

Port 16 (SPRYH)(Pin16) is set to "L" 10 ms after ATT.THROUGH switching signal input, and relay is set to OFF.
After another 30 ms , the INDICATOR port is processed.
Port 31 (FMT)(Pin31) is set to "H," and muting is set to ON.
Switching process is performed 100 ms after ATT.THROUGH switching signal input.

When switching ATT THROUGH from ON to OFF:
Data transfer to the DAC IC is performed 2 seconds after the key input.

When switching ATT.THROUGH from OFF to ON:

Port 2 (LD), port 3 (CLK), and port 4 (SRD) are fixed to "L" before DACVR (pin 13) is set to "L," 30 ms after relay becomes OFF. (See "6. DAC Volume Transfer."(P.49))

After another 2 seconds, port 31 (FMT)(Pin31) is set to "L," and muting is set to OFF.
After another 3 seconds, port 16 (SPRYH)(Pin16) is set to "H," and relay becomes OFF.

Fig. 2 Timing chart when ATT. through key is pressed

4.2 INPUT switching

INDICATOR port processing and switching process start 30 ms after INPUT key input [port 39 (INPUT)(Pin39): "L"].
No muting process is performed.

Fig. 3 Timing chart when INPUT key is pressed

4.3 ATT.HOLD Key Processing

Upon ATT.HOLD key input, the specified current volume value is held.
While ATT.HOLD is ON, the volume level stays at the held value even if the volume control is operated.
In Muting mode (when the power is turned on or ATT. THROUGH is switched from ON to OFF), the ATT.HOLD key is disabled.

Fig. 4 Timing chart when ATT. HOLD key is pressed

4.4 ILL Key Processing

Each press of the key cycles Bright, Dark, Lamp Off, and LED Off.

Fig. 5 Timing chart when ILL key is pressed

4.5 VOL Key Processing

Fig. 6 Timing chart when volume is input

4.6 Invalid Key Input

Fig. 7 Timing chart when an invalid key is pressed

5. Mode Switching Processing (IC901)

Select the mode of the speakers using the MODE switch (rotary switch).
Any of three modes (BRIDGE, DUAL and SEPARATE) can be selected.

Table Mode select indicator processing

Mode Input Port	ACT	Indicator Process Port	Contents of Process
27 (BRIDGE)	L	8 (IND BRD.)	Sets to "H".
28 (DUAL)	L	9 (IND DUAL)	Sets to "H".
30 (SEPA.)	L	7 (IND SEPA.)	Sets to "H".

IC901 PD5508B9

Table Mode select port processing

Mode Input Port	ACT	Contents of Process Process Port					
		12 (INPUT2)	13 (DACVR)	14 (SEPARATE)	15 (INVERT)	16 (SPRYH)	17 (SPRYG)
$\begin{aligned} & 27 \\ & \text { (BRIDGE) } \end{aligned}$	L	INPUT1 : "L"	ATT. through : "L"	"L"	ATT. through : "H"	"H"	"L"
		INPUT2 : "H"	ATT. exist : "H"		ATT. exist : "H"		
28 (DUAL)	L	INPUT1 : "L"	ATT. through : "L"	"L"	ATT. through : "L"	"H"	"L"
		INPUT2 : "H"	ATT. exist : "H"		ATT. exist : "L"		
$\begin{aligned} & 30 \\ & \text { (SEPA.) } \end{aligned}$	L	Fixed at "L"	ATT. through : "L"	"H"	ATT. through : "L"	"H"	"L"
			ATT. exist : "H"		ATT. exist : "L"		

The MODE switch is disabled while power is ON.
(See "7. WARNING.")

6. DAC Volume Transfer (IC901)

When the status of port 29 (VR1) changes, port 29 (VR1), port 30 (VR2), port 42 (VR3), port 23 (VR4), and port 24 (VR5) are checked to detect the VOLUME position.
With DUAL, BRIDGE, or SEPARATE, the attenuation volume is read from the VOLUME position/ATT volume table and transferred to the DAC IC in Serial mode (MSB first).

When the transfer is completed, LD (port 2) is set to "L" then returned to "H."

When ATT.THROUGH is ON or port 13 (ATT.THROUGH) is "L," port 2 (LD), port 3 (CLK), and port 4 (SRD) are fixed at "L." Then the data are transferred again when port 13 (ATT.THROUGH) is set to "H."

When switching ATT.THROUGH from ON to OFF or when turning power ON:
 Data transfer is performed 2 seconds after the switch is operated.

When switching ATT THROUGH from OFF to ON or when turning the power ON :
Port 2 (LD), port 3 (CLK), and port 4 (SRD) are fixed at "L" before DACVR (pin 13) is set to "L," 30 ms after relay becomes OFF.

Relay

Three data lines "L"

DACVR (pin 13)

Data transfer is performed once in the following conditions and terminated:

- When the power is turned on
- When the VOL is operated
- When ATT.THROUGH is switched from ON to OFF
- When ATT.HOLD is switched from ON to OFF

Position	Binary Code	BRIDGE / DUAL			PROCESSOR		
		Attenuation (dB)	Serial Data		Attenuation (dB)	Serial Data	
31	00000	0	FFF		0.0	FFF	
30	00001	-2	CB4	-2.0021	-0.5	F19	-0.5021
29	00010	-4	A17	-4.0026	-1.0	E41	-1.0016
28	00011	-6	804	-6.0015	-1.5	D75	-1.5013
27	00100	-8	65E	-8.0013	-2.0	CB4	-2.0021
26	00101	-10	50E	-10.0064	-2.5	BFE	-2.5023
25	00110	-12	404	-12.0052	-3.0	B53	-3.0001
24	00111	-14	331	-14.0006	-3.5	AB0	-3.5028
23	01000	-16	289	-16.0002	-4.0	A17	-4.0026
22	01001	-18	203	-18.0089	-4.5	987	-4.5008
21	01010	-20	199	-20.0106	-5.0	8FE	-5.0030
20	01011	-22	145	-22.0074	-5.5	87D	-5.5039
19	01100	-24	102	-24.0127	-6.0	804	-6.0015
18	01101	-26	CD	-26.0100	-6.5	791	-6.5025
17	01110	-28	A3	-28.0013	-7.0	725	-7.0008
16	01111	-30	81	-30.0333	-7.5	6BE	-7.5043
15	10000	-32	66	-32.0731	-8.0	65E	-8.0013
14	10001	-34	51	-34.0754	-8.5	603	-8.5003
13	10010	-36	40	-36.1215	-9.0	5AC	-9.0057
12	10011	-38	33	-38.0937	-9.5	55B	-9.5043
11	10100	-40	28	-40.2039	-10.0	50E	-10.0064
10	10101	-42	20	-42.1421	-10.5	4C6	-10.5037
9	10110	-44	19	-44.2863	-11.0	482	-11.0010
8	10111	-46	14	-46.2245	-11.5	441	-11.5045
7	11000	-48	10	-48.1627	-12.0	404	-12.0052
6	11001	-50	C	-50.6615	-12.5	3CB	-12.5007
5	11010	-52	A	-52.2451	-13.0	394	-13.0072
4	11011	-54	8	-54.1833	-13.5	361	-13.5048
3	11100	-56	6	-56.6821	-14.0	331	-14.0006
2	11101	-58	5	-58.2657	-14.5	303	-14.5040
1	11110	Infinity	0	\#NUM!	-15.0	2D8	-15.0025

7. WARNING

7.1 Protection

When abnormal amplifier output is detected, the protection relay and function muting are controlled to warn the user.

When P-DET (port 41) becomes "L," FMT (port 31) is set to "H" and port 16 (SPRYH) is set to "L" immediately.

At the same time, ILL indicators flash in 1-second cycle.

(ILL1, ILL2) $=(\mathrm{H}, \mathrm{L}) \leftrightarrow(\mathrm{L}, \mathrm{L})$	(ILL1=port33(Pin33)
Flashing : Mode illumination light	ILL2=port32(Pin32))
Mode indicator	
Panel light	

When the POWER OFF key is pressed, POWER OFF processing is performed. (All other keys are disabled.)

Refer to 7.2 PROTECTION CIRCUIT about the circuit explanation.

7.2 Mode Switching

Mode switching is allowed only when the power is OFF.
If mode switching is performed with the power ON, relay is set to OFF. When the previous status is restored, relay is returned to ON.

As a caution, the LED of the selected mode and the LED of the operating mode flash with the timing shown below.
When the MODE switch is returned to its original setting, the LED flashing as a caution stops, and normal status is resumed.

The MODE switch is read every loop.
When the MODE switch is operated when the ILL indicator is dark, the indicator is forcibly turned on.
When the MODE switch setting matches the operating mode setting, the ILL mode resumes its original status.

Relay is set to OFF in the MODE CAUTION status.
 operated

Fig. 8 Timing of mode switching error processing

7.3 Warning when switching ATT.THROUGH from OFF to ON

When ATT.THROUGH is switched from OFF to ON, the key becomes valid when it is held pressed for 2 seconds.
The ATT.THROUGH ON/OFF LED flashes during those 2 seconds.

IC901 PD5508B9

DAC8043FP (INPUT(L) ASSY : IC101, INPUT(R) ASSY : IC201)

- D/A Converter IC

- Pin Assignment (Top View)

- Block Diagram

M-AX10

7.2 PROTECTION CIRCUIT

The protection circuits are provided for this unit. When these protection circuits are activated ,the hardware muting is activated and muting and the output relays are controlled by the microcomputer.

There are two protection circuits.

1) DC voltage detection at the output
2) Overcurrent detection due to the short circuit at the load end

1. DC voltage detection circuit

At the High-CH (Low-CH) output current amp of C.AMP (L)ASSY, DC voltage is detected by Q507 and Q509 (Q508 and Q510) and these transistors turned ON and P-DET signal becomes Low. When P-DET signal becomes Low ,relay control Tr. Q515 ,Q511 and Q512 becomes open and shut down the relay RY501 and RY502. Also microcomputer receive P-DET Low signal and activate the mute circuit and set OFF the relay control Tr. Q513.

2. Overcurrent detection circuit

At the High-CH (Low-CH) output current amp of C.AMP (L)ASSY, (+) side overcurrent is detected by Q503 and Q505 (Q518,Q504 and Q506) and these transistors turned ON and P-DET signal becomes Low. Following is same as above.
(-) side overcurrent is detected by Q517,Q503 and Q505 (Q504 and Q506) and these transistors turned ON and P-DET signal becomes Low. Following is same as above.

Refer to next page FIg. 1 about the circuit description.

3. Starting condition of the protection circuit

The above protection circuits works under the following condition.
DC voltage detection $\quad: \quad$ about over $\pm 3 \mathrm{~V}$
Overrcurrent detection $\quad: \quad$ about over $14 \sim 15 \mathrm{~A}$

Fig. 1 PROTECTION CIRCUITS

7.3 DESCRIPTIONS

7.3.1 Product Overview

Features of this product

\square Three-mode drive power amplifiers

This product is equipped with power amplifiers for two right and two left channels (total of 4 channels).
Three types of speaker drive formats can be selected.

1. SEPARATE mode

The product functions as a 4-channel power amplifier (115 watts, 4 ohms for each of 4 channels). By connecting to a 2 -way channel divider, a high-grade multi-amplifier system can be established. Using two units of this product provides a Hi-Fi surround system for up to 8 channels. The product can also be used for DVD multichannel audio, DOLBY DIGITAL, and DTS applications.

2. DUAL mode

By connecting speakers that conform to tandem-wiring use, a Biamplifier (tandem amplifier) system can be established. By driving tweeters and woofers separately with different amplifiers, interference between speaker units is virtually eliminated. Thus, super hi-fi stereo playback with a high degree of purity is enabled.

3. BRIDGE mode

The product functions as bridge-output high-power amplifiers (230 watts, 6 ohms for each of 2 channels).

\square Symmetrical twin-stereo structure

High-performance stereo amplifiers are symmetrically mounted left and right.
Of course in SEPARATE or DUAL mode, enlargement of a large current loop can be eliminated even in BRIDGE mode, restraining sound degradation due to magnetic coupling, which is a disadvantage of bridge amplifiers. The important parts are isolated by shield plates and shield cases to achieve excellent channel separation at high frequencies (104 dB or more at 20 kHz between the left and right channels). You can enjoy high-grade stereophonic playback in a rich sound field.

■ Advanced direct-energy MOSFET power amplifiers

This product employs MOSFETs of larger capacity than with conventional models. For insulation between each large heat sink and MOSFET, a quite small zero-resistance ceramic sheet is employed to improve the radiation characteristics. Not only a rise in temperature with continuous signal input, but also instantaneous rises in temperature with pulse-type input can be minimized.
For higher sound quality, the response speed to an input of large sound volume and the clarity are highly improved.
In addition, a newly developed Z (ZETT) BIAS circuit that precisely reproduces the thermal factors of a MOSFET is mounted for temperature compensation for the idle current. This drastically improves the drift of the idle current which may greatly affect sound quality, and enables playback at constantly stable sound quality immediately after you turn on the power.

Wide-range linear circuit

The wide range linear circuit has been enhanced to improve DC stability by newly employing highly accurate parts of 0.5% error and single-chip dual transistors for a completely discrete structure that uses no DC servo or operational amplifier.
This enables natural and clear playback of low frequencies by keeping NFB stable from very low frequencies.

DAC (Digital Accurate Control) attenuator

A high-precision 12-bit D/A converter of ladder resistance type is used.
Advantages of the DAC attenuator (when compared with conventional mechanical sliding-type controls)

1. Excellent S / N in practical usage
2. The frequency response is not affected by the attenuation volume setting.
3. The attenuation volume can be programmed. This product provides two curves, for high-frequency attenuation in a multiamplifier system and for normal volume control.
4. No tracking error (gain error between channels)
5. No signal irregularity from vibration, providing pure sound
6. The operation block and the circuit block can be separated. The signal path length can be minimized by free layout.

■ Large-sized super ring toroidal transformer

A large-sized super ring toroidal transformer of 450 VA is employed for the lowest possible loss and lowest impedance at the power block. In addition, repression of power harmonics, which has been regarded as impossible with large-capacity toroidal transformer, has been achieved, enabling powerful and smooth playback at high speeds.

\square Silent control microcomputer

When the knobs and buttons are not operated, the control microcomputer enters Low-Power-Consumption mode (system clock oscillation stops). This decreases power consumption, and eliminates high-frequency interference caused by clock oscillation to maintain high sound quality. In addition, the microcomputer continuously monitors the amplifier status and if it detects an abnormality, it immediately activates the protection circuit. By using the microcomputer in combination with the conventional hardwareprotection circuit, higher reliability and safety are ensured.

■ Ultra-Low-Impedance Power Circuit

Power de-coupling by an ultra-low-impedance condenser, ample jumper lines and a No. 16 wire power cable are employed for very low impedance in the power and ground lines.
In the low frequency range, channel separation is greatly improved (achieving 115 dB at 20 Hz) by decreasing ground common impedance.
In the high frequency range, the rise in impedance due to the inductance component is suppressed, for higher frequency stability. Thus a power amplifier that is virtually impervious to changes in speaker impedance and connection cables has been created.

7.3.2 Circuit Description

\square Block Diagram

■ Each mode of block diagram

- Dual Drive Mode -

- Bridge Drive Mode -

- Separate Drive Mode -

Descriptions of the Block Diagram
 1. INPUT switching block

Four small-signal relays for individual channels are used for input signal switching.

2. 12-dB flat amplifier block

The input signal is amplified by 12 dB (4 times) to increase the input level at the DAC attenuator block to improve the dynamic range and signal-to-noise ratio.
In DUAL or BRIDGE mode, the flat amplifier on the low-channel side is shut down by the LOCAL CIRCUIT OFF circuit.
The circuits are mounted in a shielded box to completely eliminate electrostatic and magnetic coupling.

3. DAC attenuator block

Attenuator section
This is a digitally controlled high-precision analog attenuator that uses a ladder resistance block of R-2R-type DAC ICs for volume control. The signal is input to the Vref (reference-voltage) terminal and the attenuated signal current is obtained from the Iout (currentoutput) terminal. The signal at this terminal is converted to a voltage signal by an I-V converter of the operational amplifier. An output signal of the same phase as the input signal is obtained through inversion by the operational amplifier. The attenuation volume adjustment is controlled using serial data from the microcomputer.

Control section

A 5-bit (31-position) digital rotary switch is used. The rotation angle and information can be sent to the microcomputer, enabling the silent function (Low-Power-Consumption mode) of the microcomputer.

Two DAC ICs are used for two individual channels. There is no mechanical contact, resulting in fewer errors in attenuation volume and gang errors within 0.1 dB at any position. The attenuation volume can be flexibly adjusted by the microcomputer software.
With this product, it can be set in $2-\mathrm{dB}$ steps (up to -58 dB) in BRIDGE mode and in 0.5 dB steps (up to -15 dB) in SEPARATE mode. When this product is used in combination with a preamplifier, you can bypass the DAC attenuator block using the ATT.THROUGH function. For this bypass switching, the same small-signal relay as with the INPUT switching clock is used.

4. 14-dB power amplifier block

Pioneer's original "Direct-Energy MOSFET Amplifier" and "WideRange Linear Circuits" are mounted. The circuits function as the inversion/noninversion switching amplifier on the high-channel side and as an inversion amplifier in BRIDGE mode.
This eliminates the necessity for an inversion amplifier otherwise essential for a bridge amplifier.

5. Protection circuit

When a DC voltage at the output end or a short circuit at the load end is detected, hardware muting is activated and muting and output relays are controlled by the microcomputer.
When a short circuit at the load end is detected, a resistance inserted between the MOSFET drain power sources is used (for current detection) in place of a bridge detection circuit, a device greatly affected by the phase difference between the output power voltage and current.
Thus, possible malfunction of the protection circuit in practical use is prevented.

6. Power block

A large (450-VA) Super Ring is employed for the transformer.
The second coils are separated into three coil windings for left channel, right channel, and a subcircuit.
For the power amplifier, a full-wave voltage doubler rectifier system is used to suppress high-frequency current.
For the voltage amplifier, a half-wave voltage doubler rectifier system is used to obtain the specified voltage without using additional coils. Each signal stage has a local stabilized power source, and the lamps are driven at a constant current for low power consumption.

Level Diagram

9. PANEL FACILITIES AND SPECIFICATIONS

FRONT SECTION

(1) POWER

Press to switch the appliance on and off.
(2) OPERATION MODE

Use this to switch between the three modes: bridge,dual and separate. Be sure to turn the power off before switching between modes. Switching with the power on will activate the warning circuit. The mode illumination light and mode indicator will flash, and the output will be muted.
If it happens, you should turn the operation mode switch back to its original position. The flashing will stop, and your M-AX10 will return to normal.

ATT HOLD

This button is activated only if the OPERATION MODE switch is pointing to SEPARATE.
Press the ATT HOLD (attenuator hold) button while in separate mode allows whatever attenuation has been set with the ATTENUATOR knob to be retained.
Pressing it again will cancel the operation. Note,however, that it is not possible to turn ATT HOLD on and off while the output is muted (eight seconds after switching the power on).

(4) ATT THROUGH

BEWARE: If this button is used ,the volume will be herted at maximum level.
Pressing the ATT THROUGH button for two seconds or longer causes the sound to be output through the speakers without passing through the attenuator circuit. However, because the mute circuit is activated, thereis no sound for five seconds after the button is depressed. The sound will emerge from the speakers five seconds after the ATT THROUGH button is pressed. Note that it will be maximaum volume. Pressing the button again will cancel the operation.
(5) ILLUMINATION

Pressing the ILLUMINATION button once, twice or three times alters the brightness of the panel light, mode indicator as indicated below.
Pressing it a fourth time will return the lights to their initial settings.

	Panel light	Mode illumination light	Mode indicator
initial setting	Bright	On	On
Press once	Dim	On	On
Press twice	Off	On	On
Press three times	Off	Off	Off

(6) INPUT

This button allows you to switch between INPUT 1 and INPUT 2. Note, however, that this is not possible if the the OPERATION MODE switch is set to SEPARATE.
(7) ATTENUATOR

This Knob allows you to adjust the attenuation in 31 stages. In dual and bridge modes it functions as a volume control : 0 dB when turned full right, and $-\infty$ when turned full left. In Separate mode it functions as an attenuator for adjusting the volume of the high-frequncy channel (0 to -15 dB , in 0.5 dB steps): turning it to the left lowers the volume.
(8) MODE ILLUMINATION LIGHT

The lamp display changes as illustrated below depending on whether the OPERATION MODE switch is set to BRIDEGE, DUAL or SEPARATE. Switching operations modes while the power is on will activate the warning circuit and cause the mode illumination light to flash.

Bridge mode

Dual mode

Separate mode

MODE INDICATOR

The lettering lights up to show whether the OPERATION MODE switch is pointing to BRIDGE, DUAL ,SEPARATE. Switching operation modes while the power is on will activate the warning circuit and cause the mode indicator to flash.
(10) ATT THROUGH INDICATOR

This indicator lights up when ATT THROUGH is ON.
(11) ATT HOLD INDICATOR

This indicator lights up when ATT HOLD is ON.
(12) INPUT INDICATORS

These indicators light up to show whether INPUT 1 or INPUT 2 has been selected. They both light up in Separate mode.
(13) PANEL LIGHT

This illuminates the display panel.

METHODS OF CONNECTION

The M-AX10 has four built-in amplifier channels, which can be connected by means of three different operation modes: BRIDGE ,DUAL and SEPARATE. You may select the mode which best suits your purpose and the equipment you are connecting to your M-AX10.

Bridge conection

- The four channels are connected two by two, so as to act as two high-output amplifier channels.
- Output comprises two $230 \mathrm{~W} / 6 \Omega$ (DIN), $200 \mathrm{~W} / 6 \Omega$ (FTC) channels.
- Your speakers must be at least 6Ω.

Dual conection

- The four channels act as two parallel sets of twin amplifier channels.
- Output comprises two $110 \mathrm{~W} / 3 \Omega$ (DIN), $90 \mathrm{~W} / 3 \Omega$ (FTC) channels.
- Speakers with bi-wire terminals will allow you to achieve high-quality sound.

Separate conection

- The channels act separately as four amplifier channels.
- Output comprises two $110 \mathrm{~W} / 3 \Omega$ (DIN), $90 \mathrm{~W} / 3 \Omega$ (FTC) channels.
- Connecting a channel divider will allow you to use the appliance as an amplifier for a multi-channel system.
- You can adjust the volume of speakers connected to the HIGH channels (INPUT 1) in a range from 0 to 15 dB . You can also retain the attenuation once you have set it.
- Speakers connected to the LOW channels (INPUT 2) will always be at maximum volume.

REAR SECTION

INPUT 2

INPUT 1

This is an input terminal for connecting CD players,control amplifiers,channel dividers and other components.
\square This is an input terminal for connecting CD players,control amplifiers, channel dividers and other components.

This is used for an earth connection with a source appearance equipped with an earth-floating function.

BEWARE

When connecting, make sure that the power switch is off,and the power cord is disconnected from the power supply. The terminals are arranged symmetrically. Special care is required when connecting the speaker cords:
failure to connect them in the correct manner for the desired mode will result in lost or imperfect sound.

The rear and under sections of this appliance are copper plated to ensure high quality sound. It may somtimes happen that marks are left during the plating process, but this does not affect performance.

SPECIFICATIONS

Amplifier Section
(U.S model only)
When set to Bridge mode:
Continuous average power output is 200 Watts* per channel, min.,at 6 ohms from 20 Herz to 20,000 Herz with no more than $0.2 \%^{* *}$ total harmonic distortion.

When set to Dual mode ,Seaprate mode:
 Continuous average power output is 90 Watts* per channel, min.,at 3 ohms from 20 Herz to 20,000 Herz with no more than $0.2 \%{ }^{* *}$ total harmonic distortion.

Continuous power output
(driven simultaneously at 20 Hz to 20 kHz) **
(European mode only)
Bridge mode
T.H.D. $0.15 \% 6 \Omega$... $220 \mathrm{~W} \times 2$
T.H.D. $0.09 \% 8 \Omega$.. $190 \mathrm{~W} \times 2$
Dual, Seaprate mode
T.H.D. 0.15\% 3Ω... 100W $\times 4$
T.H.D. 0.09\% 4Ω... 90W $\times 4$
T.H.D. 0.08\% 8Ω... $60 \mathrm{~W} \times 4$
DIN Continuous power output
(driven simultaneously at 1 kHz)
(European mode only)
Bridge mode
T.H.D. $1 \% 6 \Omega$.. $230 \mathrm{~W} \times 2$
T.H.D. $1 \% 8 \Omega$.. $200 \mathrm{~W} \times 2$
Dual, Seaprate mode
T.H.D. $1 \% 3 \Omega$
$110 \mathrm{~W} \times 4$
T.H.D. $1 \% 4 \Omega$.. 105W $\times 4$
T.H.D. $1 \% 8 \Omega$.. $65 \mathrm{~W} \times 4$
Total harmonic distortion **
Bridge mode
20 Hz to $20 \mathrm{kHz}, 100 \mathrm{~W}, 8 \Omega$.. 0.08%
Dual, Seaprate mode
20 Hz to $20 \mathrm{kHz}, 30 \mathrm{~W}, 8 \Omega$... 0.06%
Input sensitivity/Impedance
INPUT 1,2 \qquad $1 \mathrm{~V} / 47 \mathrm{k} \Omega$
Frequency Response
INPUT 1,2 \qquad 5 Hz to $150 \mathrm{kHz}+0 \mathrm{~dB},-3 \mathrm{~dB}$
Damping factor ($1 \mathrm{kHz} / 20 \mathrm{~Hz}$ to 20 kHz)

