

MODEL SX-202 (SX-202L) COMES IN SIX VERSIONS DISTINGUISHED AS FOLLOWS:

Model	Voltage	Remarks
SX-202/KU	AC120V only	U.S.A. model
SX-202/KC	AC120V only	Canada model
SX-202/S	AC110V, 120V,220V and 240V (switchable)	General export model
SX-202/YP	AC240V only	Australia model
SX-202L/HE	AC220V only	European continent model with AM-LW band tuner
SX-202L/HEZ	AC220V only	West Germany model with AM-LW band tuner

- This service manual is applicable to the KU types. For servicing of the other types, please refer to the additional service manual.
- Ce manuel d'instruction se refère au mode de réglage, en français.
- Este manual de servicio trata del método de ajuste escrito en español.

CONTENTS

1. SPECIFICATIONS . 2
2. FRONT PANEL FACILITIES 3
3. PARTS LOCATION 4
4. BLOCK DIAGRAM 5
5. CIRCUIT DESCRIPTIONS 6
6. PACKING . 8
7. EXPLODED VIEW AND PARTS LIST 9
8. P.C. BOARDS CONNECTION DIAGRAM 12
9. SCHEMATIC DIAGRAM 15
10. ELECTRICAL PARTS LIST 17
11. DIAL CORD STRINGING 19
12. ADJUSTMENTS . 20

RÉGLAGE . 22
AJUSTE . 24

1. SPECIFICATIONS

Amplifier SectionContinuous Average Power Output is 25watts* per channel, min., at 8 ohms from40 Hertz to 20,000 Hertz with no morethan 0.3% total harmonic distortion.
Total Harmonic Distortion (40 Hertz to 20,000 Hertz, 8 ohms, from TAPE) continuous rated power outputNo more than 0.3%12.5 watts per channel power outputNo more than 0.15\%
1 watt per channel power outputNo more than 0.2\%
Intermodulation Distortion (50 Hertz: 7,000 Hertz = $4: 1$
8 ohms, from AUX)
continuous rated power output
No more than 0.3%
Damping Factor ($1 \mathrm{kHz}, 8$ ohms) 22
Input (Sensitivity/Impedance)
PHONO $2.5 \mathrm{mV} / 50$ kilohms
TAPE PLAY $150 \mathrm{mV} / 50$ kilohms
Phono Overload Level (T.H.D.0.1\%, 1,000Hz)
PHONO 150 mV
Output Level
TAPE REC 150 mV
SPEAKER A, B, A series B, off
Frequency Response
PHONO (RIAA Equalization)30 Hz to $20,000 \mathrm{~Hz} \pm 0.5 \mathrm{~dB}$
TAPE PLAY 15 Hz to $50,000 \mathrm{~Hz}_{-3}^{+1} \mathrm{~dB}$
Tone Control
BASS $\pm 9 \mathrm{~dB}(100 \mathrm{~Hz})$
TREBLE $\pm 9 \mathrm{~dB}(10 \mathrm{kHz})$
Loudness Contour (Volum control set at -40 dB position)
$+8 \mathrm{~dB}(100 \mathrm{~Hz}),+6 \mathrm{~dB}(10,000 \mathrm{~Hz})$
Hum and Noise (IHF, short circuited, A network)
PHONO MM 71 dB
TAPE PLAY 97dB
FM Tuner Section
*Usable Sensitivity $10.7 \mathrm{dBf}(0.9 \mu \mathrm{~V})$
50dB Quieting Sensitivity
**MONO $15.3 \mathrm{dBf}(1.6 \mu \mathrm{~V})$
STEREO $37.6 \mathrm{dBf}(21 \mu \mathrm{~V})$
Signal-to-Noise Ratio
75 dB (at 85 dBf)
STEREO 70 dB (at 85dBf)
Distortion (at 65dBf)
MONO 1 kHz 0.3\%
STEREO 1 kHz 0.6%
Capture Ratio 2.5 dB
Alternate Channel Selectivity (400 kHz) 50 dB
Stereo Separation (1 kHz) 35dB
Frequency Response 30 Hz to 15 kHz , +0.5 dB
-1.0
Spurious Response Ratio 70dB
Image Response Ratio 45dB
IF Response Ratio 100 dB
AM Suppression Ratio 45dB
Subcarrier Product Ratio 31dB
Muting Threshold 6.3 $\mu \mathrm{V}$)
Antenna Input
300 ohms balanced, 75 ohms unbalanced
AM Tuner Section
Sensitivity
IHF, Loop antenna $320 \mu \mathrm{~V} / \mathrm{m}$
IHF, Ext, antenna $30 \mu \mathrm{~V}$
Selectivity 25dB
Signal-to-Noise Ratio 43dB
Image Response Ratio 40dB
IF Response Ratio 45dB
Antenna AM Loop Antenna
Miscellaneous
Power Requirements AC $120 \mathrm{~V}, 60 \mathrm{~Hz}$
Power Consumption 125 Watts(UL), 150 VA(CSA)
Dimensions 420(W) $\times 98(\mathrm{H}) \times 214(\mathrm{D}) \mathrm{mm}$$16-9 / 16(\mathrm{~W}) \times 3-7 / 8(\mathrm{H}) \times 8-7 / 16(\mathrm{D})$ in
Weight (without package) $4.3 \mathrm{~kg}(9 \mathrm{lb} 8 \mathrm{oz})$
Furnished Parts
FM T-type Antenna 1
AM Loop Antenna 1
Operating Instructions 1

[^0]
2．FRONT PANEL FACILITIES

（1）POWER SWITCH

Push this to switch on and off the unit＇s power．Power is supplied at the depressed（ - ）switch position（ON）and turned off at the released（⿴⿱冂一⿰丨丨⿱一一 $)$ position（OFF）．

（2）HEADPHONE JACK

Connect the plug on the stereo headphones to this jack when listening to sound through headphones．

（3）TONE CONTROLS

BASS ：The bass is increased when this control is rotated clockwise from the center position and reduced when rotated counterclockwise．
TREBLE ：The treble is increased when this control is rotated clockwise from the center position and reduced when rotated counterclockwise．

（4）BALANCE CONTROL

This is normally kept at its center position．It is rotated when the volume of sound delivered through the left and right channels of the speakers or headphones differs．
The right channel volume is reduced when the control is rotated toward the LEFT from the center position while the left channel volume is reduced when it is rotated toward the RIGHT．

（5）FUNCTION SWITCHES

PHONO ：Press when listening to records．
FM ：Press when listening to FM broadcasts．
AM ：Press when listening to AM broadcasts．

（6）TAPE（ADPT）SWITCH

This is depressed when using a tape deck or adaptor unit connected to the rear panel TAPE／ADAPTOR jacks．

（7）LOUDNESS SWITCH

Depress this switch to the ON position when listening to sound at a low level of volume．This will enhance the bass and treble and give more life to the sound even at a low volume．

（8）VOLUME CONTROL

Use this to adjust the volume of the sound delivered through the speakers or headphones．
The volume is increased when this control is rotated clockwise from the minimum＂ 0 ＂position．
（9）TUNING INDICATOR（TUNING）
This lights up to indicate that an FM，AM station has been tuned in．

（10）STEREO INDICATOR（STEREO）

This lights up automatically when an FM station broad－ casting in stereo has been tuned in．
（11）SPEAKERS SWITCHES
These are used to select the speakers through which you will listen to the sound．
The selected speakers are now working．
A：The sound is heard from the speakers connected to the speaker A terminals on the rear panel．
B：The sound is heard from the speakers connected to the speaker B terminals on the rear panel．
No sound will be heard when SPEAKERS A and B switches are both released．This is the position at which the sound can be heard through the headphones．
NOTE：
No sound will be heard through the speakers when both the A and B switches are depressed if only one set of speakers has been connected to either the A or B SPEAKERS terminals．

（12）FREQUENCY SCALE

This indicates the frequency of the broadcasting station （FM，AM）．
The top level figures（ $88 \sim 108$ ）indicate the FM band．
The bottom level figures（ $55 \sim 160$ ）indicate the AM band．
（13）TUNING KNOB
Rotate this knob to pick up stations（FM，AM）．
（14）POWER INDICATOR／DIAL POINTER

3. PARTS LOCATION

NOTES:

- Parts without part number cannot be supplied.
- The \triangle mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- For your Parts Stock Control, the fast moving items are indicated with the marks $\star *$ and $*$.
* GENERALLY MOVES FASTER THAN *

This classification shall be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

Front Panel View

Rear Panel View

Top View

4. BLOCK DIAGRAM

5. CIRCUIT DESCRIPTIONS

FM Front End

A unitized variable capacitor type front end unit is used consisting of an FET RF single stage amp, local oscillator/mixer IC and an IF transformer.

FM IF Amp, Detector and MPX Circuit

A 2-transistor IF amp with ceramic filter is used and the next stage has an IC (M51533L) containing the FM IF detector and MPX circuit. The block diagram of IC M51533L is shown in Fig. 5-1. This IC uses a peak detection method which can be adjusted with a single coil. The PLL method is employed to reconstitute the 38 kHz sub-carrier for the MPX circuit.

The IF signal is input at pin 1 and the detection output is obtained from pin 5. The detection output passes through the muting Q4, goes to pin 9 , passes through the MPX circuit and the stereo signals are obtained from pins 11 and 12. In addition, this unit detects the presence or absence
of a pilot signal to automatically switch between stereo and mono reception by R14 which is connected to pin 14. When a stereo signal is received, pin 13 drops to the low level to light the stereo indicator. When pin 2 is grounded, the PLL VCO and FM IF operation stop (for AM).

FM Muting and LED Driver

With this unit, muting is automatically activated when the antenna input drops below $10 \mu \mathrm{~V}$. As the antenna input decreases, the voltage at pin 3 drops, Q5 is turned off and Q6 is turned on. As a result, the gate voltage of Q4 drops, Q4 is turned off and the detector output circuit is blocked (Fig. 5-1). When an FM or AM station is tuned in, the base potential of Q5 is raised, Q5 is turned on and the tuning indicator lights.

Fig. 5-1 FM IF, Detector and MPX circuit

AM Tuner

This uses a variable capacitor type tuning circuit composed of three transistors, a 2 -transistor front end and a single transistor AM IF detector.

AF Section

The equalizer circuit has a low-noise operation amp (2 channel) M5218P.

The power amp has a 25 watt output power IC STK4141-2S (See Fig. 5-4).

The tone control circuit is placed in the negative feedback loop of the power amp.

Protective Circuits

This unit has a circuit to detect DC voltages at the power amp outputs and a muting circuit that operates when power is turned on and off.

Fig. 5-2 shows the construction of the DC voltage protection circuit. When a DC voltage
appears at the power amp output, either Q13 (plus) or Q14 (minus) is activated depending on the polarity of the DC voltage and a trigger is applied to D15. This turns on D15, +B1 is shorted, the fuse on the primary side is cut and the power supply circuit is shut off.

Fig. 5-3 shows the power on/off muting circuit. Time constant t_{1} is longer than t_{2} so that immediately after the power is turned on, the emitter potential of Q15 exceeds its base potential, Q15 is turned on to activate Q16 and Q17 and ground the signal. A few seconds later, the base potential of Q15 rises to turn off Q15 along with Q16 and Q17.

When the power is turned off, the charge of C161 passes through D18; it is almost completely discharged in an instant to make the base potential of Q15 zero. However, because the charge of C160 remains, Q15 is turned on and muting is activated in the same manner as when power is turned on.

Fig. 5-2 DC Voltage protection circuit

Fig. 5-3 Power ON/OFF muting circuit

Fig. 5-4 Equivalent circuit of power IC

6. PACKING

Mark No. Part No.

1. AHA-335
2. ARB-525
3. ATB-076
4. ADH-005
5. AHE-102

Description
Side pad
Operating instructions
(English)
Loop antenna assembly
T-type antenna
Packing case

7.EXPLODED VIEW AND PARTS LIST

NOTES:

- Parts without part number cannot be supplied.
- The mark found on some component parts indicates the importance of the safety factor of the part. Therefore, when replacing, be sure to use parts of identical designation.
- For your Parts Stock Control, the fast moving items are indicated with the marks * ${ }^{\star}$ and .
* GENERALLY MOVES FASTER THAN *.

This classification shall be adjusted by each distributor because it depends on model number, temperature, humidity, etc.

Mark	No.	Part No.	Description	Mark	No.	Part No.	Descriptions
\triangle *	1.	ANE-410	Bonnet		50.		Speaker switch assembly
	2.	BBZ30P080FZK	Screw (3×8)		51.		Switch holder
	3.	ATT-942	Power transformer (120V)		52.		Pully assembly
	4.	PMZ30P060FMC	Screw (3×6)		53.		LED assembly
	5.	AAD-608	Speaker knob		54.		Earth
	6.	VMZ30P060FMC	Screw (3×6)		55.		Mounting plate
	7.	NK90FUC	Nut		56.		Pully assembly
	8.	AAB-317	Knob B (BASS, TREBLE,		57.		Pully assembly
			BALANCE)		58.		Pully holder
	9.	NK70FUC	Nut		59.		Headphone jack assembly
	10.	AAA-084	Tuning knob				
$\triangle * *$					60.		Chassis
	11.	AAB-316	Knob A (VOLUME)		61.		Bottom Plate
	12.	ANM-292	Front panel assembly		62.		Binder
	13.	AAD-607	Function knob B (PHONO,		63.		Earth terminal
			FM, AM)		64.		Rear panel
	14.	AAD-606	Function knob A (TAPE, LOUDNESS)				
					65.		Tuning drum
	15.	ASG-541	Push switch (POWER)		66.		Smoother
					67.		Pointer holder
	16.	AAD-605	Power knob		68.		Pointer assembly
	17.	AEC-784	Cabinet bumper		69.		Heat sink
	18.	AXA-373	Tuning shaft				
	$19 .$	AEC-471	Nylon rivet		70.		Wire holder
	20.	MTZ30P100FZK	Screw (3 $\times 10$)				
¢ $\underbrace{\text { a }}$	21.	AEK-121	Fuse (T 1.6A)				
	22.	AKP-039	AC socket				
	23.	ADG-073	AC power cord				
	24.	GWM-267	Complex assembly				
	25.	AKN-045	Phone Jack (PHONES)				
$\widehat{\wedge}^{\star \star}$	26.	SUJ8LYXSF	Speaker switch Ceramic (0.01) Screw (3×8)				
	27.	ACG-017					
	28.	BBT30P080FZK					

1	2

3

8.P.C. BOARDS CONNECTION DIAGRAM

External Appearances of Transistors and IC's

A 2SA 726S

2SK 34

2SD 880
2SD 313

JA101
JC501
C

2SA 992

2SK 246

2SC1923

2SC 461

2SA1115
2SC2603

STK4141-2S

M51533L

M5218P
NJM4558DX

3

4
 5

Ass'y GWM-267

	Q4 al	96	Q9	${ }_{0}^{07}$	Q14	Q13	Q12 12	0.11	017

9. SCHEMATIC DIAGRAM

COMPLEX Ass'y (1/3) GWM-267

10．ELECTRICAL PARTS LIST

NOTES：

－When ordering resistors，first convert resistance values into code form as shown in the following examples．
Ex． 1 When there are 2 effective digits（any digit apart from 0），such as 560 ohm and 47 k ohm（tolerance is shown by $J=5 \%$ ，and $K=10 \%$ ）．

560Ω	56×10^{1}	561	
$47 \mathrm{k} \Omega$	47×10^{3}	473	$R D 1 / 2 P S$［7］${ }^{\text {d }}$
0.5Ω	OR5		RN2H $⿴ 囗 ⿱ 一 一 口 15$
1Ω	010		RS1P回回 K

Ex． 2 When there are 3 effective digits（such as in high precision metal film resis－ tors）．

－The mark found on some component parts indicates the importance of the safety factor of the part．Therefore，when replacing，be sure to use parts of identical designation．
－For your Parts Stock Control，the fast moving items are indicated with the marks ＊＊and
\star＊GENERALLY MOVES FASTER THAN \star ．
This classification shall be adjusted by each distributor because it depends on model number，temperature，humidity，etc．

Miscellaneous Parts List

P．C．BOARD ASSEMBLIES

Mark Part No．$\frac{\text { Symbol \＆Description }}{\text { GWM－267 }}$| Complex assembly |
| :--- |
| |
| |
| |
| |
| |
| Headphone jack assembly |
| LED assembly |
| Pointer assembly |
| Switch assembly |

OTHERS

Mark	Part No．	Symbol \＆Description	
\triangle＊	ATT－942	T101	Power transformer（120V）
¢ ${ }^{\text {＊}}$	ASG－541	S101	Push switch（POWER）
\triangle	ACG－017	C501	Ceramic（ $0.01 / \mathrm{AC125V}$ ）
A＊＊	AEK－121	FU101	Fuse（T1．6A）
\triangle	ADG－073		$A C$ power cord
\triangle	AKP－039		AC socket

Complex Assembly（GWM－267）

CAPACITORS

Mark	Part No．	Symbol \＆Description
ACH－249	C145，C146 Electrolytic（3300／42V）	
CEA 101M 50L	C139	
CEA R22M 50L	C11，C21，C22	
CEA 0R1M 50L	C12	
CEA R47M 50L	C10	
CEA 010M 50L	C14，C17，C27，C111，C112，	
	C123，C124	
	CEA 100M 50L	C16，C28，C31，C38，C119，
CEA 220M 25L	C33，C121，C122	
CEA 470M 10L	C26，C105，C106	
CEA 470M 25L	C135，C136，C137，C151，C153	
CEA 101M 25L	C9，C37，C140	

Mark	Part No．	Symbol \＆Description
	CEA 101M 35L	C150
	CEA 221M 10L	C147，C160
	CEA 471M 6L	C143
	CEANL 2R2M 50	C101，C102
	COMA 122K 50	C131，C132
	CQMA 562K 50	C15，C133，C134
	CQMA 153K 50	C19，C20
	COMA 333K 50	C127，C128
	CQMA 242J 50	C107，C108
	CQMA 822J 50	C109，C110
	COMLA 124K 50	C129，C130
	COSA 182J 50	C18
	COSA 511J 50	C34
	CCDUJ 050C 50	67
	CCDSL 270J 50	C125，C126
	CCDSL 121J 50	C30
	CCDSL 101J 50	C113，C114，C117，C118
	CCDSL 221J 50	C103，C104
	CCDCH 150J 50	C24
	CCDCH 220J 50	C36
	CKDYF 103250	C2－C5，C23，C29，C32，C40，C42
	CKDYF $223 Z 50$	C6，C8，C13，C43，C115，C116， C144，C152，C156，C157
	CKDYX 473M 25	C39，C141，C142
	CKDYB 222K 50	C41
	ACG－019	C148 ceramic（ $0.01 / 150 \mathrm{~V}$ ）

RESISTORS

Note: When ordering resistors, convert the resistance value into code form, and then rewrite the part no. as before.

Mark	Part No.
	ACT-162
	ACT-602
	RHB8AVS502
0	ACN-131
\triangle	ACN-140
\	RD1/4PMFL
	RD1/4PM
	RD1/8PM
SEMICONDUCTORS	

Mark Part No. Symbol \& Description

* ${ }^{*}$ 2SC461 (2SC1923)
$\star \star$ STK4141-2S
Q11
** M51533L-B
3
** M5218 P (NJM4558DX)
$\star \star$ 2SK246 (2SK34)
$\star \star$ 2SD880 (2SD313)
$\star \star$ 2SA992 (2SA726S)
A $\star \star$ JC501 (2SC2603)
** JA101 (2SA1115)
* 1 N4148
(US1035)
(1S2076)
(1S1555)

\triangle 土	RB402	D9
	10E2FD	D13, D14
今 *	BCR6AM-4	D15
\star	2-1K261	D4
*	KZL140	D8
*	SZ-027	D16
*	$\begin{aligned} & \text { WZ-130 } \\ & (M Z-130) \end{aligned}$	D11
*	$\begin{aligned} & \text { WZ-075 } \\ & (M Z-075) \end{aligned}$	D2

Pointer Assembly

| Mark | Part No. | Symbol \& Description |
| ---: | :--- | :--- | :--- |
| \star | D7(Red)
 AEL-405 -118 | Pointer |

Switch Assembly
Mark Part No. \qquad Symbol \& Description
** SUJ8LYXSF S2 Push switch (SPEAKERS)

11. DIAL CORD STRINGING

1. Remove the bonnet.
2. Remove the tuning drum from the shaft of the tuning capacitor.
3. Tie one end of the cord to the stud A located inside the tuning drum.
4. Rotate the tuning capacitor right around until the rotor blades are fully intermeshed.
5. Secure the tuning drum back onto the tuning capacitor shaft, making sure that the securing screw B faces directly upward.
6. Pass the cord out through the small opening in the circumference of the tuning drum (see diagram), and then take it over pulleys C and D in that sequence.
7. Wind the cord around the tuning shaft 3 times.
8. Pass it over pulley E, wind it around the tuning drum 1 time, and finally tie it to the spring hook F so that it is tensioned.

12. ADJUSTMENTS

FM Tuner Section

- Check that the dial pointer indicates a starting point.
- Connect the SIGNAL meter between terminal no. 1 of complex assembly and the ground.
- In principle, no adjustment should be made on FM tracking. (See page 21, if necessary.)
- Set the FM switch to ON and connect terminal no. 6 to the ground.

Step	FM SG$(400 \mathrm{~Hz}, \pm 75 \mathrm{kHz}$ deviation)		Position of dial pointer	Adjustment point	Adjustment procedure
	Frequency	Level			
1.	98 MHz	66dB	98 MHz	T1	Set the output of the REC OUT terminal to the maximum value.
2.	98 MHz	46dB	98 MHz	T6	Set the SIGNAL meter to the maximum value.
3.	98 MHz	66dB	98 MHz	T1	Adjust the output of the REC OUT terminal distortion to the minimum level.
4.	Disconnect terminal no. 6 from the ground.				
5.	$\begin{gathered} 98 \mathrm{MHz} \text { Not modulated } \end{gathered}$		98 MHz	VR3	Set the signal of the terminal no. 4 to $76 \mathrm{kHz}(\pm 200 \mathrm{~Hz})$.
6.	$98 \mathrm{MHz}$ \star Stere	66dB lation	98 MHz	T6 (within $\pm 90^{\circ}$)	Minimize the distortion of the REC OUT terminal signal.

NOTE:

Connect the MPX SG to the FM SG external modulator terminal and set the modulation of Main ($1 \mathrm{kHz}, L+R$) $\pm 67.5 \mathrm{kHz}$ deviation, Pilot $(19 \mathrm{kHz}) \pm 7.5 \mathrm{kHz}$ deviation.

Adjustment points in brackets are for SX-202L (Low Wave) only.

Fig. 11-1 Adjustment points

FM tracking

Step	FM SG$(400 \mathrm{~Hz}, \pm 75 \mathrm{kHz}$ deviation)		Position of dial pointer	Adjustment point	Adjustment procedure
	Frequency	Level			
1.	106 MHz	10dB	106 MHz	TC7	Set the SIGNAL meter to the maximum value.
2.				TC5	
3.				TC6	
4.	Confirm that the dial pointer does not get out of position at 106 MHz and 98 MHz .				

NOTE: (For SX-202L/HEZ)

- When 87.6 MHz can not be received with this unit, adjust the oscillator (TC7) and then it can be received. It is prohibited to receive 87.2 MHz or below and so after having adjusted the oscillator, make sure that it does not receive 87.2 MHz or below.

AM Tuner Section

- Check that the dial pointer indicates a starting point.
- Turn ON the MW switch.
- Connect the SIGNAL meter between the terminal no. 1 of complex assembly and the ground.

Step	AM SG$(400 \mathrm{~Hz}, 30 \%$ modulation)		Position of dial pointer	Adjustment point	Adjustment procedure
	Frequency	Level			
1.	1395 kHz	100 dB	1395 kHz	TC3	Set the SIGNAL meter to the maximum value.
2.	603 kHz	100 dB	603 kHz	T3	
3.	Set the AM SG to 30dB output level, repeat steps 1 to 2 above.				
4.	1395 kHz	30 dB	1395 kHz	TC4	Set the SIGNAL meter to the maximum value.
5.	603 kHz	30 dB	603 kHz	T2	
6.	Repeat steps 4 to 5 until maximum sensitivity is attained.				

Long Wave Section (SX-202L/HE, HEZ only)

- Set the AM BAND switch to the LW position.

Setp	AM SG ($400 \mathrm{~Hz}, 30 \%$ modulation)		Position of dial pointer	Adjustment point	Adjustment procedure
	Frequency	Level			
1.	254 kHz	100dB	254 kHz	TC2	Set the SIGNAL meter to the maximum value.
2.	164 kHz	100dB	164 kHz	T5	
3.	Set the AM SG to 30dB output level, repeat steps 1 to 2 above.				
4.	254 kHz	50dB	254 kHz	TC1	Set the SIGNAL meter to the maximum value.
5.	164 kHz	50 dB	164 kHz	T4	
6.	Repeat steps 4 to 5 until maximum sensitivity is attained.				

[^0]: *Measured pursuant to the Federal Trade Commission's Trade Regulation rule on Power Output Claims for Amplifier.
 **FM muting functions with this unit when the signals are weak. The unit's internal wires are therefore treated so that the signals are not muted when the sensitivity is measured.
 NOTE:
 Specifications and design subject to possible modification without notice.

