CDP-EX100

SERVICE MANUAL

AEP Model UK Model E Model

This set is the CD player section in MHC-EX50/EX70AV/EX100AV.

Model Name Using Similar Mechanism	CDP-EX10
CD Mechanism Type	CDM28-5BD19
Base Unit Name	BU-5BD19

SPECIFICATIONS

CD player		
System	Compact disc and	Dimensions
	digital audio system	Approx. 280 x 82.5 x 280 mm
Laser	Semiconductor laser	(11 1/8 x 3 1/4 x 11 1/8 in) (w/h/d)
	(λ=780 nm)	incl. projecting parts and controls
	Emission duration:	Mass Approx. 2.1 kg
	continuous	(4 lb 10 oz)
Laser output	Max 44.6 μW*	
	* This output is the	Design and specifications are subject to
	value measured at a	change without notice.
	distance of 200 mm	8
	from the objective	
	lens surface on the	
	Optical Pick-up Block	
	with 7 mm aperture.	
Wavelength	780 – 790 nm	
Frequence respon	nse	
	2 Hz – 20 kHz (±0.5 dB)	
Signal-to-noise ra	atio	
-	More than 105 dB	
Dynamic range	More than 95 dB	
Outputs		
CD OUT (pł	nono jacks):	
Output level 2 V		
(at 5	0 kilohms)	
Load	impedance over	
10 kil	lohms	
CD DIGITA	L OPTICAL OUT	
(Square opti	cal connector jack, rear	
panel):		
wave	e length 660 nm	
outpu	ut level –18 dBm	
•		

SECTION 4 ELECTRICAL ADJUSTMENTS

Note :

- 1. Basically designed to operate without adjustment. Therefore, check each item in order given.
- 2. Use YEDS-18 disc (3-702-101-01) unless otherwise indicated.
- 3. Use an oscilloscope with more than $10M\Omega$ impedance.
- 4. Clean the objective lens by an applicator with neutral detergent when the signal level is low than specified value with the following checks.
- 5. Adjust the focus bias adjustment when optical block is replaced.

Focus Bias Adjustment

Procedure:

- 1. Connect oscilloscope to test point TP (RF). (GND terminal : VC)
- 2. Turn Power switch on.
- 3. Put disc (YEDS-18) in and playback.
- Adjust RV101 so that the waveform is clear. (Clear RF signal waveform means that the shape " ◊ " can be clearly distinguished at the center of the waveform.)
- 5. After adjustment, check the RF signal level.
- RF signal VOLT/DIV : 200 mV TIME/DIV : 500 nS

S Curve Check

Procedure:

- 1. Connect oscilloscope to test point TP(FEO).
- 2. Connect between test point TP(FOK)and GND by lead wire.
- 3. Turn Power switch on.
- 4. Put disc (YEDS-18) in and turnd Power switch on again and actuate the focus search. (In case of using SERVICE BOX actuate the focus search when disc table is moving in and out.)
- 5. Check the oscillosope waveform (S-curve) is symmetrical between A and B. And confirm peak to peak level within 2.4 ± 0.7 Vp-p.

S-curve waveform

6. After check, remove the lead wire connected in step 2.

- **Note :** Try to measure several times to make sure than the ratio of A:B or B:A is more than 10:7.
 - Take sweep time as long as possible and light up the brightness to obtain best waveform.

RF Level Check

Procedure:

- 1. Connect oscilloscope to test point TP (RF) on BD board.
- 2. Turn Power switch on.
- 3. Put disc (YEDS-18) in and playback.
- 4. Confirm that oscilloscope waveform is clear and check RF signal level is correct or not.

Note :

Clear RF signal waveform means that the shape " \diamond " can be clearly distinguished at the center of the waveform.

RF signal waveform

VOLT/DIV : 200mV TIME/DIV : 500nS

level : 1.3±0.3 Vp-p

E-F Balance Check

Procedure:

- 1. Connect oscilloscpe to test point TP (TEO).
- 2. Turn Power switch on.
- 3. Connect pin 2 of IC60I on the PANEL board to GND with a lead wire.
- 4. Put disc (YEDS-18) in and playback.
- 5. Push TIME button.
- 6. Confirm that the oscilloscope waveform is symmetrical on the top and bottom in relation to 0Vdc, and check this level.

Traverse waveform

Adjustment Location :

[BD BOARD] (Conductor Side)

[PANEL BOARD] (Conductor Side)

7.Remove the lead wire connected in step 3.

Focus/Tracking Gain Adjustment (RV102, 103)

This gain has a margin, so even if it is slightly off. There is no problem. Therefore, do not perform this adjustment. Please note that it should be fixed to mechanical center position when you moved and do not know original position.

SECTION 5 DIAGRAMS

5-1. IC PIN FUNCTION

• IC601 μPD78044AGF (SYSTEM CONTROL, FL DRIVER)

Pin No.	Pin Name	I/O	Function
1-7	T6-T0	0	FL display grid output
8	VDD	_	+5V power supply
9	CLK	0	Serial clock output to DSP (CXD2507AQ).
10	DATA	0	Serial data output to DSP (CXD2507AQ).
11	_		Fixed at Ground.
12	XLAT	0	Serial data latch pulse output to DSP (CXD2507AQ).
13	PRGL	0	Serial data latch pulse output to D/F DAC (PCM1710U).
14	SQCLK	0	Sub code Q data read clock output to DSP (CXD2507AQ).
15		_	Not used. (Open)
16	SUBQ	Ι	Sub code Q data input from DSP (CXD2507AQ).
17	RESET	Ι	System reset input ("L"=Active)
18	INSW	Ι	S292 (load in switch) input
19	OUTSW	Ι	S291 (load out switch) input
20	AVSS		Ground
21	LDOUT	0	Output for rotating M903 (loading motor) in the loading out direction.
22	LDIN	0	Output for rotating M903 (loading motor) in the loading in direction.
23	ADJ	Ι	Test mode input. (" L "= Stops GFS check)
24	AFADJ	Ι	Test mode input. Fixed at "H". (" L "= Test mode)
25	MODE	Ι	Not used. (Fixed at "H".)
26-28	KEY2-KEY0	Ι	Key AD input
29	AVDD		+5V power supply
30	AVREF		+5V power supply
31			Fixed at Ground.
32			Not used. (Open)
33	VSS		Ground
34	X1	Ι	Clock input (5MHz)
35	X2	0	Clock output (5MHz)
36	BDRST	0	BD reset output
37	BDPOWER	0	BD power ON/OFF output
38			Not used. (Open)
39	SENS	Ι	SENS input from DSP (CXD2507AQ).
40	AMUTE	0	Not used. (Open)
41	FSW	0	Focus switch output
42	BSOUT	0	Audio bus output
43	_	_	Not used. (Open)
44	SCOR	Ι	Sub code sync S0+S1 detection input
45	JOG1	Ι	JOG input
46	_	_	Not used. (Open)
47	BSIN	Ι	Audio bus input
48	IC (VPP)	_	Connected to Ground.
49	JOG0	Ι	JOG input
50, 51			Not used. (Open)
52	VDD	_	+5V power supply
53-70	S22-S5	0	FL display segment output
71	VLOAD		-28V power supply for driving FL display.
72-76	S4-S0	0	FL display segment output
77-80	T10-T7	0	FL display grid output

5-4. SCHEMATIC DIAGRAM - BD SECTION - • Refer to page 23 for IC Block Diagrams.

- All capacitors are in μ F unless otherwise noted. pF : $\mu\mu$ F 50WV or less are not indicated except for electrolytics and tantalums.
- All resistors are in Ω and 1/4 W or less unless otherwise

Note: The components identified by mark A or dotted line with mark A are critical for safety. Replace only with part number specified.

- Voltage and waveforms are dc with respect to ground under

- no mark: STOP (): PLAY
- Voltages are taken with a VOM (Input Impedance 10MΩ). Voltage variations may be noted due to normal production tolerances.
- Waveforms are taken with a oscilloscope. Voltage variations may be noted due to normal production tolerances.
- Circled numbers refer to waveforms.
- Signal path.
- ≖ CD : CD
- ∞ : digital out

5-6. SCHEMATIC DIAGRAM — MAIN SECTION — • Refer to page 23 for IC Block Diagrams.

-19 -

Waveform

- Voltages are taken with a VOM (Input Impedance 10MΩ). Voltage variations may be noted due to normal production
- Waveforms are taken with a oscilloscope. Voltage variations may be noted due to normal production
- Circled numbers refer to waveforms.

• IC Block Diagrams

IC101 CXA1782BQ (BD Board)

IC102 BA6397FP

IC103 CXD2507AR

28 ML/050 INPUT INTERFACE MOĐE ÐIN 2-ÐIGITAL D MC/OM2 FILTER CONTROL BCKIN 3 26) MO/OM1 TIMING CONTROL 25 MUTE CLKO (4) XTI (5)-24) MOĐE XTO G-23 CKSL NOISE SHAPER ÐGNÐ 7 22) ĐGNĐ (21) VĐĐ V Ð Ð (8) S-LEVEL ĐẠC RIGHT 5-LEVEL ĐẠC LEFT VCC 2R -20 VCC2L GNÐ2R (10)----19) GNO2L LOW-PASS FILTER RIGHT LOW-PASS FILTER LEFT EXTIR -(18) EXTIL 3-STAGE AMP RIGHT 3-STAGE AMP LEFT EXT2R (12) -(17) EXT2L VOUTR (13)--(16) VOUTL GND1 (14 (15) VCC1

IC101 L78LR05D (Main Board)

IC203 LB1641

IC104 PCM1710U