1/25/16

ORDER NO. AD8812323C2

Compact Disc Player

(K)...Black Type (S)...Silver Type

SL-P222A

Color

ervice Manu

DIGIT/IL

Area

Pickup

Wavelength

Country Code	Area	Color
(E)	Continental Europe.	(K) (S)
(EK)	United Kingdom.	(K) (S)
(EG)	F.R. Germany.	(K) (S)
(EB)	Belgium.	(K) (S)
(EH)	Holland.	(K) (S)
(EF)	France.	(K) (S)
(Ei)	Italy.	(K) (S)

SPECIFICATIONS

Audio

No. of channels	2 (left and right, stereo)
Frequency response	2–20,000 Hz ± 0.5 dB
Output voltage	2 V (at 0 dB)
Dynamic range	96 dB
S/N ratio	96 dB
Total harmonic distortion	0.005% (1 kHz, 0 dB)
Harmonic distortion	0.003% (1 kHz, 0 dB)
Wow and flutter	Below measurable limit
Output impedance	Approx. 600Ω
Load impedance	More than 10 k Ω
Headphone output level	15 mW max. 32 Ω (adjustable)

Signal Format

Sampling frequency	
D-A conversion	

± 0.5 dB at 0 dB) 96 dB 96 dB z, 0 dB) z, 0 dB) ble limit x. 600Ω n 10 kΩ justable)

44.1 kHz 16-bit linear

n

CONTENTS

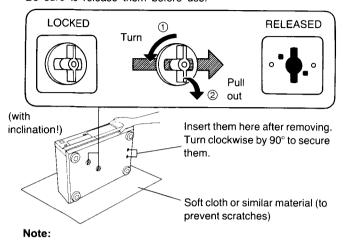
Page
Page PLACEMENT
ACCESSORIES 2
PRECAUTION OF LASER DIODE
LOCATION OF CONTROLS
CONNECTIONS
CLEANING OF LENS 6
DISASSEMBLY INSTRUCTIONS
MEASUREMENTS AND ADJUSTMENTS
TERMINAL FUNCTION OF IC's
BLOCK DIAGRAM
INTERNAL CONNECTION OF FL
SCHEMATIC DIAGRAM 21~29

Technics

					Pa
FERMINAL GUIDE C)FIC's, T	RANS	ISTORS	AND DIOD	ES;
VIRING CONNECTIO	ON DIAG	RAM			:
PRINTED CIRCUIT E	BOARDS				32~;
EXPLODED VIEW					38~4
REPLACEMENT PAR	TS LIST				41~4
RESISTORS & CAPA	CITORS				. 44,4
REPLACEMENT PAF	TS LIST				4
EXPLODED VIEW					4
TECHNICAL INFOR	MATION				47~5

Matsushita Electric Industrial Co., Ltd. Central P.O. Box 288, Osaka 530-91, Japan

780 nm

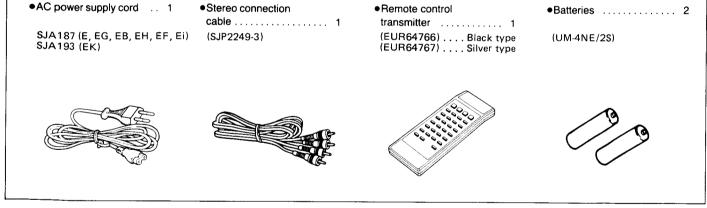

General Power supply For United Kingdom: AC 50/60 Hz, 240V For others: AC 50/60 Hz, 220V Power consumption 13 W Dimensions (W x H x D) 430 x 92 x 278 mm Weight 3.6 kg

Specifications subject to change without notice. Weight and dimensions shown are approximate.

PLACEMENT

Before placement

Two transport security devices are secured to prevent the optical pickup from damage during transport. Be sure to release them before use.



When transporting the unit, be sure to remove the compact disc from inside the unit. And replace the transport security devices again following the reverse order not to damage the optical pickup. (Make sure to place the unit with the rear panel facing downward.)

ACCESSORIES

Notes of placement

- Place on a flat, level surface so that the front-rear inclination does not exceed 5°.
- Avoid places such as the following:
- Near any equipment or device that generates strong magnetism.
 On any heat-generating equipment or device, or in any place where the temperature is high (40°C or higher).
- •Extremely cold places (5°C or below).
- •Near a tuner or TV (It may cause noise in the broadcast, or disturbance of the TV picture.)
- Do not place heavy objects, other than system components, on top of the unit.
- When carrying or storing the unit, handle it with care so it is not subjected to any strong bumps. Always remove the disc before storing the unit for any period of time
- To avoid problems due to vibration.
- •Do not place a book or similar object under this unit.
- Do not route the connection cables (of this or other units) across the operation panel, across the top, or under the unit.

Note: Configuration of AC power supply cord differs according to area.

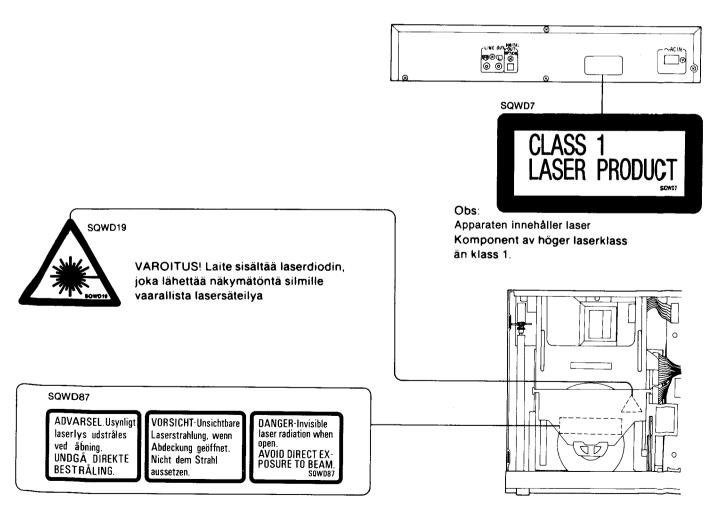
PRECAUTION OF LASER DIODE

CAUTION: This product utilizes a laser diode with the unit turned "on", invisible laser radiation is emitted from the pick up lens.

Wave length: 780nM

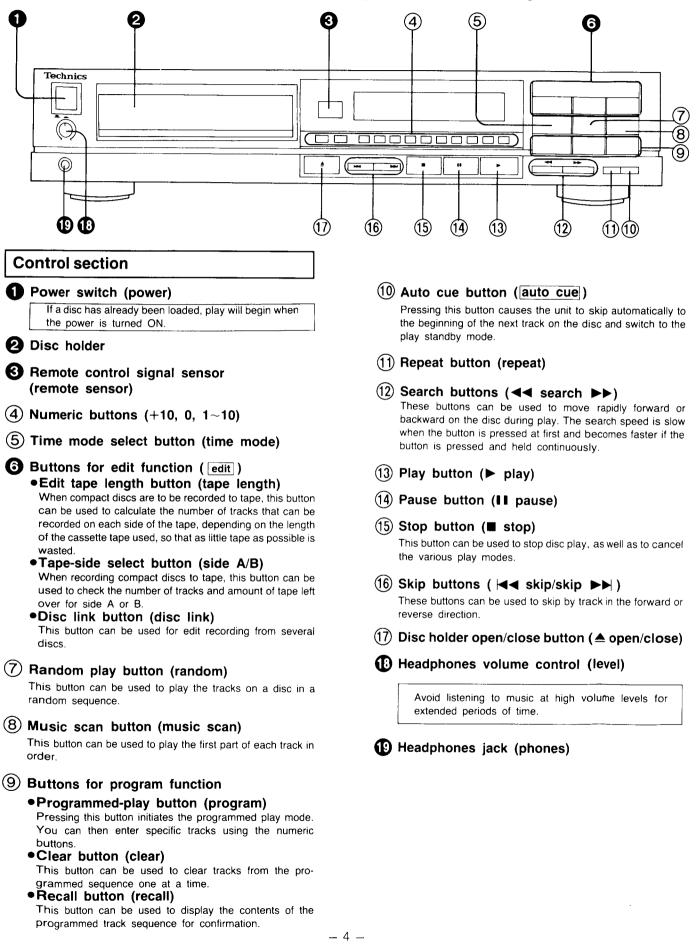
Maximum output radiation power from pick up: 100µW/VDE

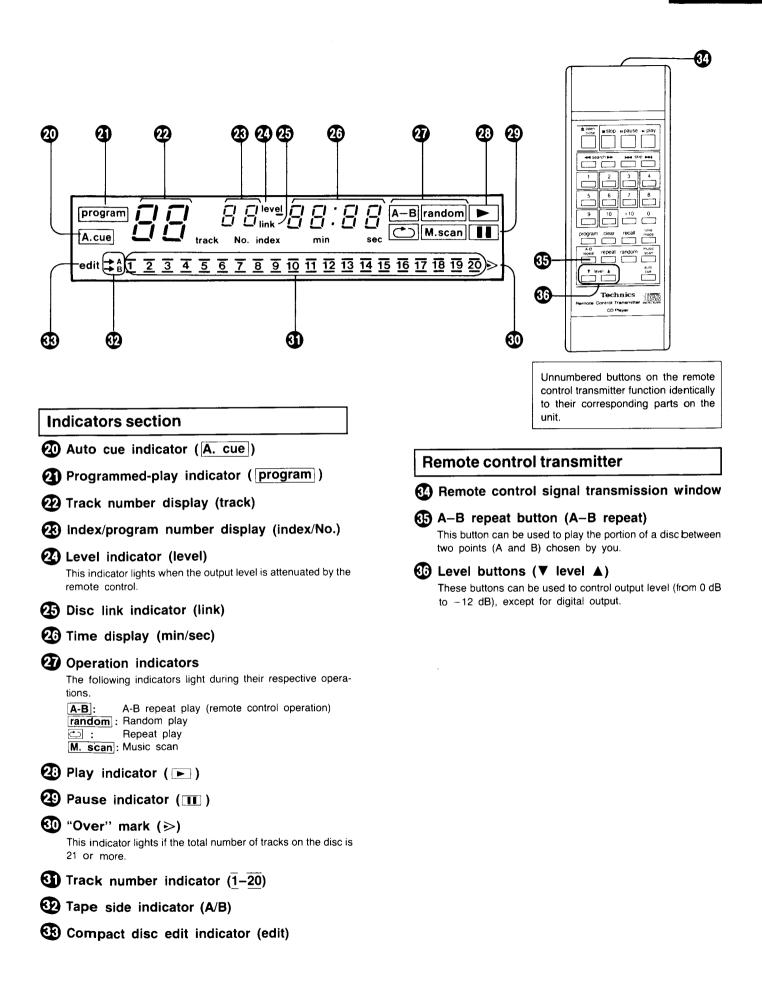
Laser radiation from the pick up lens is safety level, but be sure the followings:


- 1. Do not disassemble the optical pick up unit, since radiation from exposed laserd diode is dangerous.
- 2. Do not adjust the variable resistor on the pickup unit. It was already adjusted.
- 3. Do not look at the focus lens using optical instruments.
- 4. Recommend not to look at pick up lens for a long time.
- ACHTUNG: Dieses produkt enthält eine laserdiode. Im eingeschalteten zustand wird unsichtbare laserstrahlung von der lasereinheit abgestrahlt.

Wellenlänge: 780 nM Maximale strahlungsleistung der lasereinheit: 100 µW/VDE

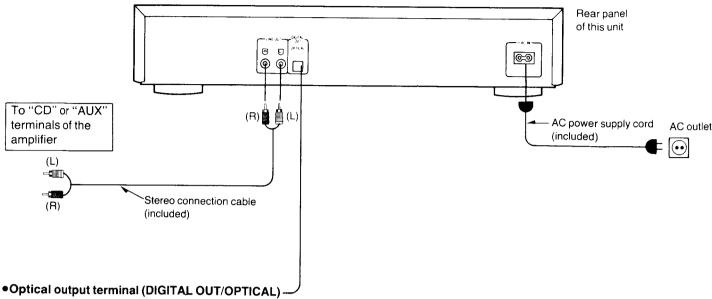
Die strahlung an der lasereinheit ist ungefährlich, wenn folgende punkte beachtet werden:


- 1. Die lasereinheit nicht zerlegen, da die strahlung an der freigelegten laserdiode gefährlich ist.
- 2. Den werksseitig justierten einstellregler der lasereinreit nicht verstellen.
- 3. Nicht mit optischen instrumenten in die fokussierlinse blicken.
- 4. Nicht über längere zeit in die fokussierlinse blicken.


ADVARSEL: I dette a apparat anvendes laser.

■ LOCATION OF CONTROLS

The functions indicated by the black numbers (with white background, ④ etc.) can also be activated using the remote control transmitter.

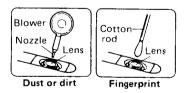


CONNECTIONS

Turn power off on all components before making connections.

This terminal can be used for connection with other equipment that has a digital input terminal, such as an amplifier, by using an optical cable (optional). A dust-protection cap is inserted in this terminal. Remove this cap only when a connection is to be made to this terminal.

Note:

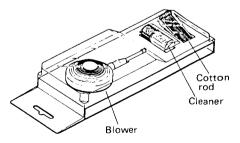

The configuration of the AC outlet and AC power supply cord differs according to area.

CLEANING OF LENS

If the lens is stained causing sound skip or operation failure, open the top cover by pressing the open button, and clean the lens.

• To remove dust or dirt

Blow the lens with the blower provided in the cleaning kit to remove dust or dirt.

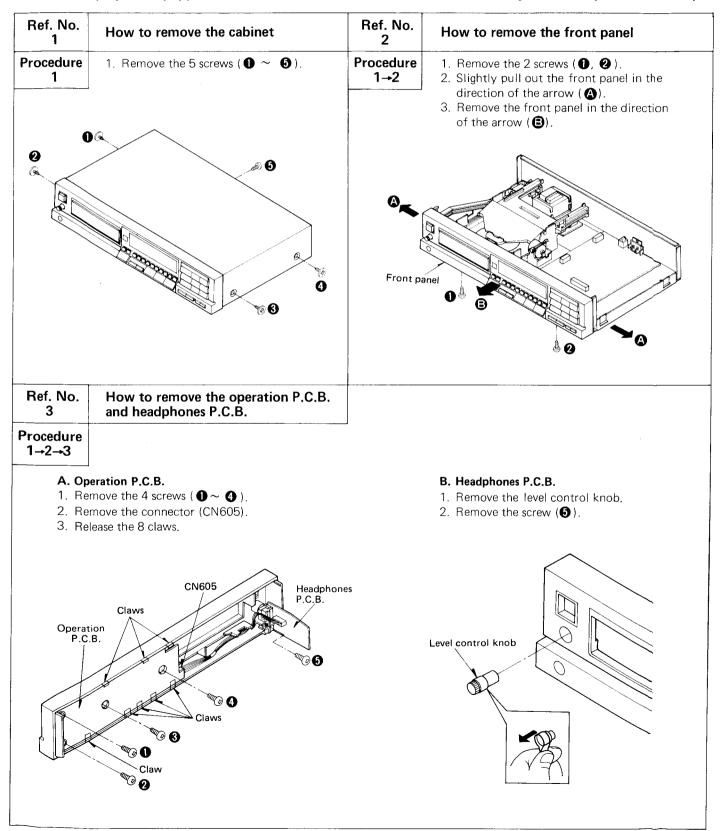

• To remove fingerprint

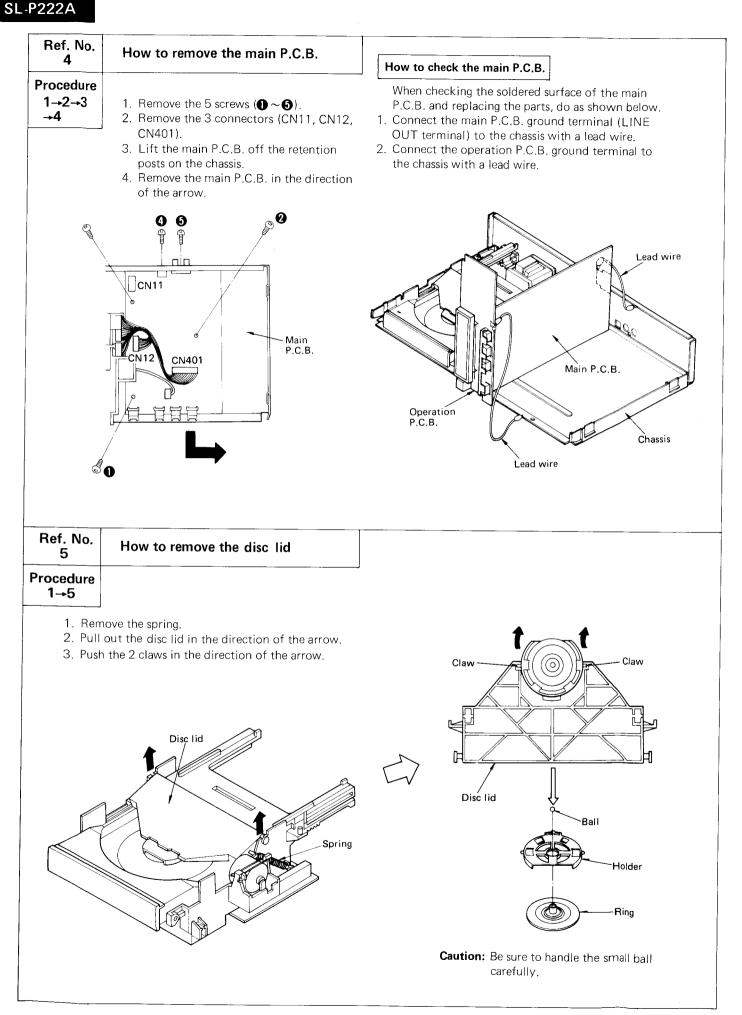
If the blower is not enough, moisten the cotton rod with the lens cleaner solution and wipe the lens with it from center of the lens to outside.

Cautions:

- Do not directly apply the cleaner solution to the lens. Do not apply too much solution to the cotton rod or otherwise the solution will flow into the player.
- Wipe the lens carefully. Do not give too much stress to the lens or otherwise it may scratch the lens or cause optical pickup trouble.
- If the solution should be too much applied, wipe the lens with a dry cotton rod.

Lens cleaning kit (Part No. : SZZP1038C)

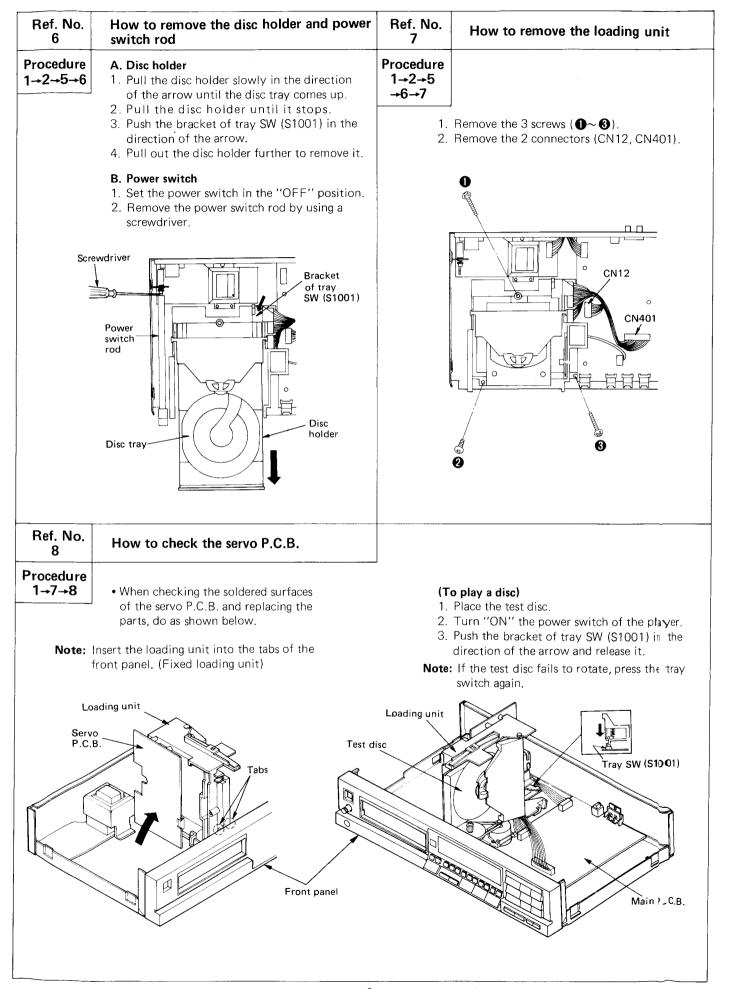

DISASSEMBLY INSTRUCTIONS

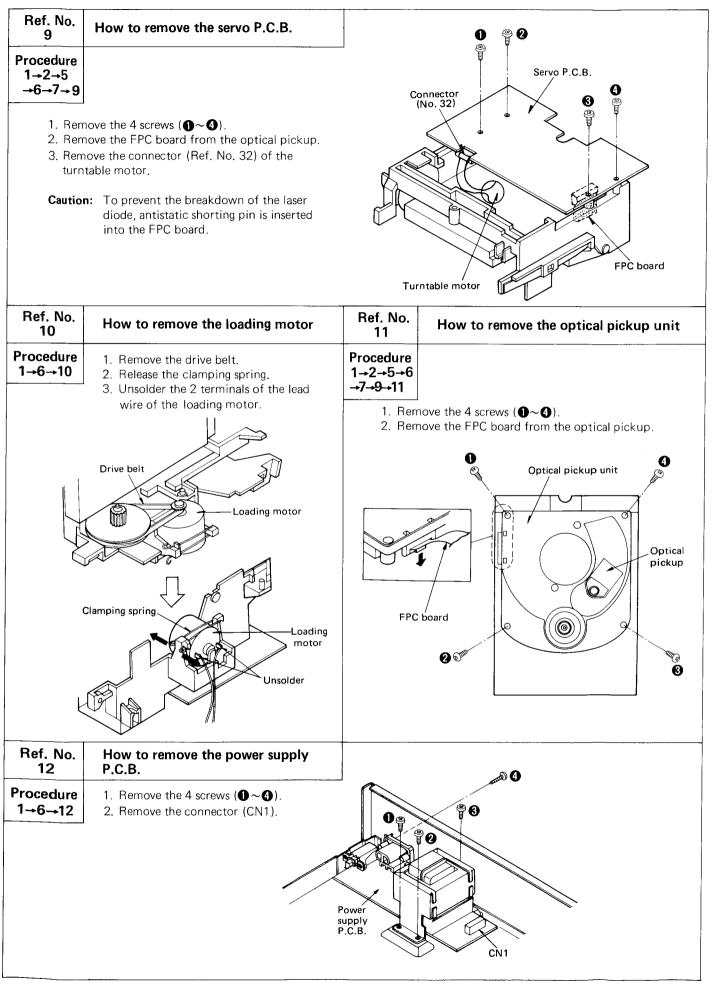

Warning: This product uses a laser diodes. Refer to caution statements on page 3.

ACHTUNG: • Die lasereinheit nicht zerlegen.

• Die lasereinheit darf nur gegen eine vom hersteller spezifizierte einheit ausgetauscht werden.

* This CD player is equipped with FPC boards, so handle them with care during disassembly and reassembly.




- 8 -

Published in Heiloo, Holland.

1/25/16

Published in Heiloo, Holland.

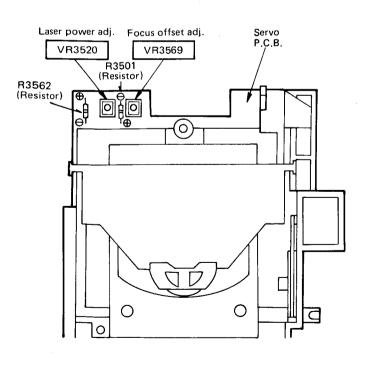
Trav

a

MEASUREMENTS AND ADJUSTMENTS

Caution:

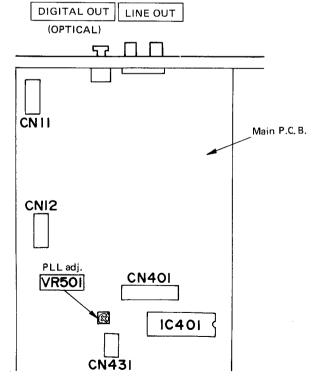
It is very dangerous to look at or touch the laser beam. (Laser radiation is invisible.) With the unit turned "on", laser radiation is emitted from the pickup lens. Avoid exposure to the laser beam, especially when performing adjustments.


PREPARATION

- 1. Remove the cabinet (see Ref No. 1 of the disassembly instructions.)
- 2. Remove the disc holder (see Ref No. 6 of the same).
- 3. Place the test disc on the turntable.
- 4. Turn "ON" the power switch at the player.
- 5. Push the bracket of tray SW (S1001) in the direction of the arrow and release it.

Note: If the test disc fails to rotate, press the tray switch again.

ADJUSTMENT POINTS


Servo P.C.B.

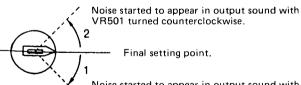
• Main P.C.B.

Disc lid

Test disc

Published in Heiloo, Holland.

- * Playability test disc (SZZP1054C).
- * Normal disc.


(1) LASER POWER ADJUSTMENT

- 1. Connect the oscilloscope's CH1 probe across (+) and (-) of **R3501** (Resistor) on the servo P.C.B.
- 2. Switch the player power ON, and play track No. 1 on the test disc (SZZP1054C).
- 3. Adjust VR3520 so that the voltage is $-50 \pm 2mV$.

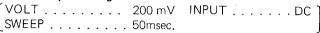
Oscilloscope setting:

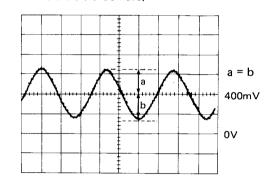
- Connect CH1 of the oscilloscope to the LINE OUT terminal (either of Lch or Rch) and ground.
 Oscilloscope setting: VOLT 1V SWEEP 1msec.
 INPUT DC
- Switch the player power ON, and play track No. 6 (wedge 0.7mm) on the test disc (SZZP1054C).
- 3. Check the waveform displayed on the oscilloscope and adjust **VR501** in the following steps.
 - **Step 1.** Turn **VR501** clockwise slowly and observe the point at which the waveform on the oscilloscope begins to be disturbed.
 - **Step 2.** Turn **VR501** counterclockwise slowly and observe the point at which the waveform on the oscilloscope begins to be disturbed.
 - **Step 3.** Set **VR501** in the middle between the points observed in the above steps "1" and "2".

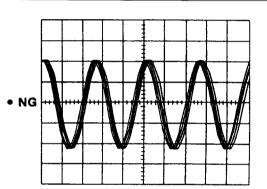
Noise started to appear in output sound with VR501 turned clockwise.

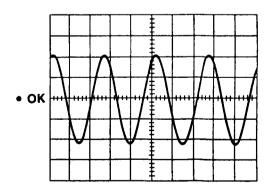
(4) CHECK OF PLAY OPERATION AFTER ADJUSTMENT

* Checking Skip Search


- 1. Play an ordinary musical program disc.
- 2. Press the skip button to check for normal skip search operation (in both the forward and reverse directions).
- * Checking Manual Search
- 1. Play an ordinary musical program disc.
- 2. Press the manual search button to check for smooth manual search operations at either low or high speed (in both the forward and reverse directions).


* Dual-beam oscilloscope with bandwidth of 30MHz or better (with EXT trigger and 1:1 probe).


(2) FOCUS OFFSET ADJUSTMENT


- 1. Connect the oscilloscope's CH1 probe across (+) and (-) of **R3562** (Resistor) on the servo P.C.B.
- 2. Switch the player power ON, and play track No.1 on the test disc (SZZP1054C).
- 3. Adjust **VR3569** until the signal amplitude become in the center of **400mV**.

Oscilloscope setting:

* Playability check by test disc

 Play the 0.7 mm black dot and the 0.7 mm wedge on the defect test disc (SZZP1054C) and verify that no sound skip or noise occurs.

TERMINAL FUNCTIONS OF IC's

• IC6501 (TDA8808T): Photo diode signal processor

Pin No.	Mark	1/0 Division	Function
1	GCHF	I	Gain control input of HF amplifier. Current output from HF amplitude detector
2	Vp	1	Positive supply voltage
3	HFout	0	HF amplifier and equalizer voltage output
4	DET	I	HF detector voltage input
5	Sc	I	Starting up capacitor input
6	Si/RD	1/0	On/off control (start input); ready signal output (starting up procedure successful)
7	Beq	1	Equalizer reference current input
8	Bgc	1	DC and LF gain control reference current input
9	FOC START	I	Focus normalizing circuit starting current
10	PLLH	Ö	PLL on hold output
11	TL	0	Track loss output
12	DODS	I	Drop out detector suppression input
13	Vext	I	Negative supply connection for FE and FElag output stage; also substrate connection
14	LPF	0	Low pass filter for Iret, used in track loss (TL) detector and LF gain control

FE Elag LO LM GCLF Re2	0 0 1 1 0	Current output of normalized, switched focus error signal Current output of switched focus error signal, intended for lag network Laser amplifier current output Laser monitor diode input Gain control input for AC and LF amplifiers. Current output from LF amplitude detector Summation of amplified currents from D3 and D4
LO LM GCLF Re2	0 1	error signal, intended for lag network Laser amplifier current output Laser monitor diode input Gain control input for AC and LF amplifiers. Current output from LF amplitude detector Summation of amplified
LM GCLF Re2	ł	Laser monitor diode input Gain control input for AC and LF amplifiers. Current output from LF amplitude detector Summation of amplified
GCLF Re2	I	Gain control input for AC and LF amplifiers. Current output from LF amplitude detector Summation of amplified
Re2	і 0	LF amplifiers. Current output from LF amplitude detector Summation of amplified
	0	
D-1		
Re1	0	Summation of amplified currents from D1 and D2
1, D2	I	Current inputs to DC and LF photo diode amplifier
3, D4	I	Current input to DC and LF photo diode amplifier
HFin	1	Current input to HF amplifier
GND	1	Ground connection of device
DEC	I	Decoupling input (internal bypass)
	HFin GND	HFin I GND I

• IC6503 (TDA8809T): Radial error signal processor

Pin No.	Mark	I/O Division	Function
1	Vp	1	Positive supply voltage
2	Cosc1		Frequency setting capacitors for
3	Cosc2		oscillator
4	Rwob	1	Wobble generator input
5	Rosc	I	Biassing resistor for oscillator frequency and internal amplitude
6	DIV4	1	Divide-by-4 input
7	REdig	0	Digital output of sign (Re2 - Re1)
8	B3		
9	B2]	Input control bits for off-, catch-,
10	B1		plat- status and DAC output current
11	B0		
12	Vext(+)	I	Positive external voltage input
13	Vext()	1	Negative external voltage input (also substrate connection)
14	GND	1	GND terminal
15	RADout	0	Current output of amplified (Re2 - Re1) input currents
16	REin	I	Radial error input
17	RElag	0	Voltage output of integrated (Re2 – Re1) input currents

Pin No.	Mark	I/O Division	Function
18	Lag	I	Connection of integrator capacitor for (Re1 – Re2) input currents
19	Lead	0	Lead output
20	Vref	I	Internal reference voltage output
21	AGC	I	Gain control input for radial error signal
22	RDAC	0	Biassing resistor for current output for track jumping (3½ bits)
23	offset in	1	Offset control input for radial offset
24	offset off	о	Offset control output for radial offset
25	CLPF	I	Low-pass filter for Re1 and Re2, used for radial offset control
26	CHPF	I	High-pass filter for Re1 and Re2, used for radial offset control
27	Re1	I	Input for amplified curren 1s from photo-diodes D1 and D2
28	Re2	I	Input for amplified curren t s from photo diodes D3 and D4

• IC301 (MN6625): Digital signal processing

Pin No.	Mark	I/O Division	Function	Pin No.	Mark	I/O Division	Function
1	ВҮТСК	о	Serial data byte clock (Not used, open)	25	MCLK	I	Data clock for MDATA
	501.14		Crystal frame clock	26	MDATA	i	Mode control data
2	FCLK	0	(Not used, open)	27	DMUTE	I	Data mute command
3	DEMPH	o	De-emphasis ON signal (de-emphasis ON at ''H'') (Not used, open)		TRON	1	Tracking servo ON signal (tracking servo ON at ''L'')
4	SRDATA	0	Serial data output (MSB first)	29	STAT	0	Status command for CRC etc
5	SCK	0	Serial bit clock output				Sub-code serial output data
6	LRCK	0	LR discrimination clock (88.2kHz)	30	SUBC	0	(Not used, open)
7	WDCK	0	Serial data output word clock (Not used, open)	31	SBCK	I	Clock for sub-code serial output (Not used, open)
8	LDG	0	L channel deglitch signal (Not used, open)	32	ѕмск	0	System clock (4.2336MHz)
9	RDG	0	R channel deglitch signal (Not used, open)	33	VDD	1	Power supply (connected to +5V)
			Interpolation flag	34	MEMP	I	Deemphasis command
10	IPFLAG	0	(interpolation at "H") (Not used, open)	35	FG	1	Turntable motor FG signal input (Not used, open)
11	FLAG	0	Error flag terminal (Not used, open)				
12	хск	о	Clock (16.9344 MHz) output (Not used, open)	36	PC	0	Turntable motor ON command (ON at "L")
13	TEST	1	Test mode selection	37	EC	0	Turntable motor drive signal
14	тх	0	(Not used, connected to +5V) Digital signal output	38	RESY	o	Resynchronizing signal (Not used, open)
			Mode selector	39	DO	1	Drop-out detection signal
15	SLEEP	1	("L":normal, "H":SLEEP mode) (Not used, connected to GND)	40	SRF	1	(Drop-out at "H") Sliced RF signal
16	CSEL	1	Test terminal ("L": normal) (Not used, connected to GND)	41	EFM		Modulation data
17	X1	I	Clock input (16.9344MHz)			•	
18	X2	ο	Clock output (16.9344MHz) (Not used, open)	42	PCK	ł	PLL extract clock (4.2336MHz)
19	VSS		GND terminal	43	FPC	ο	PLL frequency comparision signal
20	BLKCK	0	Sub-code Q data block clock (75Hz)	44 5 51	D7 ۶ D0	1/0	16K RAM data input/output
21	CLDCK	ο	Sub-code frame clock (7.35kHz)	52	RAM OE	0	Read out enable
22	SUBQ	0	Sub-code Q data	53	RAM WE	0	Write enable
23	RST	I	Reset command	54	RAM A0	_	16K RAM address signal
24	MLD	I	Load command for mode control data	5 64	RAM A10	0	(RAMA0: LSB, RAMA10: MSB)

-

SL-P222A

Pin No.	Mark	I/O Division	Function
1	VSS	I	GND terminal
2	DMUTE	0	Data mute command
3	MDATA	0	Mode control data
4	MCLK	0	Data clock for MDATA
5	MLD	0	Load command for mode control data
6	NC	-	Not connected
7	NC	—	Not connected
8	INH	0	Track loss det. signal output
9	MUTE	0	Muting signal output
10	ЕМРН	0	Deemphasis command
11	NC	-	Not connected
12	SIRQ	ł	Track loss det. signal input
13	BLKCK	. 1	Sub-code Q data block clock (75 Hz)
14	CLDCK	I	Sub-code Q data frame clock (7.35 KHz)
15	NC		Not connected
16	SUBQ	I	Sub-code Q data
17	RESET	I	Reset command
18	TL	ł	Track loss signal
19	RE DIG	I	Radial error digital
20	HFD	1	HF detector output for PLLH
21	TRAY SW	I I	Disc holder open/close det. signal input
22	DIV4	0	Radial error digital divided by four
23	DODS	0	Drop out detector suppression
24	MODEA	_	Not used, open
25	FR/REV	-	Not used, open
26	BO		
27	B1		Control bits for radial circuit
28	B2	0	
29	B3		
30	CLOSE	0	Disc tray "close" detection
31	OPEN	0	Disc tray "open" detection

.

• IC401 (MN1554PJE-2): System control

Pin No.	Mark	I/O Division	Function
32	TR ON	0	Tracking servo ON command
33	VDD	1	Power supply (connected to +5V)
34	NC	-	Not connected
35	NC	_	Not connected
36	P53	-	Not used, open
37	P60	I	Period det. select signal input
38	POL	1	Period det, select signal input
39	SKATE	1	Period det. select signal input
40	STAT	t	Status command for CRC etc
41	SP0		
42	SP1		
43	SP2	- 1	Speed control code input
44	SP3		
45	RECV	1	Data receipt command signal
46	SEND	1	Data transmission command signa
47	АСК	1	Data discrimination signal
48	CLK	1	Data clock signal
49	DATA0		
50	DATA1] .	Kananana ing k
51	DATA2	1	Key scan signal
52	DATA3]	
53	CMD0		
54	CMD1		
55	CMD2	0	Command signal of access mode
56	CMD3		
57	NC	_	Not connected
58	NC	_	Not connected
59	NC	-	Not connected
60	SI/RD	1/0	On/off control for laser supply and focus circuit
61	OSC2	I	Clock input
62	OSC1	I	Clock input (4.2336 MHz)
63	хі	1	Digital input of signal
64	X0		Not used, open

• IC403 (MN1551 PJF-1):

Pin No.	Mark	I/O Division	Function							
1	VDD	1	Power supply (connected to +5V)							
2	NC	-	Not connected							
3	NC	-	Not connected							
4	TL.	I	Track loss signal							
5	REDIG	I	Radial error digital							
6	DIV4	I	Radial error digital divided by four							
7	SP3	-								
8	SP2									
9	SP1	0	Speed control code output							
10	SPO	1								
11	SKATE	0	Period det. select signal output							
12	POLAR	0	Period det, select signal output							
13 DIVC O			Period det. select signal output							
14	SIRQ	0	Track loss det. signal output							

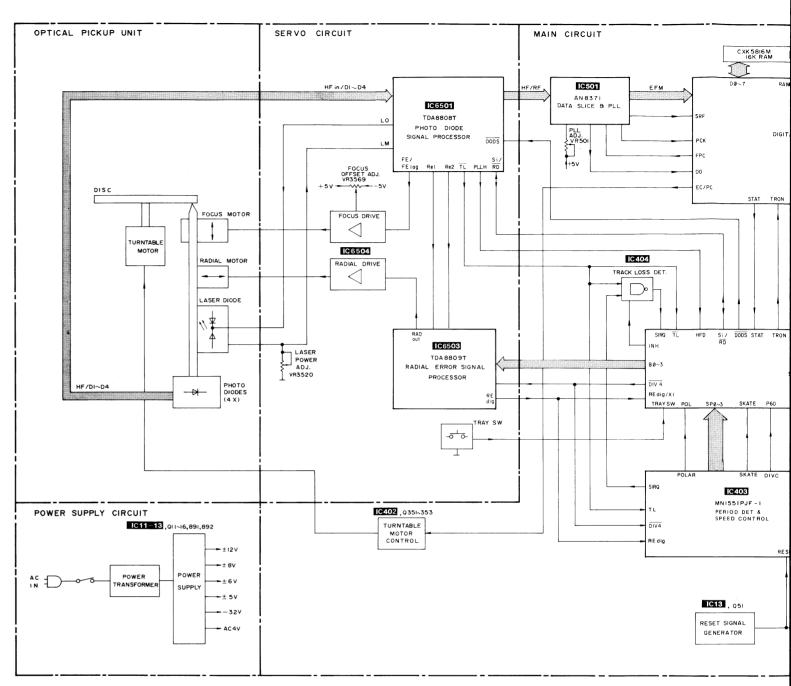
Pin No.	Mark	I/O Division	Function
15	CMD0		
16	CMD1		
17	CMD2		Command signal of access mode
18	CMD3		
19	NC	_	Not connected
20	NC	_	Not connected
21	NC		Not connected
22	NC	-	Not connected
23	NC	-	Not connected
24	SYNC	_	Not connected
25	RESET	1	Reset command
26	OSC2		
27	OSC1		192 fs (8.4672 MHz) clock input
28	VSS	1	GND terminal

• IC601 (MN15283PEY-1): System control and FL drive

Pin No.	Mark	l/O Division	Function								
1	VSS	I	GND terminal								
2	XO	0	Not used, open								
3	X1	I	Optical servo condition input (Not used, open)								
4	O0 (RECV)	0	Data receipt command signal								
5	O1 (SEND)	0	Data transmission command signal								
6	O2 (ACK)	0	Data discrimination signal								
7	O3 (CLK)	0	Data lock signal								
8 ≀ 11	10 (D0) 2 13 (D3)	0	Key scan signal								
12	SYNC	0	Not used, open								
13	RST	1	Reset command (reset at "L")								
14	IRQ/TC1	I	Remote control signal input								
15 ₹ 18	50	I	Key return signal								
19	SBT	1	Sub-code frame clock (7.35 kHz) (Not used, open)								
20	SBD	I	Sub-code Q data input (Not used, open)								
21	20 ≀ 23	0	Key scan signal								
25	30										
26	31	0	Key scan signal								

Pin No.	Mark	1/O Division	Function							
27	32	_	Not used, open							
28	33	0	Key scan signal							
29	40									
30	41		Key return signal							
31	42	_	Not used, open							
32	43		Not used, open							
33	P60		Not used, open							
34	P61		Not used, open							
35	DAC	-	Not used, open							
36	VPP	ł	FL drive power supply (connected to -28.3V)							
37 ₹ 52	D0 2 D9 • DA 2 DF	0	FL grid signal							
53 ~ 61	S8	0	FL anode signal							
62	VDD	1	Power supply (connected to +5V)							
63	OSC2	I	Clock terminal							
64	OSC1	I	Clock input							

Published in Heiloo, Holland.


• IC501 (AN8371S): Data slice and PLL

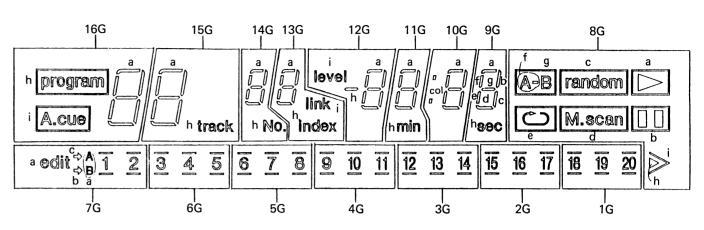
Pin No.	Mark	I/O Division	Function	Pin No.	Mark	I/O Division	Function
1	VEE	1	Power supply (connected to -5V)	13	PL2	I	PLL loop filter connection
2	SRF	0	Sliced RF signal	14	FPC	I	PLL frequency comparison signal
3	EFM	0	Modulation data	15	RF	I	Data
				16	ARF	0	RF signal output with AGC output
4	D.GND	1	GND terminal (digital system)				ARF signal input for AGF drop-out
5	РСК	0	PLL extract clock (4.2336MHz)	17	AGC		detection input
6	vcc	1	Power supply (connected to +5V)	18	AC	1	Loop filter for AGC connected
7	VA	1	VCO free run frequency adjusting	19	DO	0	Drop-out detection signal
			current input (Not used, open)	20	A.GND	1	GND terminal (analog system)
8, 9	VC1, 2	1	Capacitor connection for VCO oscillator frequency	21	DSL	1	RF signal input for data slicing
10	VR		Resistor connection for VCO	22	SLC	I	Slicing level control signal input (Not used, connected to GND)
		+	oscillator frequency	23	FC1	1	Filter capacitor for data slicer
11	PD	1	Capacitor connection for PLL DO protection				connected
12	PL1	1	PLL loop filter connection	24	FC2	1	Filter capacitor for data slicer connected

•IC801 (MN6471): Digital filter and D/A converter

Pin No.	Mark	I/O Division	Function	Pin No.	Mark	I/O Division	Function
1	MLD	I	Command load input (load: L)	22	AVDD1	I	Power supply (connected to +4.7V)
2	RSTB	1	Reset command	23	DVDD1	I	Power supply (connected to +4.3V)
3	IE	I	Not used, connected to GND	24	DVSS1	I	GND terminal (digital system)
4	TP1		TEST terminal	25	X2	0	Clock output
5	TP2			26	X1	I	Clock input
6	TEST1	I	TEST terminal 1 (connected to GND)	27	NC	—	Connected to GND
7	TEST2	1	TEST terminal 2 (connected to GND)	28	DVDD2	I	Power supply (connected to +4.3V)
8	NC		Not connected	29	DVSS2	I	GND terminal (digital system)
9	NC		Not connected	30	NSUB	I	Sub-strate terminal (Not used, connected to +4.3V)
10	AVDD4	I	Power supply (connected to +4.7V)	31	ZFLGB	0	Zero input detector terminal (Not used, open)
11	OUTL (-)	0	Lch data output, (-) terminal	32	192fs	0	192 fs (8.4672 MHz)
12	AVSS4	I	GND terminal	33	LRPOL	I	LR clock selector (Not used, connected to +4.3V)
13	AVSS3	I	GND terminal	34	LRCLK	1	LR discrimination signal input
14	OUTL (+)	0	Lch data output, (+) terminal	35	BCLK	I	Serial bit clock input
15	AVDD3	I	Power supply (connected to +4.7V)	36	SRDATA	I	Serial data input (MSB first)
16	NC		Not connected	37	DVSS 3	1	GND terminal (digital system)
17	AVDD2	I	Power supply (connected to +4.7V)	38	DVDD	1	Power supply (connected to +4.3V)
18	OUTR (+)	0	Rch data output, (+) terminal	39	384 fs	0	384 fs (16.9344MHz) output
19	AVSS2	I	GND terminal (analog system)	40	PD	I	Power down terminal (Not used, connected to GND)
20	AVSS1	I	GND terminal (analog system)	41	MDATA	I	Mode control data
21	OUTR (-)	0	Rch data output, (-) terminal	42	MCLK	I	Data clock for MDATA

BLOCK DIAGRAM

B0-B3	:	Control bits for radial circuit.	RE dig
DAC	:	Current output for track jumping.	RE lag
		(Digital to Analogue Converted)	RPU
DODS	:	Drop out detector supression.	Si/RD
D1-D4	:	Photodiode currents.	
FE	:	Focus error signal.	TL
FE lag	:	Focus error signal for LAG network.	Div4
HF	:	HF output for DEMOD.	RF
HFD	:	HF detector output for DEMOD.	DO
HF-in	:	HF current input.	SRF
LM	:	Laser monitor diode input.	EFM
LO	:	Laser amplifier current output.	PCK
RE	:	Radial error signal (amplified RE2	FPC
		-RE1 currents).	STAT
RE1	:	Radial error signal 1 (summation of	DMUTE
		amplified currents D3 and D4).	MDATA
RE2	:	Radial error signal 2 (summation of	MLD
		amplified currents D1 and D2).	

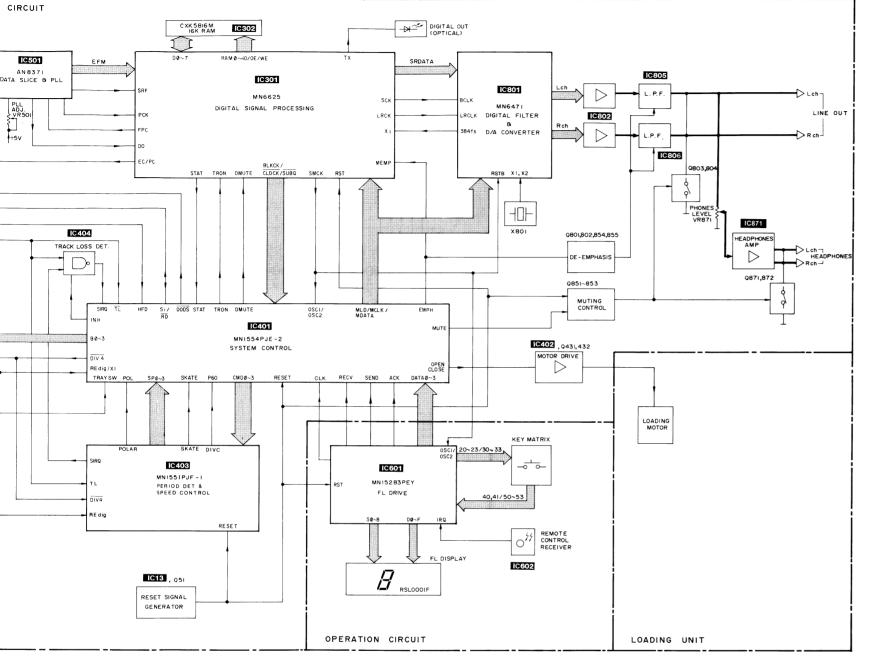

- 18 -

(Active Low)

Ĺg	; : Radial error digital.		MCLK
ıg	; : Radial error signal f	or LAG network	SUBQ
	: Radial puls after tra	ck jumping.	CLDCK
5	: On/off control for la	ser supply and	BLKCK
	focus circuit.		RST
	: Track loss signal.		TRON
	: Radial error digital	devided by four.	EC
	: Data		PC
	: Drop-out detection si	gnal (Active High)	SMCK
	: Sliced RF signal.		OE
	: Modulation data.		WE
	: PLL extract clock (4.	2336MHz)	LRCK
	: PLL frequency compari	.son signal	SRDATA
	: Status command for CR	IC etc.	SCK
Е	: Data mute command		MEMP
A	: Mode control data		
	: Load command for mode	e control data	

■ INTERNAL CONNECTION OF FL

• Grid connection diagram



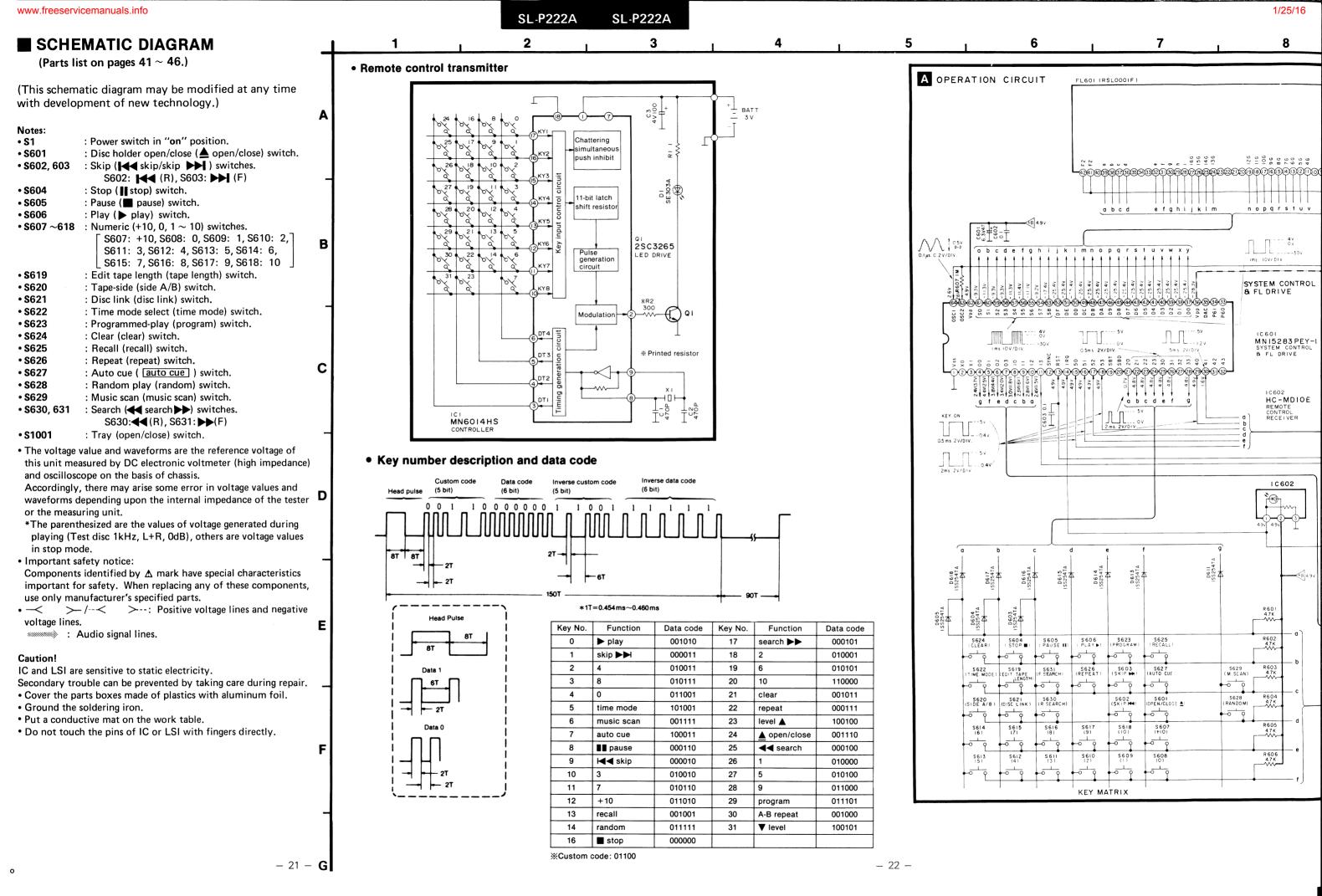
• Pin connection table

42	41	1	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
F 2	F 2		N P	a	b	c	d	N P	N P	N P	e	f	g	h	i	16 G	15 G	14 G	13 G	N P	N P	N P	N P	12 G	11 G	10 G	9 G	8 G	7 G	6 G	5 G	4 G	N P	N P	N P	N P	3 G	2 G	1 G	N P	F 1	F 1

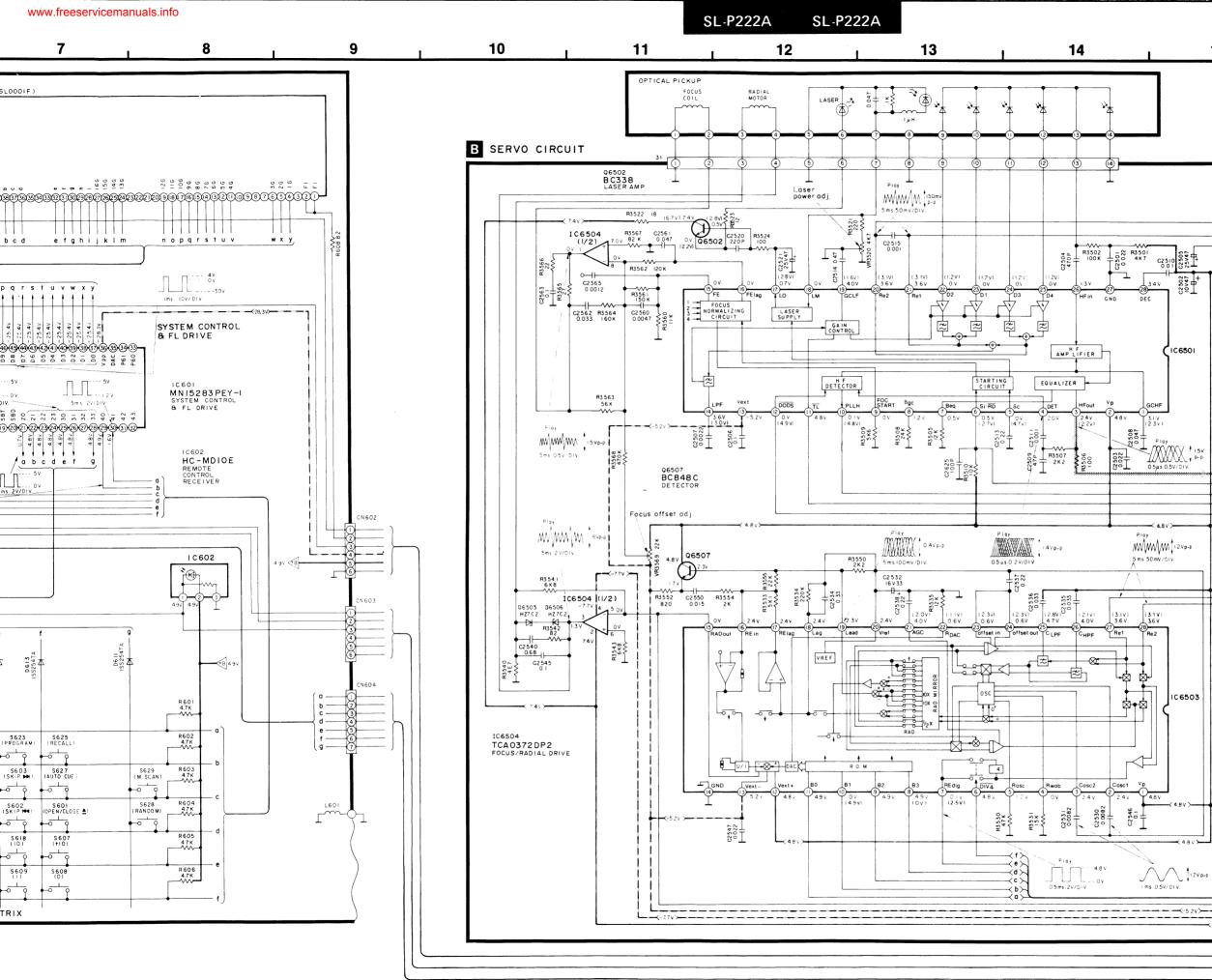
• Anode connection table

	16G	15G	14G	13G	12G	11G	10G	9G	8G -	7G	6G	5G	4G	3G	2G	1G
a	a	a	a	a	a	a	a	a		edit $_{\rm B}^{\rm A}$	3	6	9	12	15	18
b	b	b	b	b	b	b	b	b	Π		3	6	9	<u> </u>	15	18
с	с	с	с	с	с	с	с	c	random		3	6	9	<u> </u>	15	<u> </u>
d	d	d	d	d	d	d	d	d	M.scan	1	4	7	10	13	16	19
e	e	e	e	e	e	e	е	e	Ċ	(down)]	4	7	10	13	<u> </u>	<u> </u>
f	f	f	f	ſ	f	f	f	f	۸-	(up) 1			10	13	16	<u> </u>
g	g	g	g	g	g	g	g	g	B	2	5	8	11	14	17	20
h	program	track	No.	index	-	min	col	sec		(down) 2	5	8	11	14	<u> </u>	20
i	A.cue	-	-	link	level		-	-	>	(up) 2	5	8		<u> </u>	<u> </u>	20

	MCLK	: Data clock for MDATA
for LAG network	SUBQ	: Sub-code Q data
ack jumping.	CLDCK	: Data frame clock (7.35KHz)
aser supply and	BLKCK	: Sub-code Q data block clock (75 Hz)
	RST	: Reset command (Active Low)
	TRON	: Tracking servo ON command (Active Low)
devided by four.	EC	: Spindle motor drive signal
	PC	: Spindle motor ON command (Active Low)
ignal (Active High)	SMCK	: System clock (4.2336MHz)
	OE	: Read out enable
	WE	: Write enable
.2336MHz)	LRCK	: L/R data discrimination clock (88.2KHz)
ison signal	SRDATA	: Serial data output (MSB first)
RC etc.	SCK	: Serial bit clock (2.82MHz)

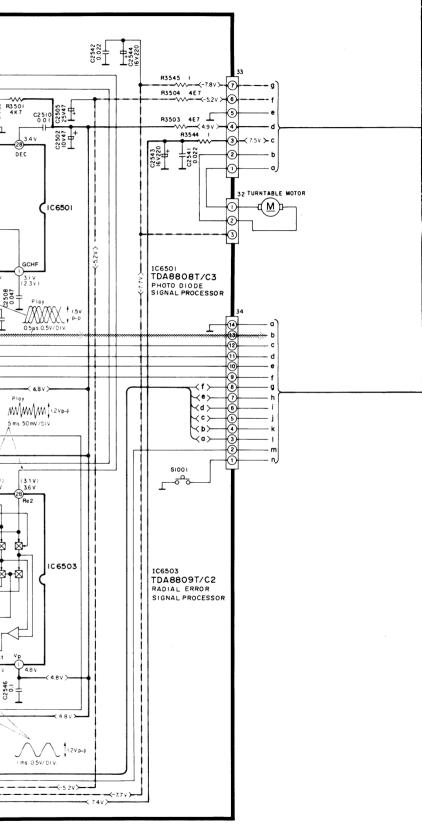

MEMP : Deemphasis command (Active High)

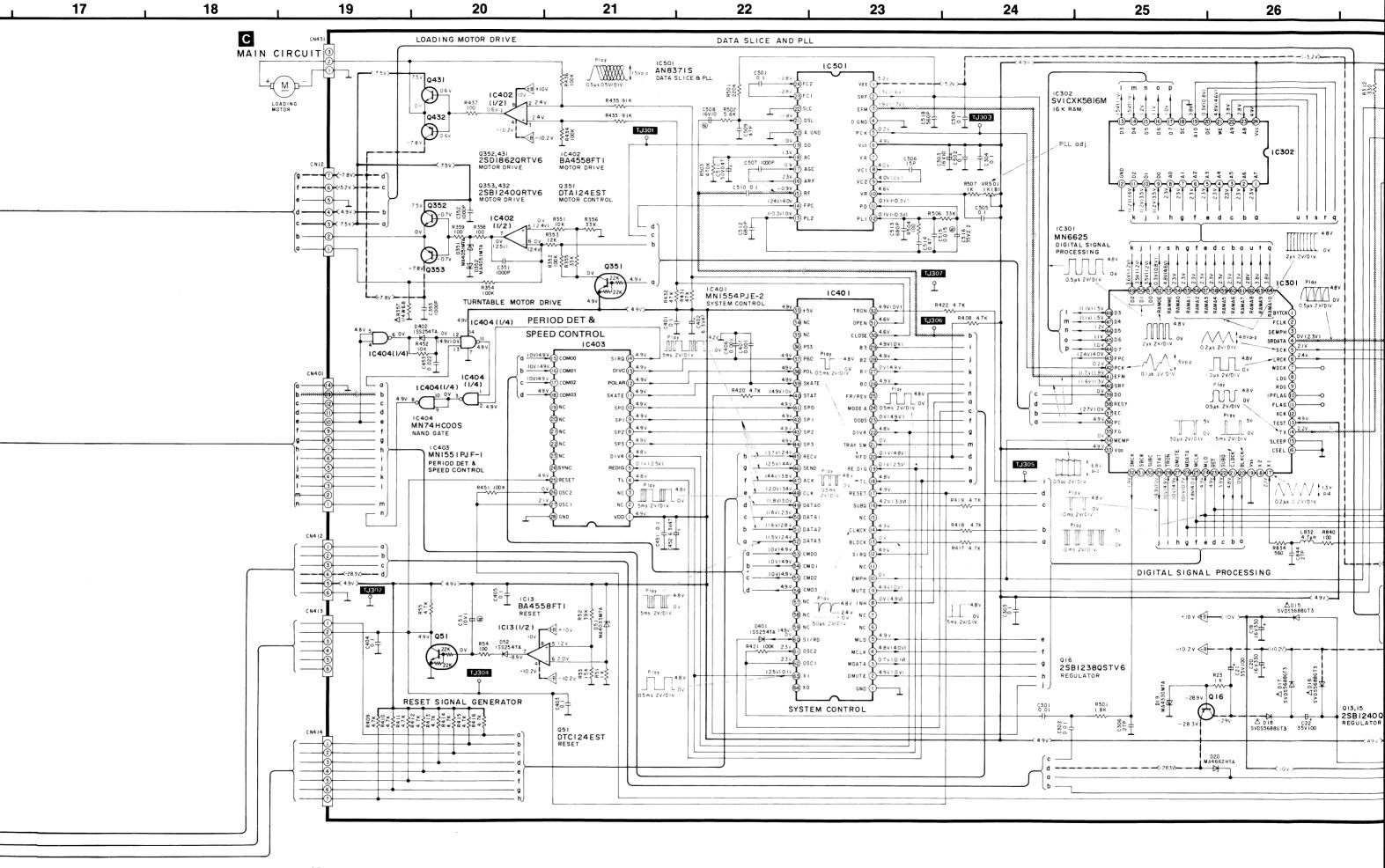
e control data


Note)

• ---

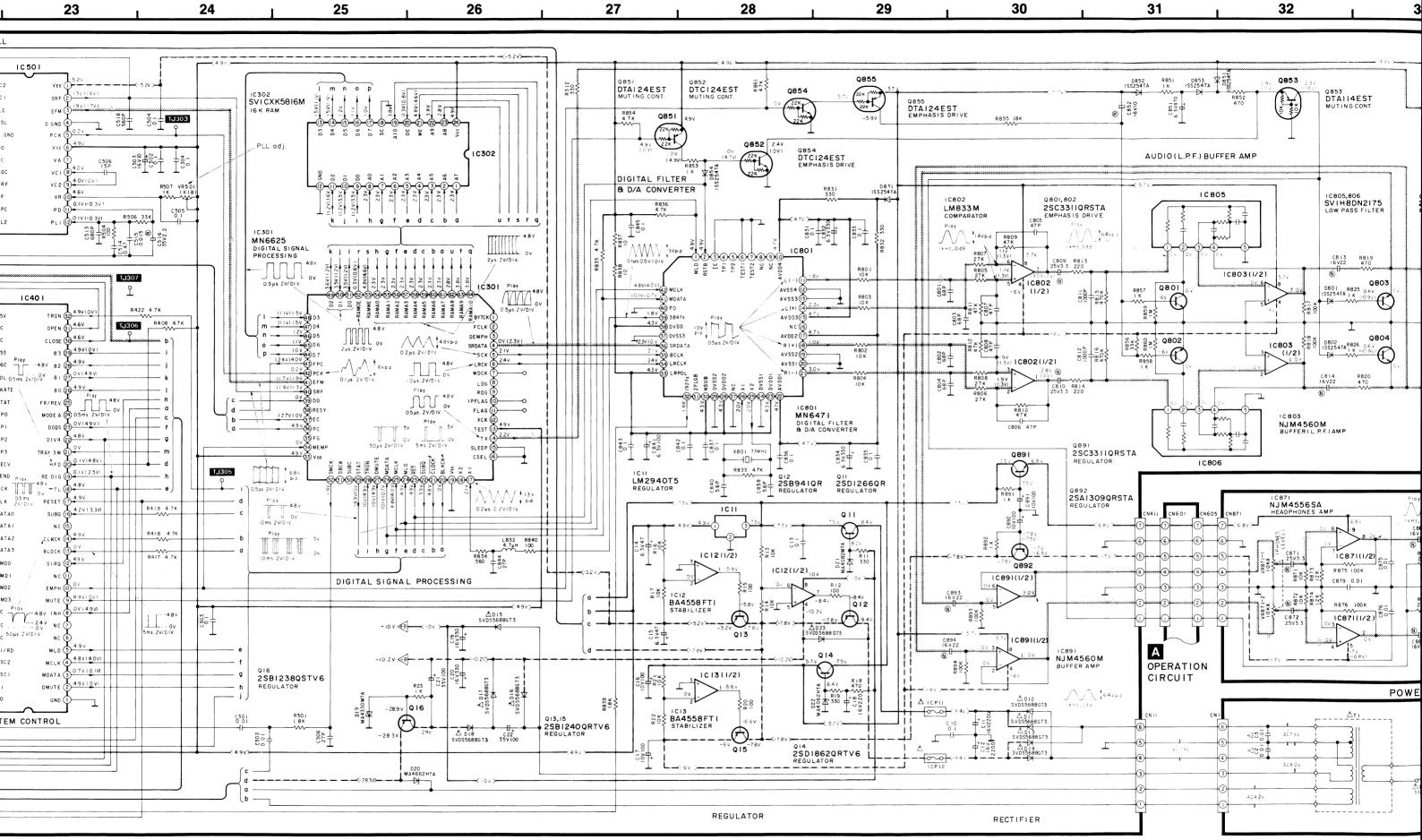
--- Audio signal.





1/25/16

15 , 16

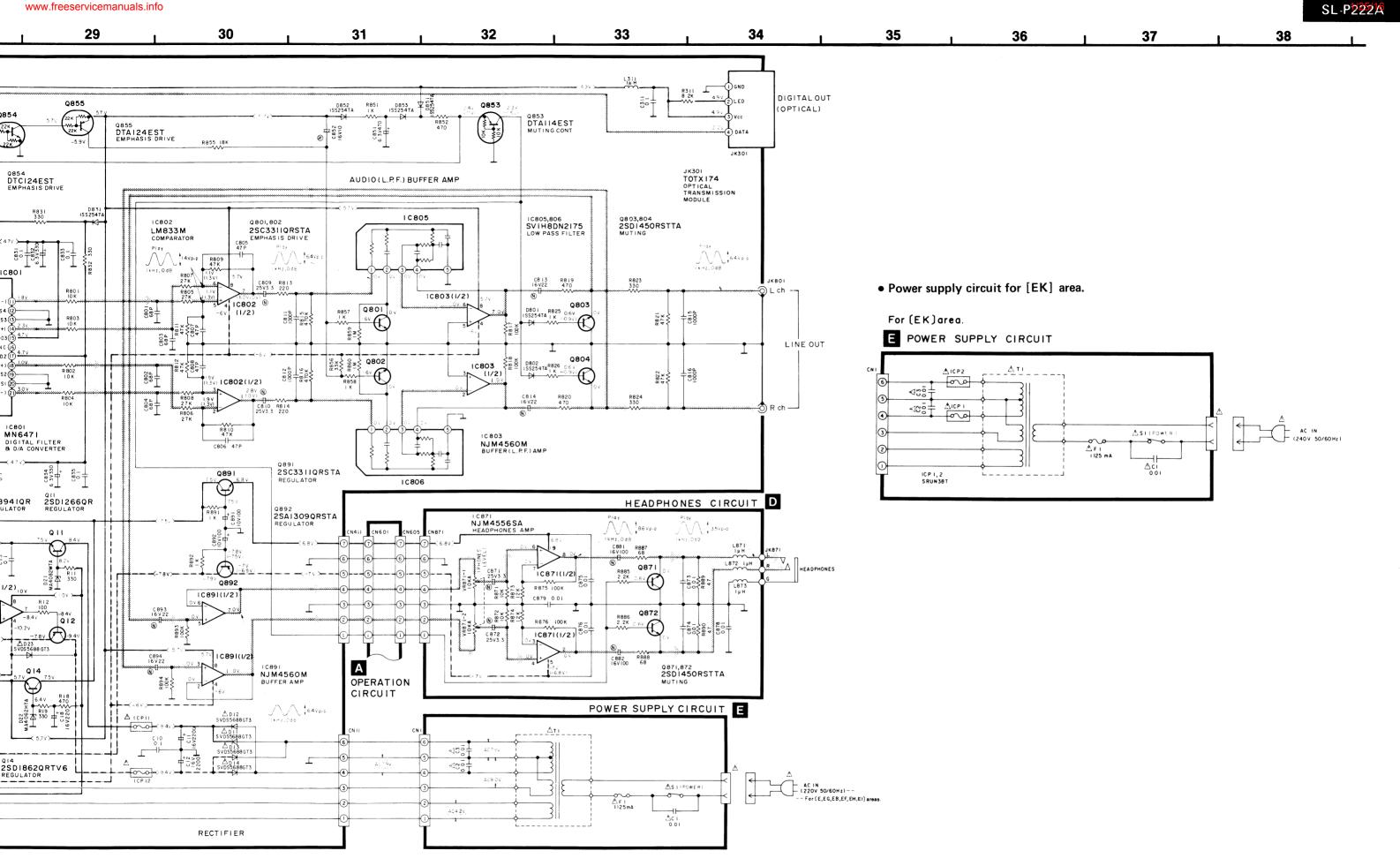


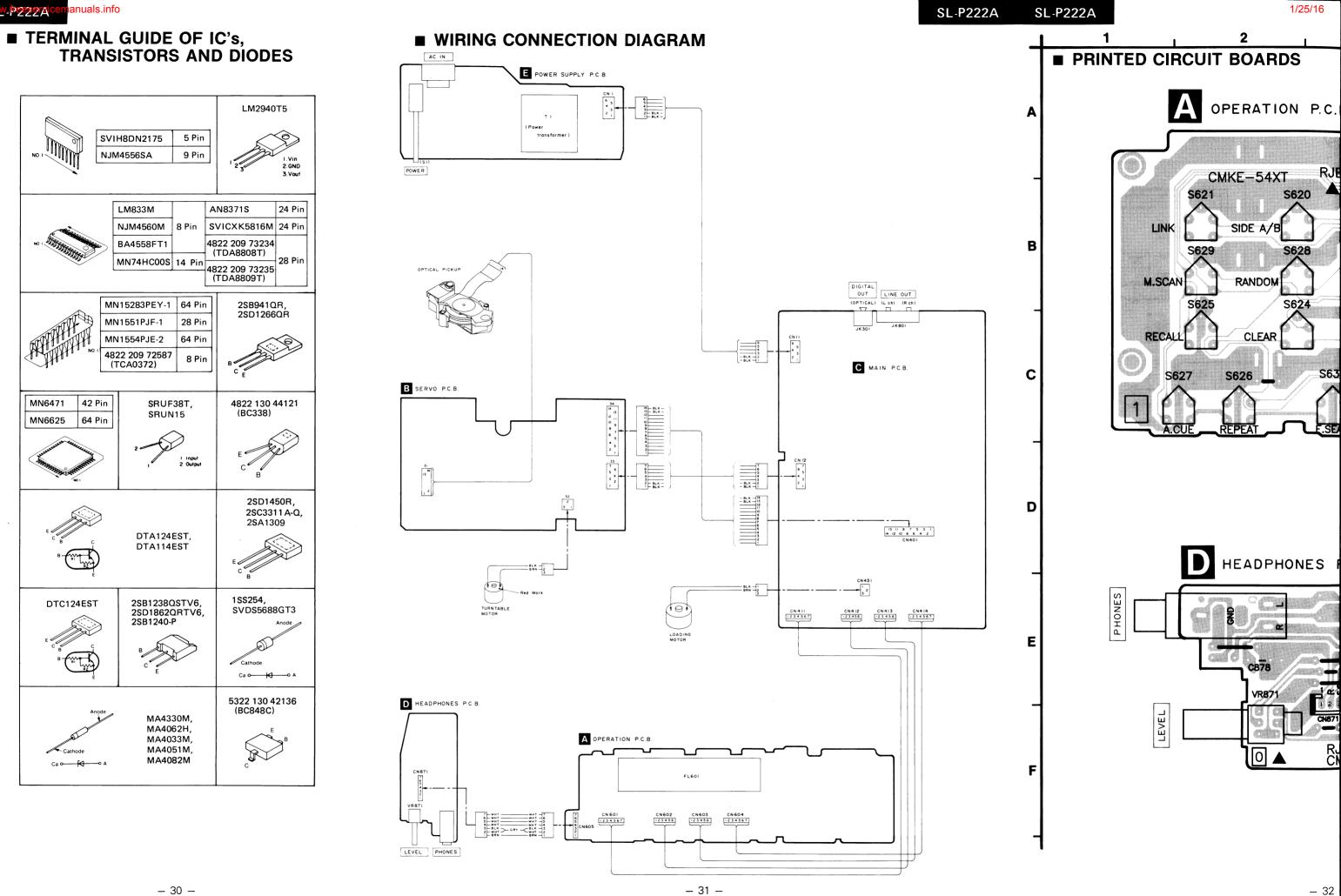
- 25 -

- 26 -

1/25/16

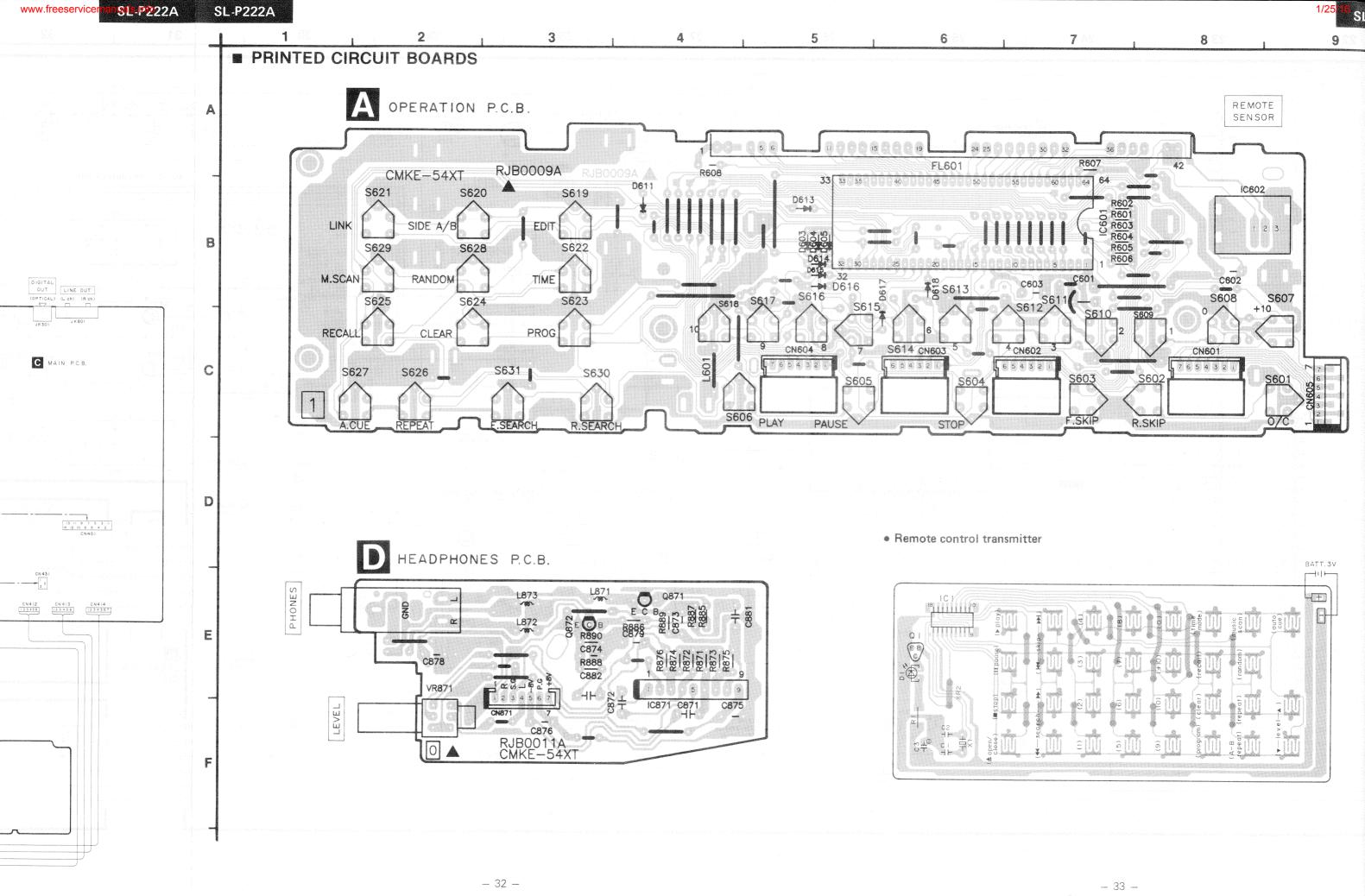
www.freeservicemanuals.info

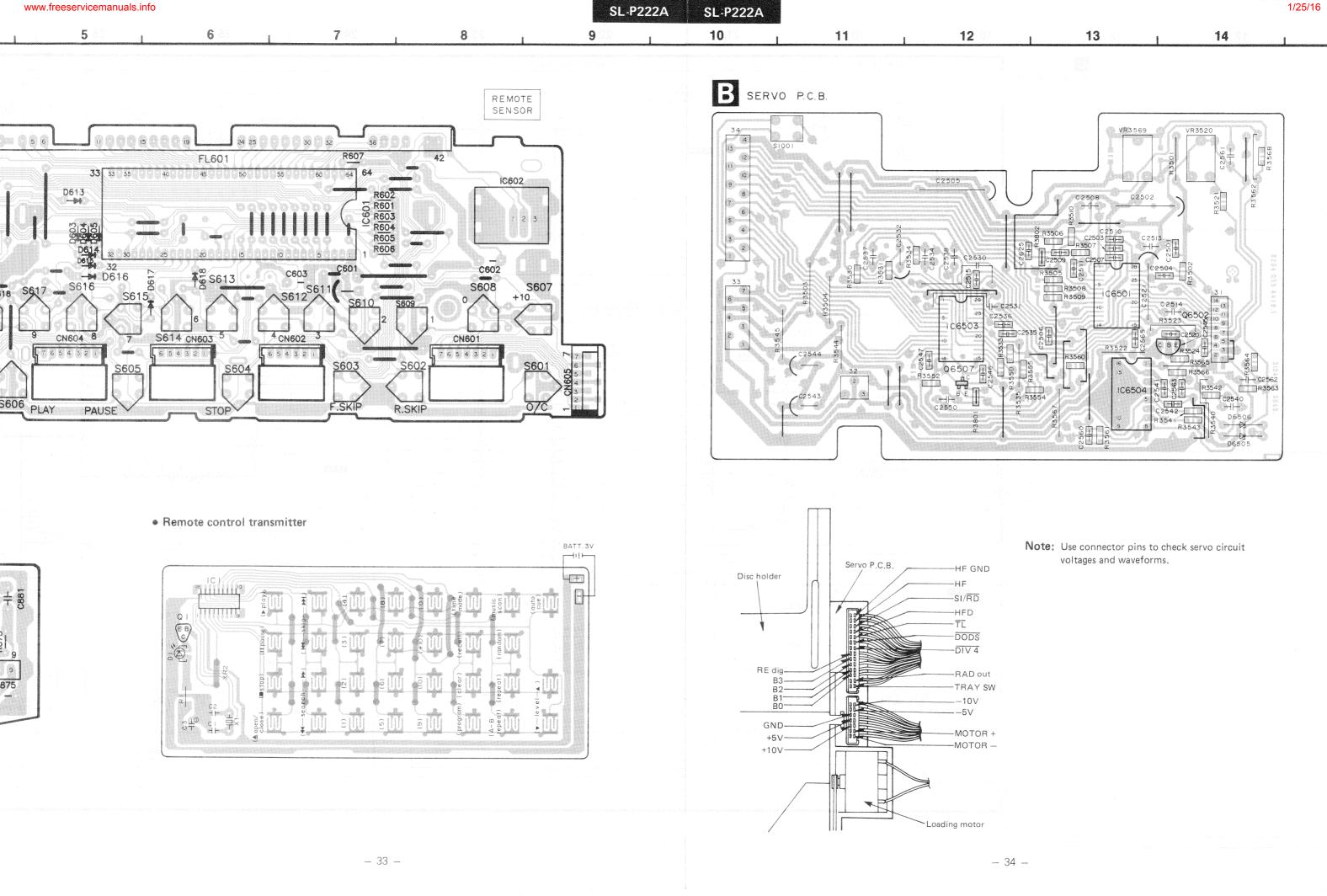




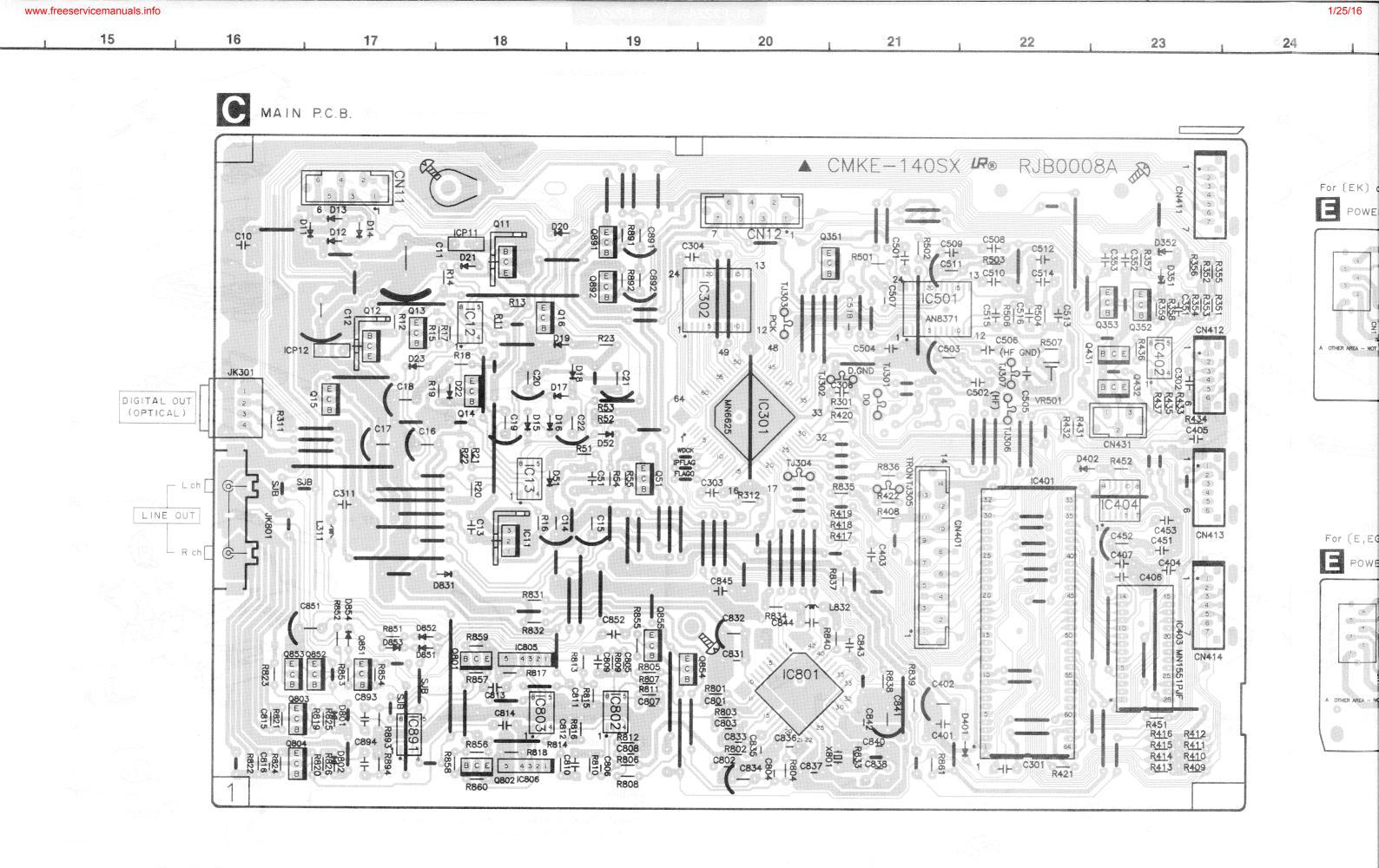
www.freeservicemanuals.info

- 27 -

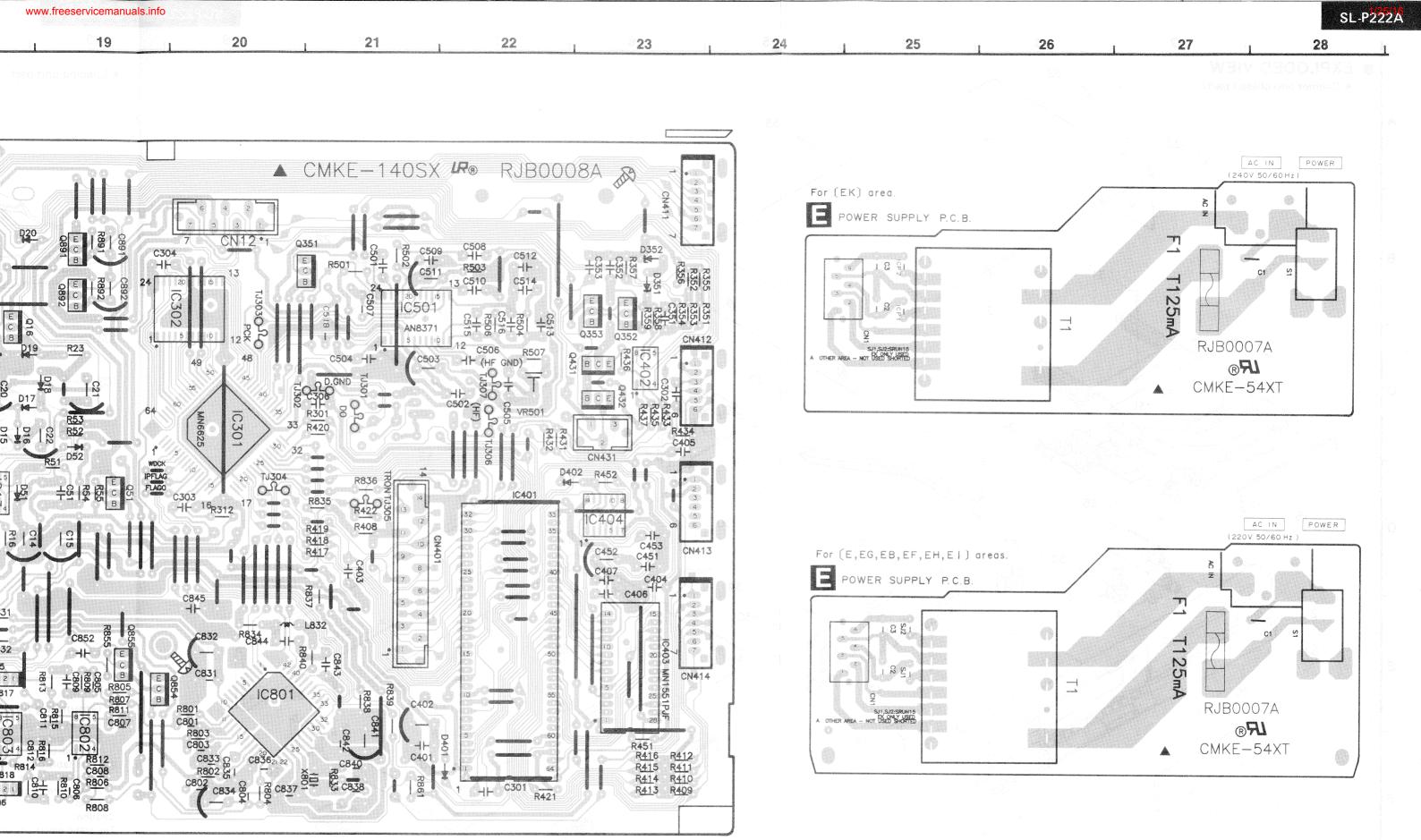

NO.1



- 30 -

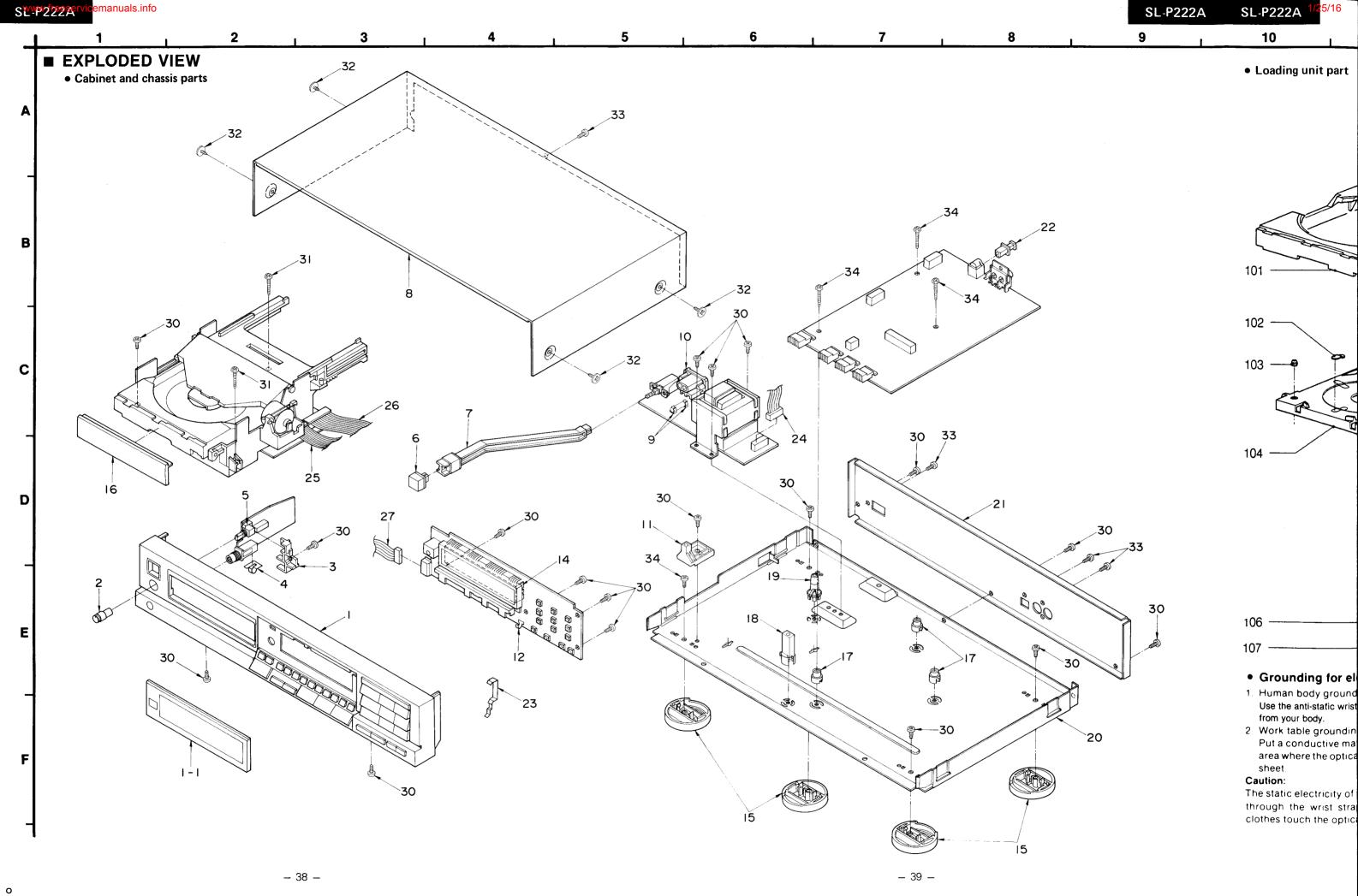

о

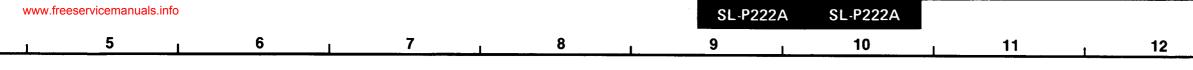
- 32

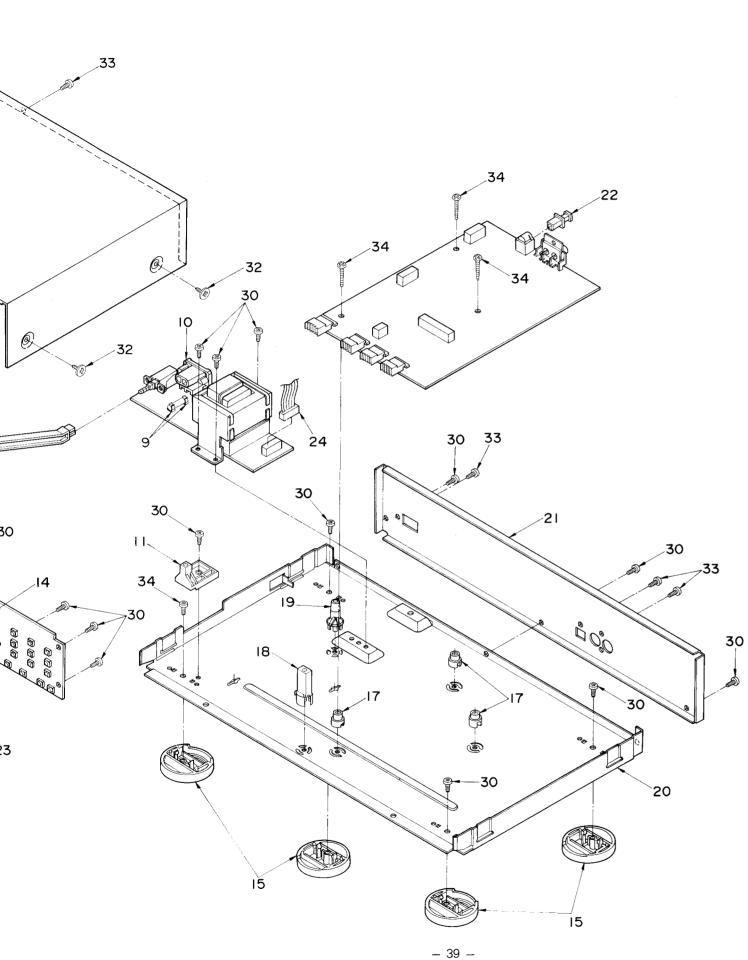


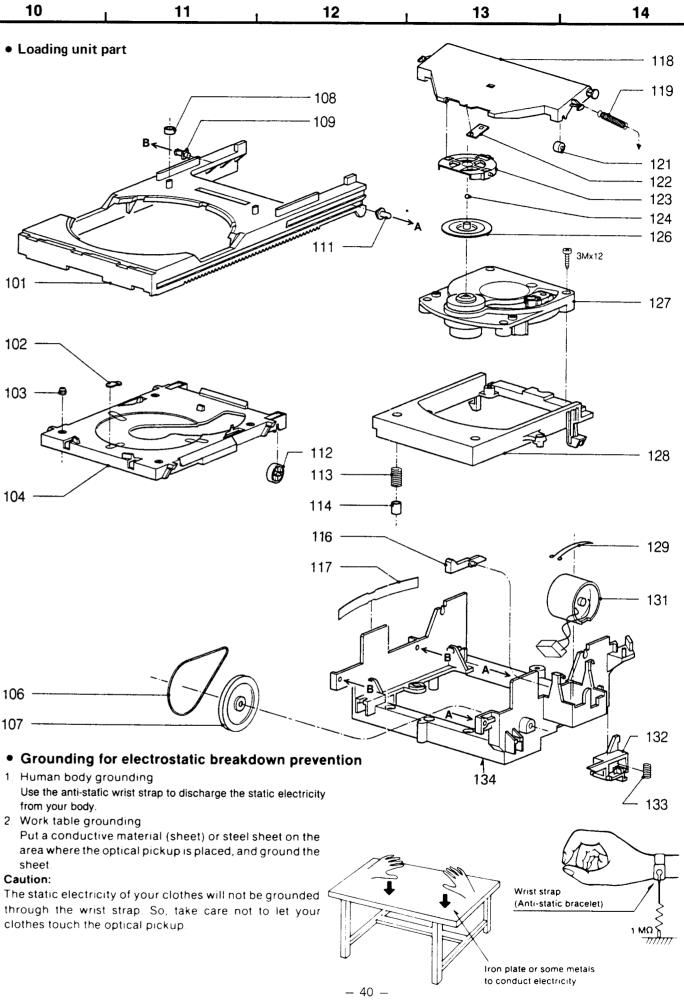
Published in Heiloo, Holland.

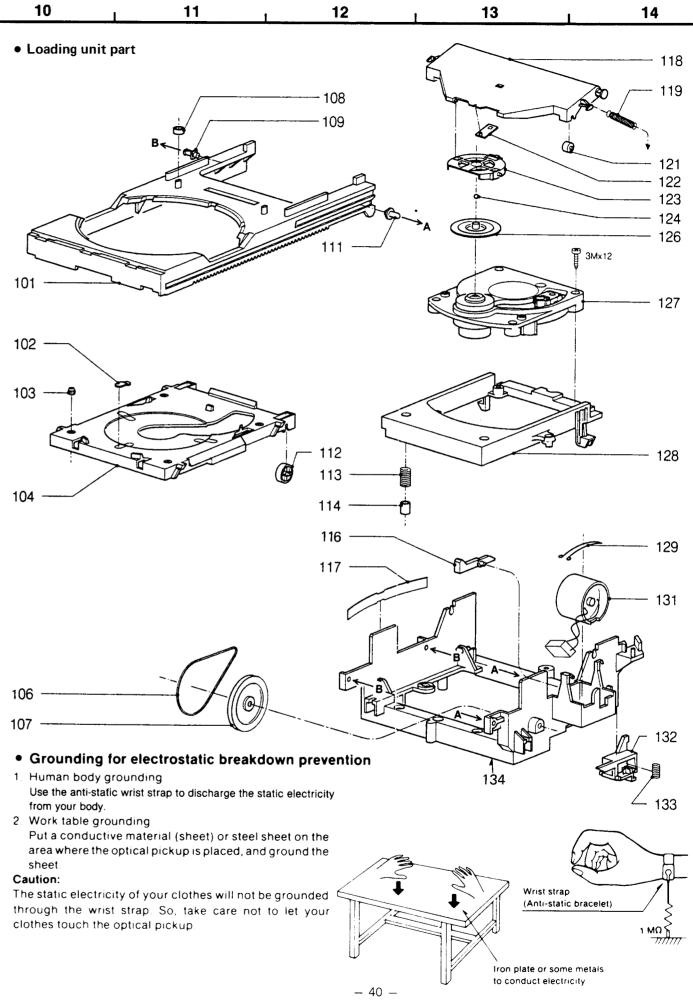
- 36 -




.


- 36 -


С



REPLACEMENT PARTS LIST

Notes : * Important safety notice :

- Components identified by A mark have special characteristics important for safety. When replacing any of these components use only manufacturer's specified parts.
- * Bracketed indications in Ref. No. columns specify the area. (Refer to the first page for area.)
- Parts without these indications can be used for all areas.
- * "K" mark parts are used for black type only.
- * " \mathbb{S} " mark parts are used for silver type only. Parts other than " \mathbb{K} " and " \mathbb{S} " marked are used for all color types
- * Warning : This product uses a laser diode. Refer to caution statements on page 3.
- * ACHTUNG :
- Die lasereinheit nicht zerlegen.

Die lasereinheit darf nur gegen eine vom hersteller spezifizierte einheit ausgetauscht werden.

* Remote control ass'y : Supply period for three years from termination of production.

* MB indicates parts that are supplied by MBV.

Ref.	No.	Part No.	Description		Ref.	No.	Part No.	Descriptio	n
CABIN	ET AND	CHASSIS			18		RMR0021	HOLDER	MB
1	ß	SYYD222KEE	FRONT PANEL ASS'Y		19		RMR0020	HOLDER	(MB) (MB) (MB) (MB)
1	S	SYYD222SEE	FRONT PANEL ASS'Y		20		SKULP212A-KE	BOTTOM BOARD	MB
1-1		SGUD224	ORNAMENT		21		SGPLP222A-KB	REAR PANEL	MB
2	ß	SBN1161-2	KNOB		(EB, EF	I, EF)			
2	S.	SBN1161-3	KNOB		(EI)				
3		SHRD201	PLATE		21		SGPLP222A-KE	REAR PANEL	MB
4		SUSD165	SPRING		(E)				
5		SUSD141	COIL SPRING		21		SGPLP222A-KG	REAR PANEL	MB
6	ß	SBC666-1	BUTTON		{EG}				
6	S	SBC666	BUTTON, POWER		21		SGPLP222A-KK	REAR PANEL	MB
7		SUBD15-1	ROD		{EK}				
8	Ø	RKM0011-K	CABINET	MB MB	22		VJA1024	CAP	_
8	Ś	RKM0011-S	CABINET	MB	23	S	RMC0013	BRACKET	MB
9		SJT390	FUSE HOLDER		24		REX0006	CONNECTOR	MB
10	$\mathbf{\Phi}$	SJS9236	AC INLET		25		REX0007	CONNECTOR	MB MD MD MD
11		RMR0022	HOLDER	MB	26		REX0008	CONNECTOR	MB
12		SUSD144	EARTH PLATE		27		SWKD552071-1	CORD	
14		SUWD139	BRACKET		30		XTB3+8JFZ	SCREW	
15		SKLD8-E	FOOT		31	-	XTB3+35JFZ	SCREW	
16	ß	RGK0015	ORNAMENT		32	Ø	SNE2129-1	SCREW	
16	S	RGK0015A	ORNAMENT		32	S	SNE2129	SCREW	
17		SHE185-2	HOLDER		33		XTBS3+8JFZ1	SCREW	
					34		XTB3+16JFZ	SCREW	

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description	
LOADING UNI	T PARTS		119	4822 492 32883	SPRING, TENSION	MB
101	4822 444 50603	TRAY	121	4822 528 90639	ROLLER	MB
102	4822 325 50176	GROMMET, CABLE	122	4822 466 92257	PLATE	MB
103	4822 325 50177	GROMMET, CABLE	123	4822 402 61207	HOLDER	MB
104	4822 466 92251	PLATE	124	4822 520 40177	BALL	мв
106	4822 358 10115	BELT, DRIVING	126	4822 530 80503	RING, PRESSURE	MB
107	4822 522 32359	WHEEL, GEAR	127	4822 691 30209	Optical pickup unit	MB
108	4822 532 51518	RING, RUBBER	128	4822 402 61196	SUPPORT	MB
109	4822 402 61081	RING, RUBBER MB GUIDE MB	129	4822 492 63746	SPRING, CLAMPING	MB
111	4822 402 61132	GUIDE	131	4822 361 20998	MOTOR	MB
112	4822 528 90638	ROLLER	132	4822 402 50244	BRACKET	MB
113	4822 492 51902	SPRING, COMPRES.	133	4822 492 51935	SPRING, COMPRES.	MB
114	4822 466 61587	FOAM				
116	4822 402 61107	LEVER				
117	4822 492 63659	LEVER MB SPRING, BLADE MB				
118	4822 444 60568	LID	134	4822 464 50715	CHASSIS	MB

Ref. No	Part No.	Description	Ref. No.	Part No.	Description	
INTEGRATE	DCIRCUITS		D51	MA4033M	DIODE	
1011	LM2940T5	I.C. REGULATOR	D52	MA165	DIODE	
1C12	SV1 BA4558F	I.C. STABILIZER	D351	MA4051-M	DIODE	
1C13	SV BA4558F	I.C. RESET	D352	MA4051-M	DIODE	
I C301	MN6625	IC, DIGITAL SIGNAL PROCESSOR	D401	MA165	DIODE	
10302	SVI CXK5816M	I.C. 16K RAM	D402	MA165	DIODE	
IC401	MN1554PJE-2	1.C. SYSTEM CONTROL	D603	MA165	DIODE	
10402	SVI BA4558F	I.C. MOTOR DRIVE	D604	MA165	DIODE	
IC403	MN1551PJF-1	I.C. PERIOD DET/SPEED CONT	D605	MA165	DIODE	
1C404	MN74HC00S	I.C. NAND GATE	D611	MA165	DIODE	
10501	AN8371S	I.C. DATA SLICE&PLL	D613	MA165	DIODE	
10601	MN15283PEY-1	I.C. SYSTEM CONTROL/FL DRIVE	D614	MA165	DIODE	
10602	HC-MD10E	I.C. REMOTE CONTROL	D615	MA165	DIODE	
10801			D616	MA165		
	MN6471	I.C. DIGITAL FILTER	D617		DIODE	
10802	LM833M	I.C. COMPARATOR		MA165	DIODE	
10803	NJM4560M	I.C. BUFFER(L.P.F.)	D618	MA165	DIODE	
10805	SV1H8DN2175	I.C. LOW PASS FILTER	D801	MA165	DIODE	
10806	SVIHBON2175	1.C. LOW PASS FILTER	D802	MA165	DIODE	
10871	NJM4556SA	I.C. HEADPHONES	D831	MA165	DIODE	
1 C891	NJM4560M	I.C. BUFFER	D851	MA165	DIODE	
TRANSISTO	RS		D852	MA165	DIODE	
Q11	2SD1266QR	TRANSISTOR, REGULATOR	D853	MA165	DIODE	
Q12	2S8941QR	TRANSISTOR, REGULATOR	D854	MA165	DIODE	
Q13	2SB1240-P	TRANSI STOR, REGULATOR	I.C.PROTECTO	RS		
Q14	2SD1862QRTV6	TRANSISTOR, REGULATOR	ICP1 🛆	SRUN38T	I.C.PROTECTOR	
Q15	2SB1240-P	TRANSISTOR, REGULATOR	(EK)			
16	2SB1238QSTV6	TRANSISTOR, REGULATOR	ICP2 A	SRUN38T	I.C.PROTECTOR	
251	DTC124EST	TRANSISTOR, RESET	(EK)			
2351	DTA124EST	TRANSISTOR, MOTOR CONTROL	ICP11 🛆	SRUN15	I.C.PROTECTOR	
3352	2SD1862Q.RTV6	TRANSISTOR, MOTOR DRIVE	ICP12 A	SRUN15	I.C.PROTECTOR	
3353	2SB1240-P	TRANSISTOR, MOTOR DRIVE	VARIABLE RES			
2431	2SD1862Q.RTV6	TRANSISTOR, MOTOR DRIVE				
432	2SB1240-P	TRANSISTOR, MOTOR DRIVE	VR501	EVND8AA02B13	V.R. PLL ADJ,	
3801	2SC3311A-Q	TRANSISTOR, EMPHASIS DRIVE	VR871	EVU57A022A14	V.R. HEADPHONES	
3802	2SC3311A-Q	TRANSISTOR, EMPHASIS DRIVE	COILS AND TR	ANSFORMERS		
1603	2SD1450R	TRANSISTOR, MUTING	L311	ELEPK1R0KA	COIL	
804	2SD1450R	TRANSISTOR, MUTING	L601	VLP0053	COIL	
2851	DTA124EST	TRANSISTOR, MUTING CONT,	1.832	ELEPK4R7KA	COIL	
1852	DTC124EST	TRANSISTOR, MUTING CONT.	L871	ELEPK1R0KA	COIL	
853	DTA114EST	TRANSISTOR, MUTING CONT.	L872	ELEPK1R0KA	COIL	
2854	DTC124EST	TRANSISTOR, EMPHASIS DIVE	L873	ELEPK1ROKA	COLL	
1855	DTA124EST	TRANSISTOR, EMPHASIS DIVE	T1 ▲	RTP1V4B002-J	POWER TRANSFOMER	MB
1871	2SD1450R	TRANSISTOR, MUTING	(EK)			<u> </u>
1872	2SD1450R	TRANSISTOR. MUTING		RTP1V4E001-J	POWER TRANSFORMER	MB
891	2SC3311A-Q	TRANSISTOR, REGULATOR	(E, EG, EB, EF)			
1892	2SA1309A-R	TRANSISTOR, REGULATOR	(EH, EI)			
ODES			OSCILLATORS			
	0.0000000	DLADE		01/0 101 00000		
	SVDS5689GT3	DIODE	X801	SVQ49U338S	OSCILLATOR	
12 ▲ 13 ▲	SVDS5688GT3	DIODE	DISPLAYS			
14 <u>A</u>	SVDS5669GT3 SVDS5689GT3	DIODE	FL601	RSL0001F	DISPLAY	
15 🛆	SVDS5689GT3	DIODE	FUSES			
16 <u>A</u>	SVDS5689GT3	DIODE DIODE	F1 🛆	XBA2C012TB0S	EUSE/2004 TIOE AN	·····
17 🛆	SVDS5689GT3	DIODE		ADA200121005	FUSE(250V,T125mA)	
18 🛆	SVDS5688GT3	DIODE	SWITCHES			
19	MA4330M		SI 🛆	ESB8249V	SW. POWER	
20	MA4062-11	DIODE	S601	EVQQS705G	SW, OPEN/CLOSE	
21	MA4062-111 MA4082	DIODE	S602	EVQQS705G	SW, SKIP	
		DIODE	S603	EVQQS705G	SW, SKIP	
22 23 ∆	MA4062-H SVDS5688GT3	D10DE D10DE	S604	EVQQS705G	SW, STOP	

,

SL-P222A

Ref. No.	Part No.	Description	Ref. No.	Part No.	Description
S605 S606	EVQQ\$705G EVQQ\$705G	SW, PAUSE SW, PLAY	S629 S630	EVQQS705G EVQQS705G	SW, M.SCAN SW, R.SEARCH
S607	EVQQS705G	SW. + 10	S631	EVQQS705G	SW, F.SEARCH
5608	EVQQS705G	SW, NO 0	JACKS		
\$609	EVQQS705G	SW, NO 1			
S610	EVQQS705G	SW, NO 2	JK301	TOTX174	I.C. OPTICAL TRANSMISSION MODULE
S611	EVQQS705G	SW, NO 3	JK801	SJFD4	
S612	EVQQS705G	SW, NO 4	JK871	SJJ1468	JACK, HEADPHONES
S613	EVQQS705G	SW, NO 5	OTHERS		
S614	EVQQS705G	SW, NO 6	CN1	RJT001H006	CONNECTOR MB
S615	EVQQS705G	SW, NO 7	CN11	RJT001H006	CONNECTOR MB CONNECTOR MB
S616	EVQQS705G	SW, NO 8	CN12	RJT001H007	CONNECTOR
S617	EVQQS705G	SW, NO 9	CN401	RJT001H014	CONNECTOR MB
S618	EVQQS705G	SW, NO10	CN411	SJS50780WL	CONNECTOR(7P)
S619	EVQQS705G	SW, EDIT	CN412	SJS50680WL	SOCKET(6P)
S620	EVQQS705G	SW, SIDE A/B	CN413	SJS50680WL	SOCKET(6P)
S621	EVQQS705G	SW, DESCILINK	CN414	SJS50780WL	CONNECTOR(7P)
S622	EVQQS705G	SW, TIME MODE	CN431	RJT001H003	CONNECTOR
S623	EVQQS705G	SW, PROGRAM	CN601	SJT30747WL	CONNECTOR(7P)
S624	EVQQS705G	SW, CLEAR	CN602	SJT30647WL	CONNECTOR(6P)
S625	EVQQS705G	SW, RECALL	CN603	SJT30647WL	CONNECTOR(6P)
S626	EVQQS705G	SW, REPEAT	CN604	SJT30747WL	CONNECTOR(7P)
S627	EVQQS705G	SW, AUTO CUE'	CN605	EMCS0750ZL	CONNECTOR(7P)
S628	EVQQS705G	SW, RANDOM	CN871	EMCS0750Z	CONNECTOR(7P)

Ref. No.	Part No.	Description		Ref. No.	Part No.	Description	
INTEGRATED	CIRCUITS	L		DIODES			
IC6501	4822 209 73234	I.C, PHOTO DIODE SIGNAL PROCESSOR	МВ	D6505	4822 130 81101	DIODE	MB
IC6503	4822 209 73235	I.C, RADIAL ERROR SIGNAL PROCESSOR	MB	D6506	4822 130 81101	DIODE	MB
IC6504	4822 209 72587	I.C. FOCUS/RADIAL DRIVE	MB				
				VARIABLE RE	SISTORS		
				VR3520	4822 101 10685	V.R, LASER POWER ADJ.	MB
TRANSISTORS				VR3569	4822 100 20522	V.R, FOCUS OFFSET ADJ.	MB
Q6502	4822 130 44121	TRANSISTOR	MB	1			
Q6507	5322 130 42136	TRANSISTOR	MB	SWITCH		-	
				S1001	4822 276 12523	SW, TRAY	MB

Ref.	No.	Part No.	Description		Ref. No.	Part No.	Description	
PACKI	NG MATE	RIAL			Al	RQ.T0012G	INSTRUCTION MANUAL	MB
P1 P1 P2 P3 P4	K S	RPG0010 RPG0076 RPN0045A RPN0045B XZB60X60A01	CARTON BOX CARTON BOX PAD PAD PROTECTION BAG (UNIT)	LED LED LED LED	(E, EB, EF, EH) A1 (E1) A2 <u>(E, EH, EB, EF)</u>	RQ.T0012V SJA187	INSTRUCTION MANUAL POWER CORD	WB
ACCES	SORIES	RQT0012B	INSTRUCTION MANUAL	M8	(E1, EG) A2 ▲	SJA193	POWER CORD	
(EK) A1 (EG)		RQT0012D	INSTRUCTION MANUAL	MB	(EK) A3 A4	SJP2249-3 XZB23X35C03	OUTPUT CORD PROTECTION BAG	
A1 (E. EH)	RQ.T0012E	INSTRUCTION MANUAL	UB)	A5 A6 A7 A8	XZB26X17C03 RQCA0002 RMR0024 UM-4NE/2S	PROTECTION BAG(CORDS) CAUTION STOPPER BATTERY	WB MB

RESISTORS AND CAPACITORS

Numbering System For Resistors

Example:

ERD	25	F	j	102
Туре	Wattage (1/4W)	Shape	Tolerance	Value (1KΩ)
ERX	2	AN	J	471
Туре	Wattage (2W)	Shape	Tolerance	Value (470Ω)

Numbering System For Capacitors

Example:

ECKD	<u>1H</u>	102	z		F
Туре	Voltage (50V)	Value (0.001µF)	Tolera	nce	Unique
ECEA	50	м		330	
Туре	Voltage (50V)	Characte	ristics		llue IµF)

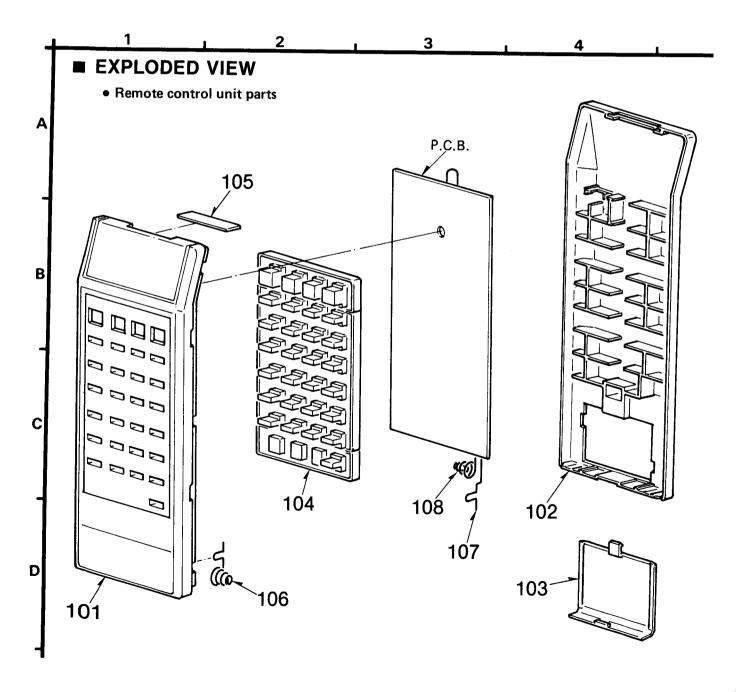
Capacity values are in microfarads (μF) unless specified otherwise, P=Pico-farads (pF) F=Farads (F).
 Resistance values are in ohms (Ω), unless specified

otherwise, $1K = 1,000\Omega$, $1M = 1,000k\Omega$

Resistor Type	Wattage	Tolerance
ERD : Carbon ERG : Metal Oxide ERQ : Fuse Type Metal ERX : Metal Film ERD L : Carbon (chip) ERO K : Metal Film (chip)	10::1/8W 12::1/2W 14::1/4W 25::1/4W 1A::1W 18::1/8W S2::1/4W S1::1/2W 2F::1/4W 50::1/2W 2F::1/4W 50::1/2W	J: ±5% F: ±1% G: ±2% J: ±5% K: ±10% M: ±20%
ERC : Solid ERC : Solid ERF : Incombustible Box-Shaped ERM : Wire-Wound RRJ : Chip Resistor ERJ : Chip Resistor	2A:2W 3A:3W 6G:1/10W 8G:1/8W	
Capacitor Type	Voltage	Tolerance
ECE : Electrolytic ECCD : Ceramic	0J:6.3V 1A:10V 1C:16V 1E:25V	Κ:±10% Μ:±20%

Ref. No.	Part No.	Value.	Ref. No.	Part No.	Value.	Ref. No.	Part No.	Value.
RESISTORS(VA	LUE.WATTAGE)		R418	ERDS2TJ472	4.7K 1/4	R815	ERDS2TJ474	
R11	ERDS2TJ331	330 1/4	R419	ERDS2TJ472	4.7K 1/4	R816	ERDS2TJ474	470K 1/4
12	ERDS2TJ101	100 1/4	R420	ERDS2TJ472	4.7K 1/4	B817	ERDS2TJ104	100K 1/4
113	ERDS2TJ103	10K 1/4	R421	ERDS2TJ104	100K 1/4	R818	ERDS2TJ104	100K 1/4
314	ERDS2TJ103	10K 1/4	R422	ERDS2TJ472	4.7K 1/4	R819	ERDS2TJ471	470 1/4
315	ERDS2TJ101	100 1/4	R431	ERDS2TJ473	47K 1/4	R820	ERDS2TJ471	470 1/4
316	ERDS2TJ103	10K 1/4	B432	ERDS2TJ473	47K 1/4	R821	ERDS2T J473	47K 1/4
817	ERDS2TJ103	10K 1/4	R433	ERDS2TJ913T	91K 1/4	R822	ERDS2TJ473	47K 1/4
118	ERDS2TJ471	470 1/4	R434	ERDS2TJ104	100K 1/4	R823	ERDS2TJ331	330 1/4
19	ERDS2TJ331	330 1/4	R435	ERDS2TJ913T	91K 1/4	R824	ERDS2T J331	330 1/4
20	ERDS2TJ101	100 1/4	R436	ERDS2TJ104	100K 1/4	R825	ERDS2TJ102	
121	ERDS2TJ103	10K 1/4	R437	ERDS2TJ101	100 1/4	R826	ERDS2TJ102	
22	ERDS2TJ103	10K 1/4	R451	ERDS2TJ104	100K 1/4	R831	ERDS2TJ102 ERDS2TJ331	1K 1/4 330 1/4
23	ERDS2TJ102	1K 1/4	R452	ERDS2TJ103	100K 1/4	R832		
151	ERDS2TJ102	1K 1/4	R501	ERDS2TJ224	220K 1/4	R833	ERDS2TJ331	330 1/4
152	ERDS2TJ393	39K 1/4	R502	ERDS2TJ562	5.6K 1/4	R834	ERDS2TJ472	4.7K 1/4
153	ERDS2TJ153	35K 1/4 15K 1/4	R503	ERDS2TJ474	5.6K 1/4 470K 1/4	R835	ERDS2TJ561	560 1/4
54	ERDS2TJ101	100 1/4	R504	ERDS2TJ101	100 1/4	R836	ERDS2TJ472	4.7K 1/4
55	ERDS2TJ472	4.7K 1/4	R506	ERDS2TJ333	33K 1/4	R836	ERDS2TJ472	4.7K 1/4
301	ERDS2TJ182	4.7N 1/4 1.8K 1/4	B507	ERDS2TJ102	331 1/4 1K 1/4		ERDS2TJ100	10 1/4
311	ERDS2TJ822	1.8K 1/4 8.2K 1/4	R601	ERDS2TJ472	4.7K 1/4	R838	ERDS2TJ100	10 1/4
312	ERDS21J822 ERDS2TJ331		R602	ERDS21J472		R839	ERDS2TJ182	1.8K 1/4
351			R603	ERDS2TJ472		R840	ERDS2TJ101	100 1/4
352	ERDS2TJ103		R604			R851	ERDS2TJ102	1K 1/4
353	ERDS2TJ104	100K 1/4	R605	ERDS2TJ472 ERDS2TJ472	4.7K 1/4	R852	ERDS2T J471	470 1/4
354	ERDS2TJ123	12K 1/4	R606		4.7K 1/4	R853	ERDS2TJ102	1K 1/4
355	ERDS2TJ104	100K 1/4		ERDS2T J472	4.7K 1/4	R854	ERDS2TJ472	4.7K 1/4
356	ERDS2T J333	33K 1/4	R607	ERDS2TJ105	1M 1/4	R855	ERDS2TJ183	18K 1/4
	ERDS2TJ333	33K 1/4	R608	ERDS2TJ8R2	8.2 1/4	R856	ERDS2TJ333	33K 1/4
357 <u>∧</u> 358	ERD25FJ6R8	6.8 1/4	R801	ERDS2TJ103	10K 1/4	R857	ERDS2TJ102	1K 1/4
358 359	ERDS2TJ101	100 1/4	R802	ERDS2TJ103	10K 1/4	R858	ERDS2TJ102	1K 1/4
	ERDS2TJ101	100 1/4	R803	ERDS2TJ103	10K 1/4	R859	ERDS2TJ105	1M 1/4
408	ERDS2TJ472	4.7K 1/4	R804	ERDS2TJ103	10K 1/4	R860	ERDS2TJ105	1M 1/4
409	ERDS2TJ472	4.7K 1/4	R805	ERDS2TJ273	27K 1/4	R861	ERDS2TJ472	4.7K 1/4
410	ERDS2TJ472	4.7K 1/4	R806	ERDS2TJ273	27K 1/4	R871	ERDS2TJ103	10K 1/4
411	ERDS2TJ472	4.7K 1/4	R807	ERDS2TJ273	27K 1/4	R872	ERDS2TJ103	10K 1/4
112	ERDS2TJ472	4.7K 1/4	R808	ERDS2TJ273	27K 1/4	R873	ERDS2TJ123	12K 1/4
413	ERDS2TJ472	4.7K 1/4	R809	ERDS2TJ473	47K 1/4	R874	ERDS2TJ123	12K 1/4
414	ERDS2TJ472	4.7K 1/4	R810	ERDS2TJ473	47K 1/4	R875	ERDS2TJ104	100K 1/4
115	ERDS2TJ472	4.7K 1/4	R811	ERDS2TJ473	47K 1/4	R876	ERDS2TJ104	100K 1/4
116	ERDS2T J472	4.7K 1/4	R812	ERDS2TJ473	47K 1/4	R885	ERDS2TJ222	2.2K 1/4
117	ERDS2TJ472	4.7K 1/4	R813	ERDS2TJ221	220 1/4	R886	ERDS2TJ222	2.2K 1/4
			R814	ERDS2TJ221	220 1/4	R887	ERDS2TJ680	68 1/4

_

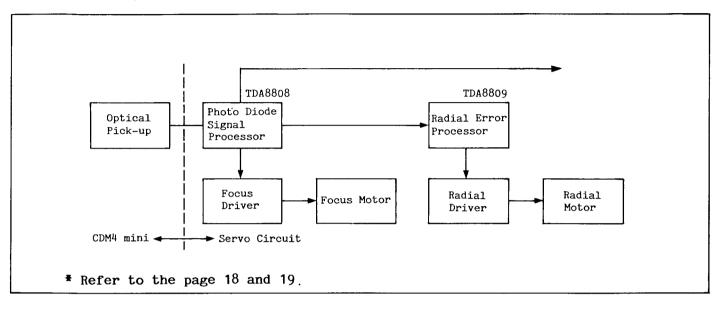

SL-P222A

Ref. No. Part No.	. Value.	Ref. No.	Part No.	Value.	Ref. No.	Part No.	Value.
R888 ERDS2TJ68 R889 ERDS2TJ47 R890 ERDS2TJ47 R890 ERDS2TJ47 R891 ERDS2TJ47 R892 ERDS2TJ10 R893 ERDS2TJ10 R893 ERDS2TJ10 R893 ERDS2TJ10 R894 ERDS2TJ10 C1 Δ C2 Δ C1 Δ C1 Δ C1 Δ C1 Δ C1 Δ C1 Δ ECFD103K C3 Δ ECFTD103K C11 ECEA1CU22 C12 ECEA1CU22 C13 ECFRIE104 C14 ECEA0LK47 C16 ECEA1CU22 C17 ECEA1CU23 C20 ECEA1CU33 C21 ECEA1CU33 C21 ECEA1CU33 C21 ECEA1CU33 C21 ECEA1CU33	0 68 1/4 0 47 1/4 0 47 1/4 0 47 1/4 2 1K 1/4 2 1K 1/4 2 1K 1/4 2 1K 1/4 4 100K 1/4 3E	C403 C404 C405 C406 C407 C451 C452 C453 C501 C502 C503 C504 C505 C506 C506 C506 C506 C507 C508 C509 C510 C511 C512 C513 C514 C515 C516 C518 C601 C602 C603 C801	ECFR1E1042F5 ECFR1E1042F5 ECFR1E1042F5 ECFR1E1042F5 ECBT1H102KB5 ECBT1H102KB5 ECFR1E1042F5 ECFR1E1042F5 ECFR1E1042F5 ECFR1E1042F5 ECFR1E1042F5 ECFR1E1042F5 ECFR1E1042F5 ECFR1E1042F5 ECBT1H150JC ECBT1H104KF ECEA1CKN100B ECBT1H104KF ECEA1H681KB5 ECCA1H681KB5ECCA1H681KB5 ECCA1H681KB5ECCA1H681KB5 ECCA1H681KB5ECCA1H68	0.1 25 0.1 25 0.1 25 0.001 50 0.001 50 0.01 25 47 6.3 0.022 50 0.1 25 10 16 0.1 25 10 16 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 50 0.001 50 0.150 10 16 47P 0.47 50 680P 50 620P 50 2.2 35 560P 50 2.2 35 560P 50 47 6.3 0.1 25 0.1 25	C809 C810 C811 C812 C813 C814 C815 C816 C831 C832 C833 C834 C835 C836 C837 C838 C836 C837 C838 C840 C841 C842 C843 C844 C845 C851 C851 C852 C871 C872 C873 C875	ECEA1EKN3R38 ECEA1EKN3R38 ECBT1H102KB5 ECBT1H102KB5 ECEA1EKN220 ECEA1CKN220 ECBT1H102KB5 ECFA1EKN220 ECBT1H102KB5 ECFA1E104ZF5 ECFA1EXN3R38 ECCA1EKN3R38 ECCA1EKN3R38 ECCA1H103KF ECCM1H103KF	3.3 25 3.3 25 0.001 50 0.001 50 22 16 22 16 22 16 0.001 50 0.001 50 0.001 50 0.001 50 0.01 25 330 6.3 0.1 25 0.1 25 0.1 25 5.6P 50 100 6.3 0.1 25 0.1 25 5.6P 50 100 6.3 0.1 25 27P 50 0.1 25 27P 50 0.1 25 3.3 25 3.3 25 3.3 25 3.3 25 0.01 50 0.01 50 0.01 50 0.01 50 0.01 50
C304 ECFRIE104 C306 ECBT1H270 C351 ECBT1H102 C352 ECBT1H102 C353 ECBT1H102 C401 ECFRIE104 C402 ECEA0JK4	US 27P 50 KBS 0.001 50 KBS 0.001 50 KBS 0.001 50 KBS 0.001 50 IZFS 0.1 25	C802 C803 C804 C805 C806 C807 C808	ECBT1H680J5 ECBT1H680J5 ECBT1H680J5 ECBT1H680J5 ECBT1H470J5 ECBT1H470J5 ECBT1H470J5	68P 50 68P 50 68P 50 68P 50 47P 50 47P 50 47P 50 47P 50	C876 C876 C879 C881 C882 C891 C882 C891 C892 C893 C894	ECBTICIONSS ECBTICIONSS ECBTICIONSS ECBTICIONSS ECEAICNIOISE ECEAICNIOISE ECEAIAKIOI ECEAICKN220 ECEAICKN220	0.01 16 0.01 16 0.01 16 100 16 100 16 100 10 100 10 22 16 22 16

Ref. No.	Part No.		Value.		Ref. No.	Part No.		Value.		Ref. No.	Part No.		Ya lue.	
RESISTOR	S				R3552	4822 111 90171	820	1/8	MB	C2514	4822 121 51252	0.47	100	MB
R3501	4822 116 52426	4K7	1/2	MB	R3554	4822 116 90421	2K	1/8	MB	C2515	4822 122 31746	0.001	5)	MB
R3502	4822 111 90214	100K	1/8	MB	R3555	4822 111 90251	22K	1/8	MB	C2520	4822 122 31965	220P	63	MB
R3503	4822 111 30499	4E7	1/3	MB	R3560	4822 111 91494	11K	1/8	MB	C2521	4822 124 22027	47	25	MB
R3504	4822 111 30499	4E7	1/3	MB	R3561	4822 116 90417	150K	1/8	MB	C2530	4822 121 51321	0.0082	6)	MB
R3505	4822 111 90253	12K	1/8	MB	R3562	4822 116 52845	120K	3/5	MB	C2531	4822 121 51321	0.0082	6)	MB
R3506	5322 111 90091	100	1/8	MB	R3563	4822 111 90573	56K	1/8	MB	C2532	4822 124 40272	33	16	MB
R3507	4822 111 90248	2K2	1/8	MB	R3564	4822 111 91495	160K	1/8	MB	C2534	5322 121 42661	0.33	6	MB
R3508	4822 111 90512	24K	1/8	MB	R3565	4822 116 52354	27	1/2	MB	C2535	5322 122 31848	0.033	6)	MВ
R3509	4822 111 90572	5K6	1/8	MB	R3566	4822 111 90186	22	1/8	MB	C2536	5322 122 31848	0.033	6	MB
R3510	4822 111 90249	10K	1/8	MB	R3567	4822 116 52478	82K	1/2	MB	C2537	4822 121 42245	0.22	6	MB
R3521	4822 111 90178	220	1/8	MB	R3568	4822 111 90161	470K	1/8	MB	C2538	4822 121 42245	0.22	6)	MB
R3522	4822 111 30515	18	1/3	MB	R3801	4822 111 90163	0E		MB	C2540	4822 124 41583	0.68	51	MB
R3523	4822 111 30511	12	1/3	MB	R3802	4822 111 90163	0E		MB	C2541	4822 122 33147	0.022	5)	MB
R3524	5322 111 90091	100	1/8	MB						C2542	4822 122 33147	0.022	5)	MB
R3530	4822 111 90543	47K	1/8	МВ	CAPACITO	RS				C2543	4822 124 40196	220	11	MB
R3531	4822 111 90344	15K	1/8	МВ	C2501	4822 122 33147	0.022	50	MB	C2544	4822 124 40196	220µ	1)	MB
R3533	5322 111 90268	5K1	1/8	MB	C2502	4822 124 22027	47	10	MB	C2545	4822 122 33104	0.1	6	MB
R3534	4822 111 90197	220K	1/8	MB	C2503	4822 122 33147	0.022	50	MB	C2546	4822 122 33104	0.1	6	MB
R3535	4822 116 53081	12K	3/5	MB	C2504	4822 122 31727	470P	63	MB	C2547	4822 122 33147	0.022	5)	MB
R3540	4822 116 52858	4E7	3/5	MB	C2505	4822 124 22027	47	25	MB	C2550	4822 121 51049	0.015	6	MB
R3541	4822 111 90544	6K8	1/8	MB	C2506	4822 122 33104	100NF	63	MB MB	C2551	4822 121 51225	18NF	6	MB
R3542	4822 111 90124	82	1/8	MB	C2507	4822 122 31644	0.0022	63	MB	C2560	4822 122 31784	0.0047	5(MB
R3543	4822 111 90544	6K8	1/8	MB	C2508	5322 121 42491	0.047	100	мв	C2561	4822 121 51252	0.047	10	MB
R3544	4822 111 30483	1	1/3	MB	C2509	4822 122 31772	47P	50	MB MB	C2562	5322 121 42661	0.033	6	MB
R3545	4822 111 30483	1	1/3	MB	C2510	4822 122 32442	0.01	50	MB	C2563	4822 122 33104	100NF	6	MB
R3550	4822 111 90248	2K2	1/8	MB	C2511	4822 122 31746	0.001	50	MB	C2565	4822 122 32808	0.0012	51	MB
R3551	4822 116 90417	15K	1/8	MB	C2513	4822 121 42245	0.22	63	MB					

REPLACEMENT PARTS LIST

Ref. No.	Part No.	Description	Ref.	No.	Part No.	Description
REMOTE CONT	ROL		C2		ECUV1H471KCG	CAPACITOR
INTEGRATED C	IRCUITS		C3		ECEA0GK101	ELECTROLYTIC, 100 / F, 4V
101	MN6014HS	1.0	MECH	ANISM	PARTS	
TRANSISTORS			101	ß	UR64VCS710	UPPER CABINET
Q1	2SC3265Y	TRANSISTOR	101	Ś	UR64VCS712	UPPER CABINET
DIODES			102	ß	UR64CS803A	LOWER CABINET
D1	LN66-S	L.E.D	102	S	UR64CS803B	LOWER CABINET
OSCILLATOR			103 103	® ©	UR64EC804	BATTERY COVER
X1	CS8420PB6	OSCILLATOR	104	Q	UR64EC804A UR64CT805K	BATTERY COVER BUTTON
RESISTORS	000-100-00	OCCT LEATON	105		UR52SB327	PLATE(SMOKE)
RI		85010700	106		UR64TD374	BATTERY TERMINAL(COMMON)
CAPACITORS	ERD25TLJ1R0U	RESISTOR	107		UR64TD808	TERMINAL (+)
			108		UR64TD809	TERMINAL (-)
C1	ECUV1H471KCG	CAPACITOR	REMO	LE CON	TROL ASS'Y	
			RC1	ß	EUR64766	REMOTE CONTROL
			RC1	S	EUR64767	REMOTE CONTROL


Published in Heiloo, Holland.

■ TECHNICAL INFORMATION

Explanation on the CDM4 mini system and servo circuit for service engineers

1.System Configuration

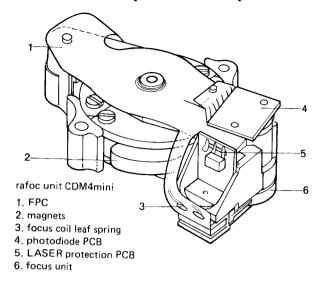
1-1.Block Diagram Rough

2.Rough Explanation of the Functions of the CDM4 mini System Part.

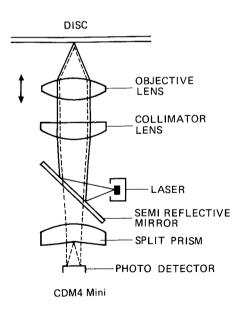
2-1.Servo electronics CDM4 mini system.

TDA8808: bipolar photo diode signal processor

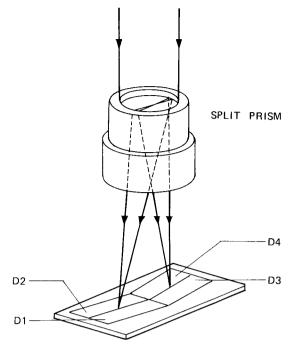
- Photodiode signal preamplifiers with separate h.f. and d.c. a.g.c. for optimum generation of the h.f. data signal and the focusing/tracking error signals.
- Tracking error signal amplifier.
- Focus error signal processor with focus normalizing and start-up circuit.
- Data equalizer.


h.f. level and track-loss detectors.

- Regulated supply for the reading laser diode.
- Low current consumption: 15mA (8V -14V).

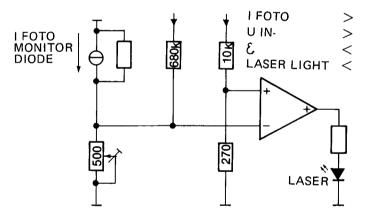

TDA8809: bipolar radial error processor

- Tracking error processor with automatic asymmetry control.
- a.g.c. circuitry with automatic start-up wobble generator.
- Tracking control for fast forward/reverse scan, search, repeat and pause functions.
- Low current consumption: 10mA (8V 14V).


2-2.CDM4 mini Optical Pick-up

A feature of the CDM4 mini pick-up is its simple diffraction limited optics. The laser point source is focused on the information layer of the disc by two lenses: a spherical glass objective with a plastic aspherical skin, and a spherical glass collimator.

Furthermore, semi-transparent а mirror is instead of used а beam-splitter cube. Astigmatism introduced into the reflected beam by the mirror is corrected by a plastic component (the wedge) which also dissects the beam into the two halves from which the tracking and focus error signals are generated.

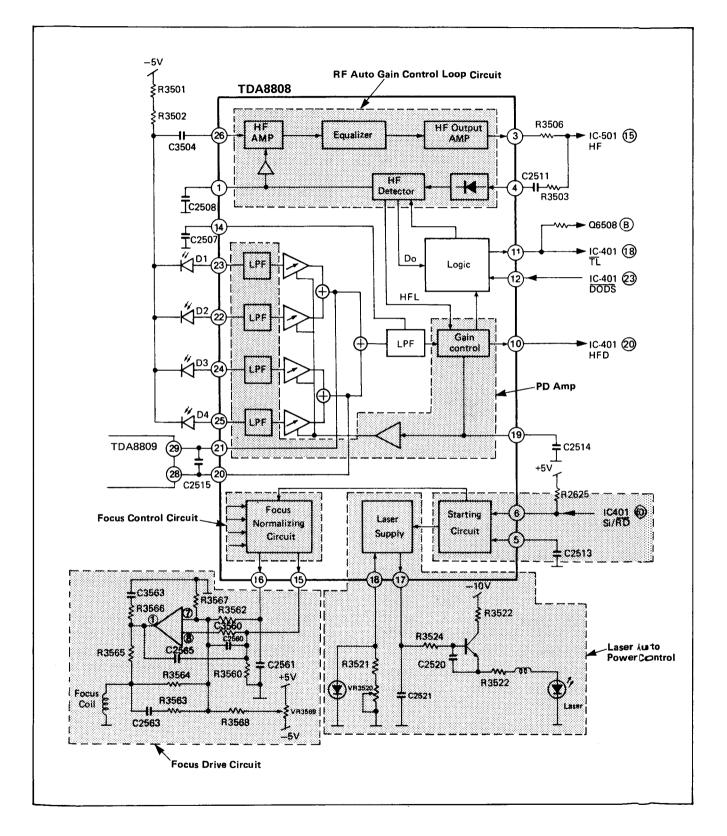


DETAIL OF LASER BEAM

3.Detailled Explanation of the Functions in the Servo.

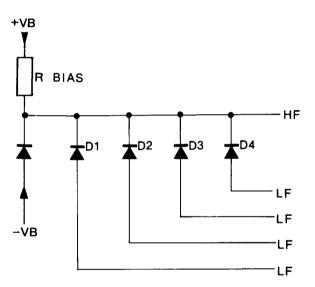
3-1-1 The LASER supply

The LASER supply circuit has a working principle like the basic schematic below.


The LASER supply function integrated in the TDA8808 has as an extra an overload protection and a turn on transient protection. The LASER current is regulated by sensing the monitor photodiode current.

The threshold voltage of the LASER diode is approximately 1.75V and the sense voltage is approx. 200mV. It is not allowed to measure the sense voltage. A distortion at this end of the loop might cause severe damage to the LASER diode.

- 48 --


SL-P<u>222A</u>

3-1-2 h.f. Signal handling, h.f. a.g.c. and data qeualizer.

The photodiodes used in the optical pick-up are connected in reverse direction. The photodiodes require a reverse bias of at least 5V. Bias current is set by R3501 and R3502. Supply noise and interference is kept away by R3501 and C2521. Coupling of the h.f. signal is performed by C2504, R3502 and C2521 also prevent h.f. coming into the supply.

The h.f. signal is effectivelv separated; from the I.f. signals by deriving the h.f. signal from the total substrate current of the four photodiodes and only the I.f. error signals from the individual anode currents.(see figure below).

The signal effectively h.f. is separated; from the I.f. signals by deriving the h.f. signal from the total substrate current of the four photodiodes and only the I.f. error from signals the individual anode currents. (see figure below).

The h.f. amplifier and a.g.c. circuit have to meet the correct transfer function.

The parameters of the transfer function are set by R3505, R3508, R3507, C2509, and C2508.

With internal girators the qualizer provides a 3rd order bessel filter for making the correct modular transfer function to compensate the optical pick-up system. The total IC bias current is set by the value of R3508 and decoupled by C2510. The girator circuits are set by the value of R3505. The 3rd pole of the modular transfer function is made by the RC circuit containing R3507, C2511 and the capacitance of the h.f. wire from the CDM to the demodulator circuits.

3-1-3 The amplitued level detector

For the a.g.c. the amplitude of the h.f. signal is measured in a level detector by comparing a full-wave rectified and fitered version of the h.f. signal with an internal reference level. The level detector is not data path but parallel to the data path as in the CDM4 system. For fast response to drop-out the time constant of the high pass filter formed by R3507, C2511 and the detector input resistance has to be 10 sec. In the h.f. amplitude slicer the amplitude of the h.f. signal is sliced in 3 levels.

62% and below is HFD 12% and below is DO

The HFD output is used to switch the PLL on and off ensuring minimum locking loss while having a drop-out or during searching. This provides fast relocking afterwards.

Capacitor C2508 in combination with an internal switch provides a more constant gain control during drop-outs. The switch is operated by the HFD signal. This set-up restricts the h.f. signal and gives the loop a bandwidth of 50Hz.

When the pick-up is searching for a track the DODS (drop-out detection suppression) is activated to keep the h.f. signal level clamped on the normal

3-1-4 The photodiode current amplifiers and I.f. a.g.c.

The low pass filters for the photodiode inputs D1 - D4 are integrated in the photodiode signal processor.

The outputs for RE1 (RE1 = D1 + D2) and RE2 (RE2 = D3 + D4) are open collector outputs. In case an external pull-up has to be connected, it has to be connected to Vdd.

Normally the pull-up function is done by the inputs of the radial error processor.

The a.g.c. for the photodiode amplifiers keeps the d.c. sum current constant for all discs. The control loop has a LPF which is set by the value of C2507.

3-1-5 The track loss detector

During playback of a disc, the radial error signals keep the pick-up on track. In case of searching for a certain spot of music, the pick-up has to jump over the tracks. To maintain the control of the pick-up during a search operation, the microprocessor must be informed whether the pick-up is on track or off track. This function is performed by the track-loss detector.

Condition to be met for the track-loss:

- The gain controlled h.f. signal has to be between 12% and 62% of the nominal value (100% is set by the h.f. a.g.c.).
- Average light intensity of the I.f. signal is more than 120% of the nominal value (100% is set by the I.f.a.g.c.).

All values are set during track following.

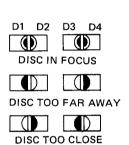
Use of the TL signal:

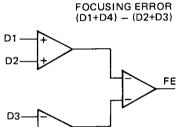
1. Counting tracks when track jumping.

2. In case a TL is detected during normal playback the control microprocessor looks to the RE dig signal from the radial error processor and compensates the tracking error by means of the DAC Signal.

Such a situation can only occur due to large knocks. This set up makes the system extremely tolerant for bumps.

(Formula TL=FS>120% and 63%>HFL>12%).

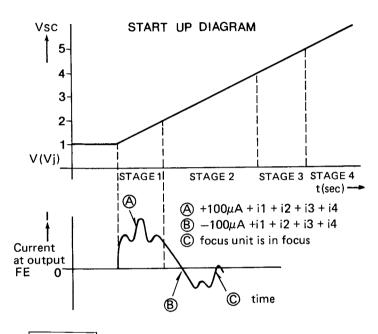

3-1-6 Focus processing


The CDM4 pick-up uses two focuault knife focus pick-ups to keep the reading spot focused on the data layer of the disc.

The TDA8808 has two focus outputs: FE and FE lag.

FE lag is the basic focus error signal. FE is a normalized version of FE to remove the effect of the unequal illumination of photodiode pairs D1, D2 and D3, D4 which occurs in case of tracking errors.

PRINCIPLE


FE lag= (I1 + I4)-(I2 + I3).Ftransfer FE = $\frac{I1 - I2}{I1 + I2} + \frac{I4 - I3}{I4 + I3}$. I control Since in focus I1 + I2 \approx I3 + I4 and I1 \approx I2 \approx I3 \approx I4 with a.g.c. on FE = FE lag on trace

Either one signal or both signals can be used to control the focus actuator. The FE lag signal gives the loop the correct gain and phase margin. The FE signal has an important role in the start-up procedure.

3-1-7 Start-up procedure

The start-up whole procedure is sequenced by the voltage across capacitor C2513. Capacitor C2513 is charged by an internal current source of 1 pA nom. Together with a starting capacitor of nF, a 270 starting-up time of approximately 0.3 sec. is reached.

The start-up procedure is divided in stages. The procedure is started by putting a logical low level at the Si/RD input.

STAGE 1

Laser turns on and the objective is moved to the center of the disc. The turntable motor is switched on. The FE pin delivers a positive going starting current of 100 μ A + the sum current (I1 + I2 + I3 + I4).

Note the I.f. a.g.c. does not see light, so max amplification.

STAGE 2

The starting current is reversed, gradually causing the objective to go down. This process is stopped when the starting current equals the amplified sum current (I1 + I2 + I3 + I4).

Note: $I1 + I2 + I3 + I4 = 100\mu A$

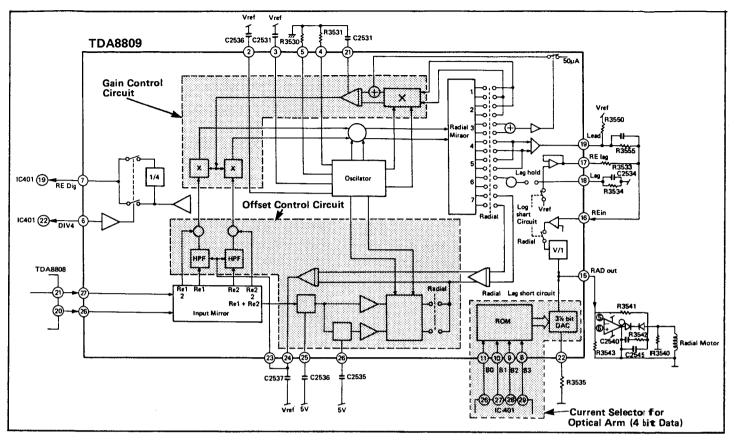
STAGE 3

A smooth transition is made from the amplified sum current (I1 + I2 + I3 + I4) to the normalized focus error signal

 $\frac{I1 - I2}{I1 + I2} + \frac{I4 - I3}{I4 + I3}$

The spot is now almost focused on the reflective layer of the disc.

The signals to the FE pin.


STAGE 1 (starting-up current + I1 + I2 + I3 + I4) STAGE 2 (starting-up current + I1 + I2 + I3 + I4) Stage 3 $\frac{I1 - I2}{I1 + I2} + \frac{I4 - I3}{I4 + I3}$ This should be almost 0

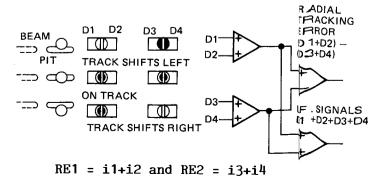
The signal to the FE lag pin.

Stage 4 (I1 + I4) - (I3 + I2) +the normalized FE (like in stage 3)

The arm is kept at the inside recess by means of a binary word from the microprocessor at BO, B1, B2, and B3 of the radial error processor.

3-2 TDA8809 RADIAL ERROR PROCESSOR

- The resistor R3535 sets the amount of output current of the DAC signal.
- The other components setting the oscillator frequency are R3530, R3531, C2530, C2531.
- The inputs BO B3 are used to control the operations which have to be performed by the radial error processor.
- •The DAC output is a current source output used to move the radial arm. The normal control is RE, but to jump beyond tracks and to compensate bumps the DAC signal is used.
- The RE lag output gives the loop a more powerful control. This output is only activated during normal playback.
- •The RE dig is a 1-bit quantized version of the RE signal. The function of RE dig is not in all sets the same. Below is the function in a audio player explained. If a TL occurs the microprocessor looks to RE dig, the value of RE dig indicates whether the microprocessor has to compensate for a right or left bump via DAC. The maximum hold range of RE is normally


1/4 track pitch due to the sinusoidal form of the radial error signal. By means of TL and RE dig the hold range is extended to 3/4 track pitch.

•For high speed track crossing, four dived RE dig signal is given by pulling Div 4 input to low level.

3-2-1 Radial processing

The radial error processor has to process the basic input signals RE1 and RE2 and to generate the full radial error signal RE. The RE signal is the basic signal to keep the r-eading beam on track.

RE1 and RE2 are caused by more or less light of the laser failing onto diodes D1, D2 or D3, D4 (see figure below)

The processing formula produced by the radial error processor is RE = k d (i1+i2+i3+i4) - k(i1+i2).

The factors k and d are detected from the loop itself by processing a low frequency wobble fault signal, which is injected into the loop. Injection of this causes a displacement of +/-0.05 µm of the arm.

The k is again factor and has to compensate:

- •The tracking angle fault (varies between 90 degrees, smallest radius, and 45 degrees, largest radius).
- •The pit geometry of disc (causing the amplitude of radial error signals to vary up to 100% from disc to disc).
- Deterioration of the laserdiode.

3-2-2 Automatic gain control (k-factor)

Detection of the desired value is done by detecting the phase angle of an injected wobble signal in the radial loop.

The closed loop transfer function has a phase shift of 135 degrees at 650 Hz (the wobble frequency).

To maintain the loop gain, the phase of the closed loop signal of RE is compared with a -45 degrees shifted signal derived from the 650 Hz wobble injection oscillator. If the gain is nominal the output of this phase comparator is zero. In other cases a positive or negative phase error signal is detected.

The detected signal is integrated by C2538. The value of this integrated signal sets the gain. This completes the set up for the k factor in TDA8809.

Note: The phase comparator is a linear multiplier which ensures that the a.g.c. loop is unaffected by spurious signals near the odd harmonics of the wobble frequency.

> The open-loop gain control is clamped to an internal reference level during sstarting-up and searching.

3-2-3 Automatic asymmetry control (d-factor)

The radial error signal in a single-beam pick-up is derived from a comparison of the light intensity in each pupil half.

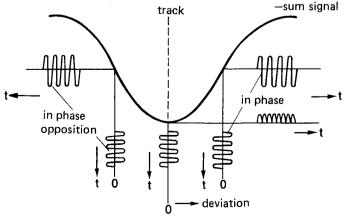
Errors in this signal can be caused by:

•Asymmetry in the far-field pattern of the laser.

•Light path to the disc.

•Imperfections in the beam splitter.

Errors can be corrected by bringing the d-factor in the total transfer function.

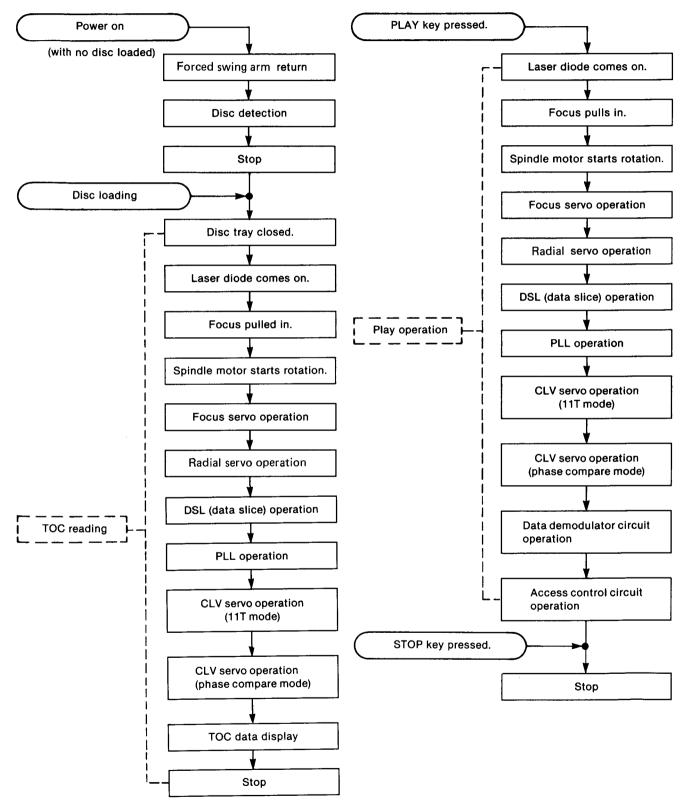

The wobble used to measure the k-factor is also used to measure the asymmetry. The signal causes the beam to wobble with an amplitude of 0.05 um. When the reading spot is to the right of the track the total amount of L.F.light (iTOT = i1+i2+i3+i4 = RE1 + RE2) is in phase with the wobble in the radial error signal.

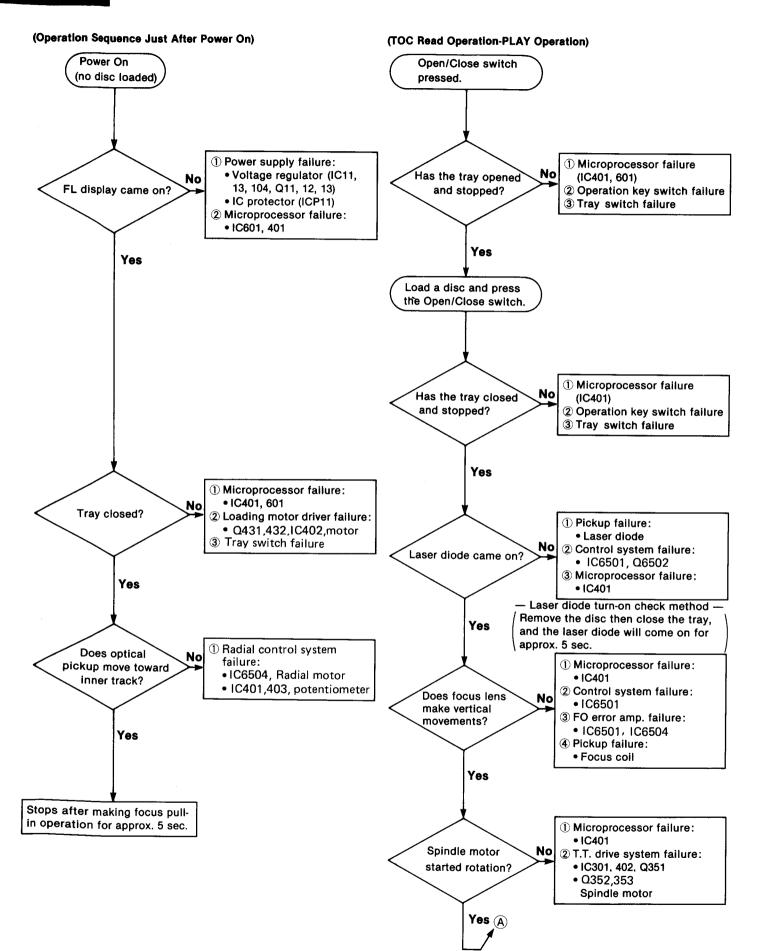
When the reading spot is to the left the I.f. sum signal (RE1 + RE2) is 180 degrees out of phase with the wobble.

The sum signal is in practice multiplied by a 90 degrees shifted version of the wobble signal. The multiplier is again linear giving the above-mentioned benefits. The loop has a filter which is set by the value of C2537.

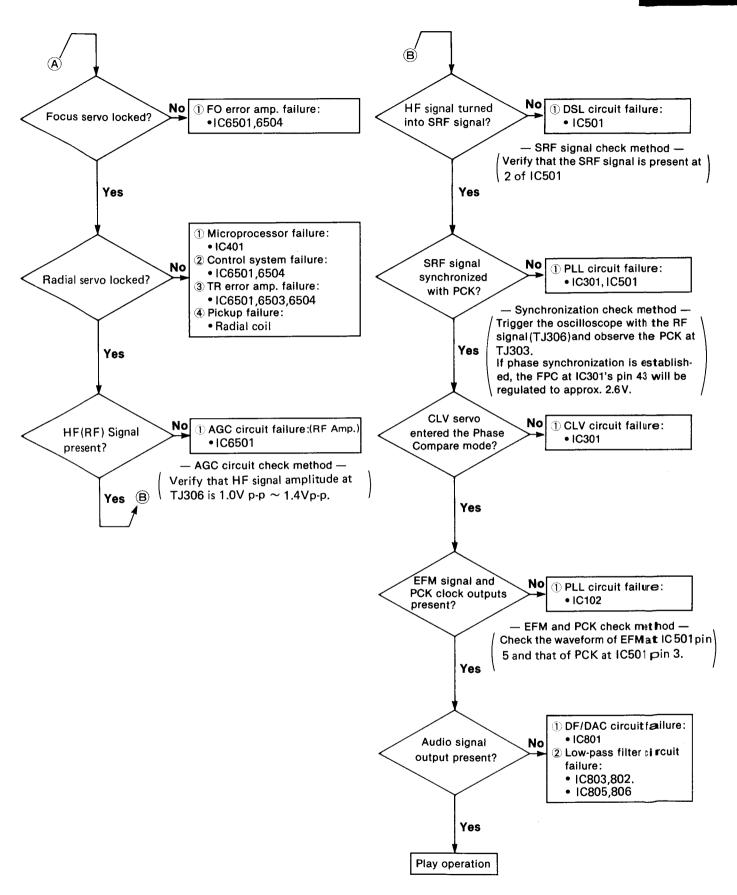
The imperfections mentioned above make the beam follow the track at one of its edges. The wobble component in the RE signal for such a situation is visualised below.

Note: C2537 is the capacitor which integrates the d-factor.




- 54 -

TROUBLESHOOTING GUIDE


SL-P222A Operation Sequence Check Sheet

Play Operation Sequence

