ServiceManual

Quartz Synthesizer FM/AM Stereo Tuner

(E), (EG), (XA), (XE), (EB), (XGH), (XGF)

(E), (EG), (XA), (XGH)

* The models ST-8055 (E, EG) and ST-8055K (E, EG) are available in Scandinavia and European only.
* The models ST-8055 (XA) and ST-8055K (XA) are available in Asia, Latin America, Middle East and Africa only.
* The model ST-8055 (XE) is available in United Kingdom only.
* The model ST-8055 (EB) is available in Belgium only.
* The models ST-8055 (XGH) and ST-8055K (XGH) are available in Holland only.
* The model ST-8055 (XGF) is available in France only.

TECHNICAL SPECIFICATIONS

Specifications are subject to change without notice for further improvement.
[DIN 45 500]

FM TUNER SECTION

AM TUNER SECTION
Frequency range*
$531 \sim 1602 \mathrm{kHz}$
Sensitivity ($\mathrm{S} / \mathrm{N} 20 \mathrm{~dB}$)
Selectivity ($\pm 9 \mathrm{kHz}$)
0 5 , 350
55 dB
50 dB
IF rejection at 1000 kHz
GENERAL

Output voltage	$0.3 \mathrm{~V}(0.6 \mathrm{~V}, \mathrm{IHF})$
Power consumption	12 W

Power consumption
Batteries for memory back-up (optional)
Power supply ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$)
Dimensions (W x H x D)
three "AA" size batteries DC 4.5 V
$110 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V}$
(16-15/16" $\left.\times 2-3 / 32 " \times 9-7 / 16^{\prime \prime}\right)$

Note:
For some countries, this unit is equipped with an FM/AM frequency-interval selector. The specifications shown above are correct with this switch set to the "FM $50 \mathrm{kHz} / A M 9 \mathrm{kHz}$ position. If it is set to the "FM $200 \mathrm{kHz} / \mathrm{AM} 10 \mathrm{kHz}$ " position, however, the FM frequency range becomes $88.1 \sim 107.9 \mathrm{MHz}$, and the AM frequency range becomes $530 \sim 1610 \mathrm{kHz}$.

TECHNISCHE DATEN

[DIN 45 500]

UKW-TUNERTEIL

Frequenzgang* $\quad 87,50 \sim 108,00 \mathrm{MHz}$

Empfindlichkeit
30 dB Rauschabstand 26 dB Rauschabstand 20 dB Rauschabstand 46 dB Rauschabstand

MW-TUNERTEIL

Frequenzgang*
Empfindlichkeit (20 dB Rauschabstand) Selektivität ($\pm \mathbf{9 k H z}$)
Spiegelfrequenz-Selektion bei 1000 kHz
ZF-Festigkeit bei 1000 kHz
$531 \sim 1602 \mathrm{kHz}$ $30 \mu \mathrm{~V}, 350 \mu \mathrm{~V} / \mathrm{m}$

55 dB
45 dB
50 dB

ALLGEMEINE DATEN

| Ausgangssapannung |
| :--- | ---: |
| Leistungsaufnahme |$\quad 0,3 \mathrm{~V}(0,6 \mathrm{~V}$, nach IHF)

Leistungsaufnahme
12 W
Batterien für den Speicher (Sonderzubehör) drei Batterien "AA" $(4,5 \mathrm{~V})$
Netzspannung ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$) $110 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V}$ Abmessungen ($\mathbf{B \times H \times T}$) $430 \times 53 \times 240 \mathrm{~mm}$
Gewicht
$2,8 \mathrm{~kg}$

*Bemerkung:

In einigen Ländern ist dieses Gerät mit einem UKW/MW. Intervallgrößenwähler ausgestattet. Die obenstehenden Angaben gelten, wenn der Schalter auf "FM $50 \mathrm{kHz} / \mathrm{AM} 9 \mathrm{kHz}$ " steht. Wenn er aber in der Position "FM $200 \mathrm{kHz} / \mathrm{AM} 10 \mathrm{kHz}$ " steht, ändert sich der UKW-Wellenbereich zu $88.1 \sim 107.9 \mathrm{MHz}$ und der MW-Wellenbereich zu $530 \sim 1610 \mathrm{kHz}$.

CARACTERISTIQUES TECHNIQUES

Sujet à changement sans préaris.
[DIN 45 500]

PARTIE TUNER FM

Gamme de fréquence* Impédance d'antenne Sensibilité

Signal/bruit 30 dB
Signal/bruit 26 dB
Signal/bruit 20 dB
IHF Sensibilité pour S/B 46 dB
Distorsion harmonique total
$87,50 \sim 108,00 \mathrm{MHz}$ 300Ω (symétrique) 75Ω (asymétrique) $1.9 \mu \mathrm{~V}$ (IHF utilisable) $1,9 \mu \vee(300 \Omega), 1,3 \mu \vee(75 \Omega)$ $1,7 \mu \vee(300 \Omega), 1,2 \mu \vee(75 \Omega)$ $1,5 \mu \vee(300 \Omega), 0,9 \mu \vee(75 \Omega)$ $25 \mu \mathrm{~V}$ (75 1 $25 \mu \mathrm{~V}(75 \Omega)$ STEREO $0,3 \%$ MONO $\quad 69 \mathrm{~dB}$ (IHF: 75 dB) STEREO 65 dB (IHF: 70 dB)
Réponse de fréquence $\quad 20 \mathrm{~Hz} \sim 15 \mathrm{kHz},+0,5 \mathrm{~dB} \sim-1,5 \mathrm{~dB}$
Sélectivité en canaux alternés $(\pm 400 \mathrm{kHz})$
75 dB
Taux de capture $\quad 1,0 \mathrm{~dB}$
Réjection de fréquence image à $98 \mathrm{MHz} \quad 65 \mathrm{~dB}$
Réjection FI à 98 MHz
Réjection de réception non sélective à 98 MHz 100 dB

Suppression AM 00 dB

Speparation stéréophonique $\quad \mathbf{1} \mathbf{k H z} 45 \mathrm{~dB}, \quad \mathbf{1 0 k H z} 55 \mathrm{~dB}$
Courant porteur de dispersion
$19 \mathrm{kHz}-35 \mathrm{~dB}(-37 \mathrm{~dB}, \mathrm{IHF})$ $38 \mathrm{kHz}-48 \mathrm{~dB}(-50 \mathrm{~dB}, \mathrm{IHF})$
$1,2 \mu \mathrm{~V}$
180 kHz
1000 kHz
$\pm 1,0 \mathrm{~dB}$

PARTIE TUNER AM

Gamme de fréquence
$531 \sim 1602 \mathrm{kHz}$
Sensibilité (Rapport S/B 20 dB)
Sélectivité ($\pm 9 \mathrm{kHz}$) $30 \mu \mathrm{~V}, 350 \mu \mathrm{~V} / \mathrm{m}$

Réjection de fréquence image à $1000 \mathbf{~ k H z}$
45 dB
Réjection FI à 1000 kHz
50 dB
GENERALITES

Tention de sortie	0,3 V (0,6 V' IHF$)$
Consommation	12 W
Piles pour préservation des mémoires (en option)	
	es de type AA (C.C.: $4,5 \mathrm{~V}$)
Alimentation ($50 \mathrm{~Hz} / 60 \mathrm{~Hz}$)	$110 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V}$
Dimensions ($\mathrm{L} \times \mathrm{H} \times \mathrm{Pr}$)	$430 \times 53 \times 240 \mathrm{~mm}$
Poids	

*Nota:
Cet appareil est doté, pour certains pays, d'un sélecteur d'intervalle de fréquence $\mathrm{FM} / \mathrm{AM}$. Les spécifications- indiquées ci-dessus sont applicables si ce sélecteur est sur la position "FM $50 \mathrm{kHz} / \mathrm{AM} 9 \mathrm{kHz}$ ". S'il est sur la position "FM $200 \mathrm{kHz} / \mathrm{AM}$ 10 kHz ", les gammes de fréquence FM et $A M$ deviennent respectivement $88,1 \sim 107,9 \mathrm{MHz}$ et $530 \sim 1610 \mathrm{kHz}$

CONTENTS

LOCATION OF CONTROLS 3
HOW TO REMOVE THE CHASSIS 4
ALIGNMENT POINTS. 5
ALIGNMENT INSTRUCTIONS (ENGLISH) 6, 7
ANWEISUNGEN FUR ABGLIEICHUNG (DEUTSCH) 7,8
INSTRUCTIONS D'ALIGNEMENT (FRANÇAIS). 8, 9
BLOCK DIAGRAM. 10
BLOCK DIAGRAM OF IC 11
TERMINAL GUIDE OF TRANSISTORS \& IC 12
PRINTED CIRCUIT BOARD WIRING VIEW. 13, 14
REPLACEMENT PARTS LIST (Electric Parts) 15~17
SCHEMATIC DIAGRAM 18~20
EXPLODED VIEW 21, 22
REPLACEMENT PARTS LIST
(Cabinet, Chassis \& Packing Parts) 23
CHANGE OF PARTS LIST 23

LOCATION OF CONTROLS

* This photo shows only the products for (XA).
* The product for other destinations except (XA) is not equipped with AM allocation switch.

ST-8055/K

HOW TO REMOVE THE CHASSIS

1. Detach the cabinet by removing the 4 setscrews (1)~ (4) in fig. 1)
2. Sliding it toward (A) direction and lifting it upward as shown in fig. 1.
3. Remove the 6 setscrews on the front panel (5) ~ (10) in fig. 2)
4. Remove the front panel from chassis.
5. Remove the 2 setscrews ((12), (13) in fig. 3) and the latch ((11) in fig. 3) used to secure the antenna terminal and output terminal.
6. Unsolder sield cord from rear panel.
7. Remove the 3 setscrews ((14) ~ (16) in fig. 4) of the printed circuit board.
8. The frequency indication plate is fixed on the cahssis as shown in Fig. 5. So, push the indication plate a little forwards and lift it up.
Then it can be removed from the chassis. (See Fig. 6.)

Next, set up the printed circuit board while being careful of the leads. (Arrow Bin Fig. 4)
9. After completion of the repair, assemble the parts by reversing the procedure $1 \sim 8$.

[Fig. 5]

[Fig. 6]

ALIGNMENT POINTS

(×)
[Fig. 9]
(Abb. 3)

[Fig. 11]
(Abb.5)

Notes:

1. Band selector switch $\{$ AM (AM alignment)

FM (FM Alignment)
2. FM muting \& mode switch off/mono
3. Maintain line voltage at rated voltage
4. 300Ω FM dummy antenna Refer to fig. 7

AM/FM SIGNAL GENERATOR		FREQUENCYSETTING	INDICATOR (VTVM or SCOPE)	ADJUSTMENT POINTS	REMARKS
CONNECTION	FREQUENCY				
AM ALIGNMENT					
High side to TP4 terminal. Common to chassis.	450 kHz (30\% Mod. with 400 Hz)	Point of non-inter-ference	Connect AC VTVM or scope to "OUTPUT" terminals.	T201 (1st IFT) T202 (2nd IFT)	Adjust for maximum output.
Fashion loop of several turns of wire and radiate signal into loop of tuner	531 kHz (30\% Mod. with 400 Hz)	531 kHz	Connect DC VTVM to TP201 terminal.	L202 (OSC Coil)	Adjust L202 to $1.0 \pm 0.05 \mathrm{~V}$.
Fashion loop of several turns of wire and radiate signal into loop of tuner	612 kHz (30\% Mod. with 400 Hz)	612 kHz	Connect AC VTVM or scope to "OUTPUT" terminal.	L201 (ANT Coil)	Adjust for maximum output. Adjust ferrite core of L201 by screw driver.
Fashion loop of several turns of wire and radiate signal into loop of tuner	1503 kHz (30\% Mod. with 400 Hz)	1503 kHz	Connect AC VTVM or scope to "OUTPUT" terminal.	CT201 (ANT Trimmer)	Adjust for maximum output Repeat steps (3) and (4).

5. Output of signla generator should be on higher than necessary to obtain an output reading.
6. Adjust the antenna coil (L201) position by using a screwdriver so that it is at approximately 25 degrees to the rear panel.
tuner

FM IF ALIGNMENT

| | | No-Signal | | Point of non-
 inter-ference | Connect DC VTVM to
 TP103, TP105 terminals
 (Refer to fig. 8) |
| :--- | :--- | :--- | :--- | :--- | :--- | | T101 |
| :--- |
| (DISCRI IFT) A |

1. FM muting/mode switch "on/auto" position
2. Adjust T101 (A) core so that voltage measured in signal mode is 0 V in 300 mV range.

Adjust L7 (OSC Coil)

 to 3.0 V1. Add weak input so that noise is included in the output wave form.
2. Make the adjustment so that the output wave form is vertically symmetrical. Refer to fig. 9
3. Repeat the steps (7) and (8)

FM MONO DISTORTION ALIGNMENT

Connect to FM 300Ω antenna terminal through $300 \Omega \mathrm{FM}$ dummy antenna.

Connect distortion meter to "OUTPUT" terminals.

T102
(DISCRI IFT) B

1. Set the FM muting/ mode switch to "on/auto" and then check step (5) in no signal mode.
2. If it is deflected, readjust of T101.
3. Adjust T102 (B) core so that distortion of right and left channels are minimized.

FM MUTING LEVEL ALIGNMENT

Apply $16 \mathrm{~dB}(6.3 \mu \mathrm{~V})$ to tuner

Connect to FM 300Ω antenna terminal through $300 \Omega \mathrm{FM}$
100.10 MHz (100\% Mod. with 400 Hz)

1. Set the muting/FM mode switch to "off/ mono" and then tune in 100.10 MHz .
2. With the muting/FM mode switch set to "on/auto", adjust VR401 so that the output is given with muting condition released.

USING A FREQUENCY COUNTER

1. 100.10 MHz Non-modulated mono signal applied to set
2. FM muting/mode switch to "on/auto"
3. Connect frequency counter to TP301 through resistor ($100 \mathrm{k} \Omega$).
4. Adjust VR301 to $19 \mathrm{kHz}, \pm 30 \mathrm{~Hz}$.

FM SIGNAL GENERATOR		FREQUENCY SETTING	INDICATOR	ADJUSTMENT POINTS	REMARKS
CONNECTION	FREQUENCY				
SEPARATION ALIGNMENT					
Connect to FM 300Ω antenna terminal through $300 \Omega \mathrm{FM}$ dummy antenna.	100.10 MHz ($1 \mathrm{kHz} 30 \%$, Pilot 10\% modulation 60 dB stereo signal)	100.10 MHz	Connect AC VTVM to output terminal (L or R) through low pass filter (Refer to fig. 11)	VR302 (Separation Alignment)	1. Set the FM muting/ mode switch to "on/ auto" , and then tuin in 100.10 MHz . 2. Adjust VR302 so that R output is minimized when stereo modulator is in L (Lch. modulation) mode and that L output is minimized in R mode.

USING ALTERNATE SYSTEM

1. Apply stereo signal from generator or stereo station to tuner.
2. Adjust VR301 until stereo indicator lights up. Cement arm of VR301 as shown in fig. 10.

ANWEISUNGEN FÜR ABGLIEICHUNG

(Für Deutschland)
\(\left.$$
\begin{array}{l}\text { Anmerkungen: } \\
\text { 1. Bereichsschalter. }\left\{\begin{array}{l}\text { AM (MW Abgleich) } \\
\text { FM (UKW Abgleich) }\end{array}
$$\right.

2. FM Muting/Mode Schalter off/mono\end{array}\right\}\)| 3. Netzspannung auf ihren Sollwert halten. |
| :--- |
| 4. UKW-Kunstantenne, 300 ohm. . Vgl Abb. 1. |

5. Der Ausgang des Meßsenders darf nicht höher sein als unbedingt notwendig für eine gute Ablesung.
6. Nittels eines Schraubenziehers die Stellung der Antennenspule (L201) so einstellen, daß, sie gegen die Rückenplatte einen Winkel von ca. 25° macht.

MW/UKW MESSENDER		FREQUENZ STELLUNG DES TUNER	ANZEIGEGEIRÄT (Röhrenvoltmeter oder Oszillograph ozw. Klirrfaktor-Meßgerät)	ABGLEICHSPUNKTE	BEMERKUNGEN
ANSCHLUSS	FREQUENZ				
MW-ABGLEICH					
Hohe Seite zur Klemme TP4 Kaltes Ende an Masse	$\begin{aligned} & 450 \mathrm{kHz} \\ & \text { (} 400 \mathrm{~Hz} \\ & \text { Modulat. . } \\ & 30 \% \text {) } \end{aligned}$	Kein Empfang	Wechselstrom Röhrenvoltmeter oder Oszillograph über den Ausgang. "OUTPUT" schließen	$\begin{aligned} & \text { T201 (1. IFT) } \\ & \text { T202 (2. IFT) } \end{aligned}$	Auf max. Ausgang abgleichen.
Das Meßsendersignal induktiv in den Tuner speisen. Hierzu behelfsmäßig eine Rahmenantenne fertigen und an den Eingang schließen.	$\begin{aligned} & 531 \mathrm{kHz} \\ & \text { (400Hz } \\ & \text { Modulat., } \\ & 30 \% \text {) } \end{aligned}$	531 kHz	Elektronisches GS- Voltmeter an Klemmen TP201 anschließen.	L202 (Osc. Spule)	L202 auf $1.0 \pm 0,05 \mathrm{~V}$ justieren.
Das Meßsendersignal induktiv in den. Tuner speisen. Hierzu behelfsmäßig eine Rahmenantenne fertigen und an den Eingang schließen.	$\begin{aligned} & 612 \mathrm{kHz} \\ & \text { (400Hz } \\ & \text { Modulat., } \\ & 30 \% \text {) } \end{aligned}$	612 kHz	Wechselstrom Röhrenvoltmeter oder Oszillograph über den Ausgang "OUTPUT" scheißen.	L201 (Ant. Spule)	Auf max. Ausgang abgleichen. Den Ferritkern von L201 mit einem Schraubendreher justieren.
Das Meßsendersignal induktiv in den Tuner speisen. Hierzu behelfsmäßig eine Rahmenantenne fertigen und an den Eingang schließen.	$\begin{aligned} & 1503 \mathrm{kHz} \\ & \text { (400Hz} \\ & \text { Modulat., } \\ & 30 \%) \end{aligned}$	1503 kHz	Wechselstrom Röhrenvoltmeter oder Oszillograph über den Ausgang "OUTPUT" scheißen.	CT201 (Ant. Trimmer)	Auf max. Ausgang abgleichen. Schritt (3) und (4) sing zu wiederholen.
UKW-ZF-ABGLEICH					
	Kein Signal	Kein Empfang	Elektronisches (GS. Voltmeter an Klemmen TP103 und TP105 anschließen. (Vgl Abb. 2)	T101 (Diskriminator (FT) A	1. FM muting/mode-Schalter auf "on/auto". 2. Den Kern von T101 (A) so justieren, daß die gemessene Spannung im signallosen Modus OV im 300 mV Bereich beträgt.
UKW-HF-ABGLEICH					
	Kein Signal	87.50 MHz	Elektronisches GSVoltmeter an Klemme TP1 anschließen.	L7 (OSC Spule)	L7 (OSC-Spule) auf 3,0V justieren.

MW/UKW MESSENDER			FREQUENZ STELLUNG DES TUNER	ANZEIGEGEIRÄT (Röhrenvoltmeter oder Oszillograph ozw. Klirrfaktor-Meßgerät)	ABGLEICHS. PUNKTE	BEMERKUNGEN
	ANSCHLUSS	FREQUENZ				
	Meßsender über eine Kunstantenne an den UKW-Antenneneingang schließen	$\begin{aligned} & 90,10 \mathrm{MHz} \\ & \text { (400Hz } \\ & \text { Modulat., } \\ & 100 \% \text {) } \end{aligned}$	90.10 MHz	Oszillograph über den Ausgang "OUTPUT" schließen.	L3 (1. Det, Spule) L5 (2. Det. Spule) L1 (Ant. Spule) T1 (UKW IFT)	1. Einen schwachen Eingang geben, bei den Geräusch in der Ausgangswellenform enthalten wird. 2. So einstellen, daß die Ausgangswellenform
8	Meßsender über eine Kunstantenne an den UKW-Antenneneingang schließen.	$\begin{aligned} & 106.10 \mathrm{MHz} \\ & \text { (400Hz } \\ & \text { Modulat., } \\ & 100 \% \end{aligned}$	106.10 MHz	Oszillograph über den Ausgang "OUTPUT" schließen.	CT1 1Osc. Trimmer)	vertikal symmetrisch wird. (Abb 3) 3. Die Einstellung von (7) und (8) wiederhoten, bis die Frequenz mit der Skala übereinstimmt.
ABGLEICH AUF MIN. VERZERRUNG IN STELLUNG UKW-MONO						
9	Meßsender über eine Kunstantenne an den UKW-Antenneneingang schließen	$\begin{aligned} & 100.10 \mathrm{MHz} \\ & \text { (400Hz } \\ & \text { Modulat., } \\ & 100 \% \\ & 60 \mathrm{~dB} \text {) } \end{aligned}$	$100.10 \mathrm{MHz}$	Klirrfaktor-Meßbrücke über den Ausgang "OUTPUT" schließen.	T102 (Diskriminator FT) B	1. FM muting/mode-Schalter auf "on/auto" stellen dann in signalloser Mode den Schritt (5) feststellen. 2. Wenn Abweichung vorliegt. A (primäre Seite) von T101 wieder einstellen. 3. T102 (B) Kern für minimale Verzerrung der rechten und linken Kanäle justieren.
UKW-MUTING-ABGLEICH						
0	Meßsender über eine Kunstantenne an den UKW-Antenneneingang schließen. Meßsender auf 16 dB (6.3 V) einstellen.	$\begin{aligned} & 100.10 \mathrm{MHz} \\ & \text { (400Hz } \\ & \text { Modulat., } \\ & \text { 100\%) } \end{aligned}$	100.10 MHz		VR401 (UKW-Muting)	1. Den muting/FM mode Schalter auf "OFF/MONO", und auf 100.10 MHz abstimmen. 2. Muting/FM mode SchaIter auf "ON/AUTO" stellen, VR401 so einstellen, daß der Ausgang unter Bewirken der Dämpfung gegeben wird.
UKW-STEREO-DEKODER-ABGLEICH						
Unter Verwendung eines Zählers				Alternativ-Meßmethode		
1. Unmoduliertes Mono-Signal 100.10 MHz in das Gerät speisen. 1. Stereosignal entweder von einem Stereogenerator. 2. FM muting/mode-Schalter auf "on/auto" stellen. oder einem Sender einspeisen. 3. Zähler über einen Widerstand $100 \mathrm{~K} \Omega$ an TP301 schließen. 2. VR301 so einstellen, bis die Stereolampe auf leuchtet. 4. VR301 auf $19 \mathrm{kHz} \pm 30 \mathrm{~Hz}$ einstellen. Schleifer von VR301 sichern, wie in Abb. 4 gezeigt.						
KANALTRENNUNG-ABGLEICH						
2	Meßsender über eine Kunstantenne an den UKW-Antenneneingang schließen.	100.10 MHz Das Gerät auf 100 MHz , $1 \mathrm{kHz} 30 \%$, Pilot 10\% Modulation 60 dB Stereosignal einstellen.	100.10 MHz	Wechselstrom-Röhrenvoltmeter oder Oszillograph durch Tiefpaß filter ($\mathrm{fc}=15 \sim 19 \mathrm{kHz}$) an Ausgangsanschlüsse des Gerötes anschließen (Vgl Abb. 5)	VR302 (KanaltrennungAbgleich)	1. FM-Muting/mode Schalter auf "ON/ AUTO stellen und abstimmen. 2. VR302 auf minimale Anzeige des R-Ausgangs bei Stereo-modulator in L-(L-Kanalmodulation) Modus, und auf minimale Anzeige des L-Ausgangs in R-Modus abgleichen.

INSTRUCTIONS D'ALIGNEMENT

FRANÇAIS

Notes:

1. Sèlecteur de gamme. .
\{ AM (Alignement AM) (FM (Alignement FM)
2. Commutateur de silencieux/mode. off/mono
3. Conservel la tension du secteur à la tension nominale.
4. Antenne fictive $\mathrm{FM} 300 \Omega$
5. Le signal du générateur ne doit pas être plus élevé qu'i n'est nécessaire à obtenir une lecture en sortie.
6. Régler la position de la bobine (L201) de l'antenne en utilisant un tournevis de telle sorte qu'alle soit environ à 25 degrés de la plaque arriére.

AM/FM GENERATEUR			AIGUILLE SUR LE FREQUENCE	INDICATEUR IVOLTMETRE ELECTRONIQUE OSCILLOSCOPE OU DISTORSIONMETRE)	POINTS DE REGLAGE	OBSERVATIONS
	BRANCHEMENT	FREQUENCE				
	ALIGNEMENT AM					
1	Côté supérieur à la borne TP4. Commun an shâssls	$\begin{aligned} & 450 \mathrm{kHz} \\ & \text { (modulè à } \\ & 30 \% \text { par } \\ & 400 \mathrm{~Hz} \text {) } \end{aligned}$	Point sans signal	C.A. voltmètre électronique ou oscilloscope sur prise de sortie de I'appareil.	T201 (1 transfo FI) T202 (2 transfor FI)	Réglez au maximum de signal de sortie.
2	Faire une boucle de quelgues tours et rayonner le signal dans le cadre du l'ampli-tuner.	$\begin{aligned} & 531 \mathrm{kHz} \\ & \text { (modulé à } \\ & 30 \% \text { par } \\ & 400 \mathrm{~Hz} \text {) } \end{aligned}$	531 kHz	Brancher le voltmétre électronique á C.C. aux bornes TP201.	L202 (bobine OSC)	Régler la L202 à $1.0 \pm 0.05 \mathrm{~V}$.

3	Faire une boucle de quelgues tours et rayonner le signal dans le cadre du l'ampli-tuner	612 kHz (modulè à 30\% per 400 Hz)	612 kHz
4	Faire une boucle de quelgues tours et rayonner le signal dans le cadre du l'ampli-tuner	1503 kHz (modulé à 30% per 400 Hz)	1503 kHz

Réglez au maximum de signal de sortie. Régler le noyau ferrite de L201 à l'aide d'un tournevis.
Réglez au maximum de signal de sortie.
Recommencez les étapes (2) et (3).

ALIGNEMENT FI-FM

Sans signal	Point sans signal

Brancher le voltmètre

 électronique à C.C. aux bornes TP103 et TP105.
ALIGNEMENT RF-FM

	Réglez au maximum de signal de sortie. Régler le noyau ferrite de L201 à !'aide d'un tournevis.
CT201	
(trimmer ANT)	Réglez au maximum de signal de sortie. Recommencez les étapes (2) et (3).

1. Commutateur de silencieux sur "on/auto".
2. Régler le noyau T101 (A) de telle sorte que le voltage mesuré dans le mode sans signal, soti de OV dans la gamme des 300 mV .

6

> Branchez sur la prise d'antenne FM à travers une antenne fictive FM.
106.10 MHz (modulé à 100\% par 400 Hz)

Branchez sur la prise
d'antenne FM à travers d antenne FM a travers
une antenne fictive FM.
100.10 MHz
(modulé
100% pa
400 Hz ,
60dB)
100.10 MHz
(modulé à
100\% par 400 Hz)

Branchez sur la prise d'antenne FM à travers une antenne fictive FM, Niveau de sortie du générateur 16dB (6.3 V).

REGLAGE DE LA DISTORSION FM EN MONO

106.10 MHz	Distorsiomètre sur prise de sortie du tuner	T102 (Transfo FI discri.) B
100.10 MHz		

1. Placer la commutateur Sourdine FM/Mode sur "on/auto" et vérifier l'étape 4 dans un mode sans signal.
2. S'il est déplacé, re-régler A (côté primaire) de T101.
3. Régler le noyou T102 (B) de telle sorte que la distorsion des canaux droit et gauche soit la plus faible.
4. Régler le commutateur de mode/réglage silencieux FM sur la position "OFF/MODE et accorder sur 100.10 MHz .
5. Avec te commutateur de mode/réglage silencieux FM réglé sur la position "ON/ AUTO", régler le VR401 de telle sorte que la sortie fournie avec le réglage silencieux en position déclenchée.

ALIGNEMENT DU PILOTE MULTIPLEX FM

Avec un fréquencemétre

1. Signal mono $100,10 \mathrm{MHz}$ non modulé appliqué à l'aṕpariel.
2. Commutateur de silencieux sur "on/auto"
3. Branchez le fréquencemètre sur TP301 à travers une résistance de $100 \mathrm{k} \Omega$.
4. Régler VR301 sur $19 \mathrm{kHz} \pm 30 \mathrm{~Hz}$.

Par un outre système

1. Appliquez à l'appareil un sinal stéréo provenant d'un générateur ou de la réception d'un émetteur.
2. Régler VR301 jusqu à ce que l'indicateur de stéréophonic s'allume. Collez le curseur de VR301 comme indiqué sur la fig. 10.

AM/FM GENERATEUR		AIGUILLE SUR LE FREQUENCE	INDICATEUR IVOLT. METRE ELECTRONIQUE OSCILLOSCOPE OU DISTORSIONMETRE)	POINTS DE REGLAGE	OBSERVATIONS
BRANCHEMENT	FREQUENCE				
REGLAGE DE LA SEPARATION DES CANAUX					
Branchez sur la prise d'antenne FM à traves une antenne fictive FM	100.10 MHz Ajouter 100 MHz , 1 kHz , Modulation, pilote 10\%, signal stéréo phonique 60 dB , à láppareill.	100.10 MHz	Brancher un voltmètre électronique C.A. ou un oscilloscope aux bornes de sortie, par l'intermédiaire du filtre passe-bas ($\mathrm{fc}=15 \sim 19 \mathrm{kHz}$). (Voir fig. 11)	VR302	1. Placer le commutateur de mode/réglage silencieux FM sur "ON/FM AUTO" et accorder sur 100.10 MHz 2. Régler VR302 de telle sorte que la sortie droite soit minimale quand la commande d'accord stéréophonique est dans le mode gauche (modulation du canal gauche) et que la sortie gauche soit minimale dan mode droit.

BLOCK DIAGRAM OF IC

- This is the basic block diagram of the inside circuit of IC. In an actual circuit, there may be sometimes idle terminals or some different functions other than the basic circuit.

IC101 (AN278) FM IF Amplifier

IC102 (AN7001ST) AM Converter, FM IF Amplifier, FM Detector \& Stereo Decoder (MPX)

- TERMINAL GUIDE OF TRANSISTORS \& IC

${ }^{\text {AN278 }}$	AN70015T
An6821	MN16005s
MYyYyYyYy	
MN6142, MN1203 SVITC5067BP	35k74
	?
SviM56517P	${ }_{20} 250793{ }^{\text {chen }}$

PRINTED CIRCUIT BOARD WIRING

WIRING VIEW

REPLACEMENT PARTS LIST (Electric Parts)

NOTES: 1. Part numbers are indicated on most mechanical parts Please use this part number for parts orders
2. Δ indicates that only parts specified by the manufacturer be used for safety.
3. (E) and (EG) are available in Scandinavia and European only (XA) is available in Asia, Latin America, Middle East and Africa only.
$(E B)$ is available in Belgium only.
(XE) is available in United Kingdom only.
(XGH) is available in Holland only.
(XGF) is available in France only.

Ref. No.		Part No.	Part Name \& Description
COILS and TRANSFORMERS			
L1 L2, 501 L3 L4 L5 L6 L7 L101 L102, 203, 204 L103 L201 L202 L301 L701 T1 T101 T102 T201 T202 T701	\triangle	SLA4N17 RLQY25S2 SLQAN40G-1 SLD4P35-P SLD4P37-P ELQ5A77 SLO4P67-P SLQ×180-2 SLQX101-3M RLQY15G5-Y SLF2D51 SLO2C13-P SLQX393-1Z SLQ $\times 101-20$ SLI4C109 SLI4C515-1 SLI4C517-1 SLI2C127 SLI2C413 SLT51113-W	Coil, FM Antenna Coil. Choke Coil, Choke Coil, FM RF Detector (1st) Coil, FM RF Detector (2nd) Coil, Choke Coit, FM Local Oscillator Coil, Choke Coil, Choke Coil, Choke Coil, AM Ferrite Core Antenna Coil, AM Local Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, Discriminator Transformer, AM IF Transformer, AM IF Transformer, Power Source
CERAMIC FILTERS			
$\begin{aligned} & \text { CF 101, 102, } 103 \\ & \text { CF201 } \end{aligned}$		SVFE $107 \mathrm{MM}-\mathrm{A}$ SVFSFP450HT	Ceramic Filter, 10.7 MHz (Red) Ceramic Filter, AM 450 kHz
VARIABLE RESISTORS			
VR301 VR302 VR401		EVLS3AA00B24 EVLS3AA00B54	PLL MPX VCO Adjustment, $5 \mathrm{k} \Omega$ (B) Separation Adjustment, $20 \mathrm{k} \Omega$ (B) FM Muting Level Adjustment, $50 \mathrm{k} \Omega$ (B)
FUSE			
F1	\triangle	XBA2CO6TRO	Fuse, T630mA (250V)
CRYSTAL			
$\times 501$		SVQ43U11521	Crystal, 11.520 MHz
COMPONENT COMBINATIONS			
Z1 Z2 Z101 Z601 Z602 Z651, 652,653 Z701, 702		$\begin{aligned} & \text { EXRP102Z223C } \\ & \text { EXRP103P102C } \\ & \text { EXF3SL04C } \\ & \text { EXBP87562K } \\ & \text { EXBP84473K } \\ & \text { EXBP87104K } \\ & \text { EXRFS203ZS } \end{aligned}$	Component Combination, $22 \mathrm{k} \Omega \& 0.01 \mu \mathrm{~F}$ Component Combination, $1 \mathrm{k} \Omega \& 0.01 \mu \mathrm{~F}$ Component Combination, $0.01 \mu \mathrm{~F}(\mathrm{X} 3)$ Component Combination, $5.6 \mathrm{k} \Omega(\mathrm{X} 7)$ Component Combination, $47 \mathrm{k} \Omega(\times 4)$ Component Combination, $100 \mathrm{k} \Omega(\mathrm{X} 7)$ Component Combination, $0.01 \mu \mathrm{~F}(\times 2)$
VARIABLE CAPACITORS			
$\begin{aligned} & \text { CT1 } \\ & \text { CT201 } \end{aligned}$		ECV1ZW06X32E SVCTV1218269	Trimmer, Local Oscillator Trimmer, AM Antenna
SWITCHES			
$\begin{aligned} & \text { S } 1,2 \\ & \text { S3~12 } \\ & \text { S13 } \\ & \text { S } 14[X A] \text { only } \\ & \text { S } 15 \end{aligned}$	\triangle	SSH267 SSG1 SSH119 ESD14116 ESE372	Switch, Selector \& FM Muting/Mode Switch, Manual Scan, Memory Write \& Channel Preset Switch, Power Switch, FM/AM Allacation Switch, Voltage Adjuster
DISPLAY PANEL			
FL		SAD7MT09ZA	Display Panel, Indication

Ref．No．	Part No．	Part Name \＆Description				Ref．No． R415 R416 R417， 418	．Part No． ERD25TJ273 ERD25FJ272 ERD25TJ223	Part Name \＆Description			
RESISTORS						R415 R416 R417， 418		Carbon． Carbon， Carbon．	$\begin{aligned} & 27 \mathrm{k} \Omega, \\ & 2.7 \mathrm{k} \Omega, \\ & 22 \mathrm{k} \Omega, \end{aligned}$	1／4W， $1 / 4 \mathrm{~W}$ ， $1 / 4 \mathrm{~W}$ ，	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \\ & \pm 5 \% \end{aligned}$
R1． 2	ERD25TJI04	Carbon，	$100 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$						
R3	ERD25TJ683	Carbon，	$68 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$		 ERD25TJ273 ERD25FJ272 ERD25TJ223				
R4	ERD25FJ101	Carbon，	100Ω ，	1／4W，	$\pm 5 \%$	R419	ERD25FJ332 ERO25CKF 1602 ERD25FJ182	Carbon， Metal Film． Carbon，	$3.3 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R5， 6	ERD25TJ104	Carbon，	$100 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R420			$16 \mathrm{k} \Omega$ ，	1／4W，	$\pm 1 \%$
R7	ERD25FJ103	Carbon，	$10 \mathrm{k} \Omega$ ，	1／4W ，	$\pm 5 \%$	R421			$1.8 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R8	ERD25TJ473	Carbon，	$47 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R422	ERD25FJ182 ERD25FJ562	Carbon， Carbon．	$5.6 \mathrm{k} \Omega$ ．	1／4W，	$\pm 5 \%$
R9	ERD25TJ104	Carbon，	$100 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R423， 424	ERD25TJ223	Carbon， Carbon．	$22 \mathrm{k} \Omega$ ，	1／4W．	$\pm 5 \%$
R10	ERD25FJ472	Carbon，	$4.7 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R425	ERD25FJ 222 ERD25FJ272	Carbon， Carbon，	$2.2 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R11	ERD25TJ393	Carbon，	$39 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R426			$2.7 \mathrm{k} \Omega$ ，	1／4W．	$\pm 5 \%$
R12	ERD25FJ102	Carbon，	$1 \mathrm{k} \Omega$ ，	1／4W，	＋5\％	R427			$5.6 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
						R428	ERD25TJ331	Carbon，	330Ω ，	1／4W，	$\pm 5 \%$
R13	ERD25FJ182	Carbon，	$1.8 \mathrm{k} \Omega$	1／4W，	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \end{aligned}$	R429， 430	ERD25TJ684	Carbon．	$680 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R14 R15	ERD25TJ104	Carbon， Carbon，	$100 \mathrm{k} \Omega$, $18 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$, $1 / 4 \mathrm{~W}$,	$\pm 5 \%$						
R15 R16	ERD25TJ183	Carbon， Carbon，	$18 \mathrm{k} \Omega 2$ 220Ω,	$1 / 4 \mathrm{~W}$, $1 / 4 \mathrm{~W}$,	$\pm 5 \%$	R431 R439	ERD25FJ332	Carbon，	$3.3 \mathrm{k} \Omega$, $330 \mathrm{k} \Omega$,	$1 / 4 \mathrm{~W}$, $1 / 4 \mathrm{~W}$	$\pm 5 \%$
R16 R17	ERD25TJ223	Carbon，	$22 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R R 501			$39 \mathrm{k} \Omega$ ．	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$
R18	ERD25FJ272	Carbon．	$2.7 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ．	$\pm 5 \%$	R502	ERD25FJ272	Carbon，	$2.7 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R19	ERD25FJ681	Carbon，	680Ω ．	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R503		Carbon，	$8.2 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R101	ERD25FJ271	Carbon，	270Ω ，	1／4W，	45\％	R504	ERD25FJ822	Carbon，	$1 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$
R102	ERD25FJ151	Carbon．	150Ω.	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R505		Carbon，	150及，	1／4W，	$\pm 5 \%$
A103， 104	ERD25FJ331	Carbon，	330Ω,	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R506		Carbon，	470Ω ，	1／4W，	$\pm 5 \%$
						$R 507$	$\begin{aligned} & \text { ERD25FJ471 } \\ & \text { ERD25TJ153 } \end{aligned}$	Carbon， Carbon，	$15 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R105	ERD25FJ391	Carbon，	390』，	1／4W，	$\pm 5 \%$	R508	ERD25FJ562		$5.6 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$
R106	ERD25TJ123	Carbon，	$12 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$						
R107	ERD25FJ103	Carbon，	$10 \mathrm{k} \Omega$ ．	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R509		Carbon．	$1.5 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R108	ERO25CKF3001	Metal Film，	$3 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ．	$\pm 1 \%$	R510		Carbon，	560Ω ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$
R109	ERD25FJ332	Carbon，	$3.3 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$ $+5 \%$	R511	ERD25FJ561	Carbon，	4．7k Ω ，	1／4W，	$\pm 5 \%$
R110 R111	ERD25FJ100	Carbon，	10Ω, $1 \mathrm{k} \Omega$	1／4W，	$\pm 5 \%$ $\pm 5 \%$	R512 R513	ERD25TJ154	Carbon，	$150 \mathrm{k} \Omega$, $100 \mathrm{k} \Omega$,	$1 / 4 \mathrm{~W}$, $1 / 4 \mathrm{~W}$,	$\pm 5 \%$
R201， 202	ERD25TJ104	Carbon，	$100 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R514	ERD25FJ122	Carbon，	$1.2 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R203， 204	ERD25TJ473	Carbon．	$47 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R515	ERD25FJ272	Carbon，	$2.7 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R205	ERD25FJ103	Carbon．	$10 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R516	ERD25TJ563	Carbon，	$56 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
						R517		Carbon，	150Ω ，	1／4W W，	$\pm 5 \%$
R206	ERD25FJ562	Carbon，	$5.6 \mathrm{k} \Omega$ ，	1／4W．	$\pm 5 \%$	R518， 519	ERD25FJ103	Carbon，	$10 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R207	ERD25TJ563	Carbon，	$56 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$						
R208	ERD25TJ183	Carbon，	$18 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R520	ERD25TJ153	Carbon．	$15 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R209	ERD25FJ122	Carbon，	$1.2 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R521	ERD25FJ151	Carbon，	150及．	1／4W，	$\pm 5 \%$
R210	ERD25FJ681	Carbon，	680Ω.	1／4W，	$\pm 5 \%$	R522	ERD25FJ330	Carbon，	33Ω ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$
R211	ERD25FJ221	Carbon．	2202，	1／4W，	$\pm 5 \%$	R523	ERD25FJ331	Carbon，	330』．	1／4W，	$\pm 5 \%$
R212	ERD25FJ391	Carbon．	390』，	1／4W，	$\pm 5 \%$	R524	ERD25TJ473	Carbon，	$47 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R213	ERD25TJ183	Carbon，	$18 \mathrm{k} \Omega 2$.	1／4W．	$\pm 5 \%$	R525	ERD25FJ103	Carbon，	$10 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R214	ERD25FJ182	Carbon，	$1.8 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R601	ERD25FJ332	Carbon，	$3.3 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R215， 216	ERD25FJ221	Carbon．	220，	1／4W，	$\pm 5 \%$	R602， 603	ERD25FJ562	Carbon，	$5.6 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
						R604	ERD25FJ562	Carbon．	$5.6 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R217	ERD25FJ103	Carbon．	$10 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R605	ERD25TJ473	Carbon．	$47 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R218	ERD25FJ822	Carbon．	$8.2 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ．	$\pm 5 \%$						
R219	ERD25FJ221	Carbon．	2208，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R606	ERD25FJ472	Carbon，	$4.7 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R220	ERD25FJ332	Carbon．	$3.3 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$	R607	ERD25FJ562	Carbon，	$5.6 \mathrm{k} \Omega$ ．	1／4W，	$\pm 5 \%$
R221	ERD25FJ562	Carbon．	$5.6 \mathrm{k} \Omega$ ，	1／4W．	$\pm 5 \%$	R608	ERD25FJ472	Carbon，	$4.7 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R301	ERD25FJ682	Carbon，	$6.8 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	$R 609$	ERD25FJ391	Carbon．	390Ω ，	1／4W，	$\pm 5 \%$
R302	ERD25FJ103	Cartuon，	$10 \mathrm{k} \Omega$ ．	1／4W，	$\pm 5 \%$	R610， 611	ERD25FJ330	Carbon，	33Ω ，	1／4W，	$\pm 5 \%$
R303，304	ERD25FJ102	Carbon．	$1 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R612	ERD25TJ104	Carbon，	$100 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R305	ERD25TJ333	Carbon，	$33 \mathrm{k} \Omega$ ，	1／4W，	＋5\％	R651， 652	ERD25TJ333	Carton，	$33 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
A306， 307	ERD25FJ392	Carbon．	$3.9 \mathrm{k} \Omega$ ．	$1 / 4 \mathrm{~W}$ ．	$\pm 5 \%$	R653 R654	ERD25TJ104	Carbon， Carbon，	$100 \mathrm{k} \Omega$. $33 \mathrm{k} \Omega$	$1 / 4 \mathrm{~W}$, $1 / 4 \mathrm{~W}$,	$\pm 5 \%$
R308， 309	ERD25FJ472	Carbon．	$4.7 \mathrm{k} \Omega$ ．	1／4W，	$\pm 5 \%$	R655	ERD25TJ104	Carbon，	$100 \mathrm{k} \Omega$ ．	1／4W，	$\pm 5 \%$
R310． 311	ERD25FJ103	Carbon，	$10 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R701	ERD50FJ100	Carbon， Carbon，	10Ω.	1／2W，	$\pm 5 \%$
R312， 313	ERD25FJ103	Carbon，	10 kS ，	1／4W，	$\pm 5 \%$	R702			$1 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R314， 315	ERD25F J472	Carbon．	4.7 k 52 ，	1／4W，	$\pm 5 \%$		ERD25FJ102	Carbon，			
R316， 317 R318， 319	ERD25FJ681	Carbon，	680Ω, $100 \mathrm{k} \Omega$	$1 / 4 W$ W， $1 / 4 W$	$\pm 5 \%$	R703	ERD25FJ101	Carbon，	100Ω,	1／4W，	$\pm 5 \%$
R318，319 R402	ERD25TJ104	Carbon， Carbon．	$100 \mathrm{k} \Omega$ ， 33 k ，	$1 / 4 \mathrm{~W}$, $1 / 4 \mathrm{~W}$,	$\pm 5 \%$	$R 704$ $R 705$	ERD25FJ102	Carbon， Carbon，	$1 \mathrm{k} \Omega$, 100Ω,	$1 / 4 \mathrm{~W}$, $1 / 4 \mathrm{~W}$,	$\pm 5 \%$
R403． 404	ERD25TJ273	Carbon．	27kS，	1／4W，	$\pm 5 \%$	R706	ERD25FJ100	Carbon，	10Ω ，	1／4W，	$\pm 5 \%$
R405	ERD25TJ333	Carbon，	$33 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R707	ERD25FJ272	Carbon，	$2.7 \mathrm{k} \Omega$ ．	1／4W，	$\pm 5 \%$
R406， 407	ERD25TJ473	Carbon．	$47 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R708	ERD25FJ681	Carbon．	680Ω ，	1／4W，	$\pm 5 \%$
						R709	ERD25FJ222	Carbon，	$2.2 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R408	ERD25TJ183	Carbon，	$18 \mathrm{k} \Omega 2$.	1／4W，	$\pm 5 \%$	R710	ERD25TJ154	Carbon，	$150 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R409	ERD25FJ103	Carbon．	$10 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$						
R410	ERD25FJ332	Carbon．	$3.3 \mathrm{k} \Omega$ ，	1／4W，	＋5\％	R711	ERD25TJ684	Carbon，	$680 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R411	ERD25FJ102	Carbon，	$1 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R712	ERD25TJ153	Carbon，	$15 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R412	ERD25TJ562	Carbon，	$5.6 \mathrm{k} \Omega$ ．	1／4W，	$\pm 5 \%$	R713	ERD25TJ474	Carbon，	$470 \mathrm{k} \Omega$ ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$
R413	ERD25FJ472	Carbon，	$4.7 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$	R714	ERD25FJ332	Carbon，	$3.3 \mathrm{k} \Omega$ ，	1／4W，	$\pm 5 \%$
R414	ERD25TJ331	Carbon，	33022.	1／4W，	$\pm 5 \%$	R715	ERD25FJ100	Carbon，	10Ω ，	$1 / 4 \mathrm{~W}$ ，	$\pm 5 \%$

Ref. No.	Part No.	Part Name \& Description				Ref. No.		Part No.	Part Name \& Description			
CAPACITORS						C223 C301 C302 C303 C304 C305 C306 C307, 308 C309, 310 C311, 312 C313, 314	ECKD1H103MD ECQS1 102JZ ECEA50Z1 ECEA50ZR1 ECQM1H182JZ ECEA50Z1 ECEA1ES220 ECQM1H223KZ ECQM1H272KZ ECKD1H331KB ECQM1H222KZ		Ceramic.	$0.01 \mu \mathrm{~F} \text {, }$		
Cl	ECCD1H220KC	Ceramic,	22 pF .	50 V ,	$\pm 10 \%$				Polystyrene,	$0.001{ }^{\prime} \mathrm{F}$.		
C2	ECCD1H220KC	Ceramic.	22 pF ,	50 V .	$\pm 10 \%$				Electrolytic,	${ }_{1} \mu \mathrm{~F}$, ${ }^{\text {L }}$	$50 \mathrm{~V}$	
C3	ECCDIHO5OCC	Ceramic,	5 p F	50 V .	$\pm 0.25 \mathrm{pF}$				Electrolytic,	$0.1 \mu \mathrm{~F}$.	50 V	
C4	ECKD1H102MD	Ceramic,	0.001	50 V .	$\pm 0.25 \mathrm{pF}$				Polyester,	$0.0018 \mu \mathrm{~F}$,	, 50 V .	$\pm 5 \%$
C6	ECCD1H040CC	Ceramic.	4pF	50 V .	$\pm 0.25 \mathrm{pF}$				Electrolytic,	$1 \mu \mathrm{~F}$,	50 V	
C7	ECCD1H070CC		7 pF ,	,	$\pm{ }^{ \pm}$) 250 p				Electrolytic.	$22 \mu \mathrm{~F}$	25 V	
C8	ECKD1H102MD	Ceramic,	$0.001 \mu \mathrm{~F}$,	50 V ,	25p				Polyester,	$0.022 \mu \mathrm{~F}$.	50 V .	$\pm 10 \%$
c9	ECBT1HR22K	Ceramic,	0.22 pF ,	50 V .	\pm				Polyester,	$0.0027 \mu \mathrm{~F}$,	. 50 V .	$\pm 10 \%$
C10	ECKD1H102MD	Ceramic.	$0.001 \mu \mathrm{~F}$.	50 V .	$\pm 20 \%$				Ceramic, Polyester,	330 pF , $0.0022 \mu \mathrm{~F}$	50 V . 50 V .	$\begin{aligned} & \pm 10 \% \\ & \pm 10 \% \end{aligned}$
C11	ECCDIHOTOCC	Ceramic.	7 pF ,	50 V ,	$\pm 0.25 \mathrm{pF}$	C315, 316		ECEA50ZR33	Electrolytic,		50 V .	
C12	ECCDIH040CC	Ceramic.	4 pF ,	50 V ,	$\pm 0.25 \mathrm{pF}$	C401		ECQM1H153KZ	Polyester,	$0.015 \mu \mathrm{~F}$.	50 V .	$\pm 10 \%$
C_{13}	ECCDIHO50CC	Ceramic,	5 pF ,	50 V ,	$\pm 0.25 \mathrm{pF}$	C402		ECKD1H1032F	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20\%
C 14	ECCD1H181K	Ceramic.	180pF,	50 V .	$\pm 10 \%$	C404	\triangle	ECEA16N 10	Non-polar Elec	ctrolytic, 10	O $\mu \mathrm{F}, 16$	
C15	ECCDIHO20CC	Ceramic,	2 pF ,	50 V .	$\pm 0.25 \mathrm{pF}$	C405		ECEA1CS 330	Electrolytic.	$33 \mu \mathrm{~F}$.	16 V	
C17	ECKD1H102MD	Ceramic,	$0.001 \mu \mathrm{~F}$,	50 V ,	$\pm 20 \%$	C406		ECEA50Z1	Electrolytic,	$1 \mu \mathrm{~F}$.	50 V	
C18	ECKD1H103MD	Ceramic.	$0.01 \mu \mathrm{~F}$,	50 V .	$\pm 20 \%$	C407, 408		ECQM1H473KZ	Polyester,	$0.047 \mu \mathrm{~F}$,	50 V ,	$\pm 10 \%$
C19	ECCDIHO5OCC	Ceramic,	5 pF ,	50 V .	$\pm 0.25 \mathrm{pF}$	C501		ECCD1H220KC	Ceramic,	22 pF .	50 V .	$\pm 10 \%$
C 20	ECCDIH390KC	Ceramic,	39 pF ,	50 V .	$\pm 10 \%$	C502		ECKD1H1032F	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20\%
C21	ECCDIH100KC	Ceramic.	10pF.	50 V .	$\pm 10 \%$	C504		ECKD1H103ZF	Ceramic,	$0.01 \mu \mathrm{~F}$.	50 V ,	+80, -20\%
C22	ECKD1H102ZF	Ceramic,	$0.001 \mu \mathrm{~F}$,	50 V .	+80, -20%	C505		ECCDIH101K	Ceramic,			
C23	ECCD1H070DC	Ceramic,	7 pF ,	50 V .	$\pm 0.5 \mathrm{pF}$	${ }^{\text {c } 506}$		ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V .	+80, -20%
C 24	ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V .	+80,-20\%	C507		ECCD1H060CC	Ceramic,		50 V .	$\pm 0.25 \mathrm{pF}$
C25	ECCD1H070CC	Ceramic,	7pF.	50 V .	$\pm 0.25 \mathrm{pF}$	C508		ECKD1H2232F	Ceramic,	$0.022 \mu \mathrm{~F}$.	50 V .	+80, -20\%
C_{26}	ECKD1H1032F	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20\%	C509		ECKD1H103ZF	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20\%
$\mathrm{C}_{2} 27$	ECKD1H1032F	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20\%	C510, 511		ECCD1H330JC	Ceramic,	33 pF .	50 V .	$\pm 5 \%$
C28	ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V .	+80, -20%	C512		ECCD1H101K	Ceramic,	100pF.	50 V .	$\pm 10 \%$
C29	ECKD1H103ZF	Ceramic.	$0.01 \mu \mathrm{~F}$.	50 V ,	+80, -20%	C513		ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V .	+80, -20%
C30	ECCDIH100KC	Ceramic,	10pF.	50 V .	$\pm 10 \%$	C514		ECEA1AS101	Electrolytic,	$100 \mu \mathrm{~F}$,	10 V	
C101, 102	ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$.	50 V ,	+80, -20%	C515		ECQM1H223KZ	Polyester.	$0.022 \mu \mathrm{~F}$.	50 V ,	$\pm 10 \%$
C103, 104	ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V .	+80, -20%	C516		ECEA50M2R2R	Electrolytic,	$2.2 \mu \mathrm{~F}$,	50 V	
Cl^{105}	ECEA5023R3	Electrolytic,	$3.3 \mu \mathrm{~F}$,			C517		ECQM 1 H823KZ	Polyester,	$0.082 \mu \mathrm{~F}$.	50 V .	$\pm 10 \%$
Cl^{106}	ECEA1HS100	Electrolytic,	$10 \mu \mathrm{~F}$,	50 V		C518		ECQM1H273KZ	Polyester,	$0.027 \mu \mathrm{~F}$,	50 V ,	$\pm 10 \%$
${ }_{\text {C107, }} \mathrm{Cl} 108$	ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V 50 V	+80, -2.0%	C519		ECQM1H822KZ	Polyester,	$0.0082 \mu \mathrm{~F}$.	. 50 V .	$\pm 10 \%$
C109 C110	ECEA50ZR47	Electrolytic,	$0.47 \mu \mathrm{~F}$.	50 V		C520		ECKD1H1032F	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20\%
c110 C111	ECEA1ES220	Electrolytic,	$22 \mu \mathrm{~F}$,	25 V		C521		ECEA1HS470	Electroiytic.	$47 \mu \mathrm{~F}$,	50 V	
C112	ECEA1Cs331	Ceramic,	3020 3 F,		, -20\%	${ }^{\text {C522 }}$		ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$.	50 V .	+80, -20%
C113, 114	ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V .	+80, -20\%	C523 C601		ECKD1H102ZF	Ceramic,	${ }_{47 \mu \mathrm{~F}}^{0.001 \mu \mathrm{~F}}$	50 V, 10 V	+80, -20\%
C201	ECQM1H223KZ	Polyester,	$0.022 \mu \mathrm{~F}$,	50 V .	$\pm 10 \%$	C602		ECKD1H102ZF	Ceramic,	$0.001 \mu \mathrm{~F}$,	50 V .	+80, -20%
C202	ECQM1H473KZ	Polyester,	$0.047 \mu \mathrm{~F}$,	50 V ,	$\pm 10 \%$	C603		ECEA1AS221	Electrolytic,	$220 \mu \mathrm{~F}$.		
C203	ECCD1H050CC	Ceramic,	5 pF .	50 V .	$\pm 0.25 \mathrm{pF}$	C606		ECEA1JS4R7	Electrolytic,	$4.7 \mu \mathrm{~F}$,	63 V	
C204	ECQS 1241 JZ	Polystyrene,	240 pF ,	125 V .		C607		ECEA1AS221	Electrolytic,	$220 \mu \mathrm{~F}$,	10 V	
C205. 206	ECKD1H223ZF	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V .	+80, -20\%	C608		ECEA1JS4R7	Electrolytic,	$4.7 \mu \mathrm{~F}$,	63 V	
C207	ECQM1H472KZ	Polyester,	$0.0047 \mu \mathrm{~F}$,	50 V .	$\pm 10 \%$	C701, 702		ECEA1CS 102	Electrolytic,	$1000 \mu \mathrm{~F}$.	16 V	
C208	ECCD1H390KC	Ceramic,	39 pF ,	50 V .	$\pm 10 \%$	C703		ECKD1H1032F	Ceramic.	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20%
C209	ECKD1H103ZF	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20\%	C704		ECEA1CS330	Electrolytic,	$33 \mu \mathrm{~F}$,	16 V	
C210	ECQM1H223KZ	Polyester,	$0.022 \mu \mathrm{~F}$,	50 V .	$\pm 10 \%$	C705		ECEA1VS 102	Electrolytic,	$1000 \mu \mathrm{~F}$,	35 V	
C211	ECKD1H2232F	Ceramic,	$0.022 \mu \mathrm{~F}$,	50 V .	+80, -20\%	c706		ECEA1CS331	Electrolytic,	$330 \mu \mathrm{~F}$.	16 V	
C212	ECQM1H122JZ	Polyester,	$0.0012 \mu \mathrm{~F}$,	50 V .		C707		ECKDIH103ZF	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V ,	+80, -20\%
C213	ECKD1H103MD	Ceramic, !	$0.01 \mu \mathrm{~F}$,	50 V ,	$\pm 20 \%$	C708		ECEA1VS330	Electrolytic,	$33 \mu \mathrm{~F}$.	35 V	
C214	ECEATHS100	Electrolytic,	$10 \mu \mathrm{~F}$.			C709		ECEA1VS 101	Electrolytic,	100 F F,	35 V	
C215	ECCDIH560KC	Ceramic.	56 pF .			C710		ECEA1JS330	Electrolytic,	$33 \mu \mathrm{~F}$,	63 V	
C216, 217	ECKD1H223ZF	Ceramic.	$0.022 \mu \mathrm{~F}$,	50 V ,	+80, -20\%	C711		ECEA1JS4R7	Electrolytic,	$4.7 \mu \mathrm{~F}$.	63 V	
C218	ECEA502R1	Electrolytic,	$0.1 \mu \mathrm{~F}$.	50 V		C712		ECEA 1 HS 100	Electrolytic,	$10 \mu \mathrm{~F}$.	50 V	
C 219	ECKDIH2232F	Ceramic,	$0.022 \mu \mathrm{~F}$.	50 V .	+80, -20\%	C713		ECKD1H103ZF	Ceramic,	$0.01 \mu \mathrm{~F}$,	50 V .	+80, -20%
C220	ECKD1H103MD	Ceramic,	$0.01 \mu \mathrm{~F}$.	50 V .	$\pm \begin{aligned} & \pm 20 \% \\ & +10 \%\end{aligned}$	C714, 715		ECKDKC103PF	Ceramic,	$0.01 \mu \mathrm{~F} .40$	$00 \mathrm{~V} \mathrm{AC}$,	+100, -0%
C221	ECCD1H121K	Ceramic,	120 pF ,	50 V ,	$\pm 10 \%$	C716		ECEA50Z3R3	Electrolytic,	$3.3 \mu \mathrm{~F}$.	35 V	
C222	ECEA5021	Electrolytic.	$1 \mu \mathrm{~F}$.	50 V		C717. 718		ECEA1CS330	Electrolytic,	$33 \mu \mathrm{~F}$.	16 V	

Schematic Diagram
 Model ST-8055/ST-8055K

Notes:

1. S1-1~S1-6: Band selector switch in "FM" position.
2. S2-1~S2-3: FM-AM muting/FM mode selector in "on/auto" position
3. S3: Manual tuning (down) switch
4. S4: Manual tuning (UP) switch.
5. S5: Memory write switch.
6. S6~S12: Preset-tuning switch.
7. S13: Power source switch in "on" position.
8. S14: FM-AM allocation switch ([XA] only)
9. S15: Voltage adjuster switch in " $\mathbf{2 4 0 V}$ " position.
(1) $110 \leftrightarrow$ (2) $120 \leftrightarrow$ (3) $220 \leftrightarrow$ (4) 240
10. Indicated voltage values are the standard values for the unit measured by the DC electronic circuit tester (high impedance) with the chassis taken as standard. Therefore, there may exist some errors in the voltage values, depending on the internal impedance of the DC circuit tester.
\square Voltage during FM monaural or non-signal reception,
Voltage in AM mode, $<>$ Voltage during FM stereo reception.
\lrcorner Voltage during muting circuit operation

(With muting switch set to ON, a bias is applied to the switching transistor of muting circuit so that the output comes out in case of over 18 dB antenna input and is grounded when the input is less than 17 dB .)
11. \triangle indicates that only parts specified by the manufacuturer be used for safety.
12. Signal lines $\square F M \Longrightarrow A M \longrightarrow A F$

Shorting Switch

This unit uses a shorting switch. As illustrated bel In the circuit diagram, the shaded area represents the

sillustrated below, the circuit is shorted to the next circuit without being opened.
ea represents the common terminal.

Product for [$X A$ 〕 only.

$$
B B B .0 O_{0}
$$

\square

EXPLODED VIEW

REPLACEMENT PARTS LIST (Cabinet, Chassis \& Packing Parts)

NOTES: 1. Part numbers are indicated on most mechanical parts Please use this part number for parts orders
2. Δ indicates that only parts specified by the manufacturer be used for safety.
3. (E) and (EG) are available in Scandinavia and European only.
(XA) is available in Asia, Latin America, Middle East and Africa only.
($X E$) is available in United Kingdom only.
(XGH) is available in Holland only.
($X G F$) is available in France only.

Ref. No.	Part No.	Part Name \& Description
SCREWS and WASHERS		
60 51 52 63 59 63 56 67 63 59 60) (61) (62) $[X A]$ only 63 [XA] only	$\begin{aligned} & \text { XTB3+8BFZ } \\ & \text { XTB3+8BFN } \\ & \text { XWE3 } \\ & \text { XTB3+8BFZ } \\ & \text { XTB3+8BFN } \\ & \text { XNG3ES } \\ & \text { XWC3B } \\ & \text { XSN3+8BVS } \\ & \text { XTB3+16BFZ } \\ & \text { XTB4+8BFN } \\ & \\ & \text { XTB3+10BFN } \\ & \text { XTB3+8BFZ } \\ & \text { XSN3+6BVS } \\ & \text { XWA3BFZ } \end{aligned}$	Screw, Front Panel M'tg Screw, Bracket Washer, Bracket Screw Screw, Main P.C.B. M'tg Screw, Power Fuse P.C.B. M'tg Nut, Ground Lug M'tg Washer, Ground Lug Screw, Ground Lug Screw, Voltage Adjustment M'tg Screw, Cabinet Screw, Foot M'tg Screw, FM/AM Antenna Terminal M'tg Screw, FM/AM Allocation Switch M'tg Washer, FM/AM Allocation Switch
ACCESSORIES		
$\begin{aligned} & A 1 \\ & \text { A2 } \\ & \text { A3 } \\ & \text { A4 }[X A] \text { only } \end{aligned}$	$\begin{aligned} & \text { SJP2129-5 } \\ & \text { SKL235 } \\ & \text { SSA267 } \\ & \text { SJP5213-1 } \end{aligned}$	Cord, Connection Shield Foot Cord, FM Indoor Antenna Plug Adaptor, Power Source
PACKING PARTS		
P1 P2 P3 P4 P4 [XGF] only P5	SPP637 SPS2295 SPS2297 SPG2265 SPG2267 SQF 10243	Polyethylene Bag Pad, Left and Right Side Pad, Top Side Carton Box Carton Box Instructions Book, Printed Matter

CHANGE OF PARTS LIST

ST-8055K (E), (EG), (XGH), (XA)

NOTES: 1. This parts list included only the changes of the model ST-8055 parts list.
2. (E) and (EG) are available in Scandinavia and European only.
(XA) is available in Asia, Latin America, Middle East and Africa only.
(XGH) is available in Holland only.

Ref. No.	Change of Part No.		Part Name \& Description
	ST-8055	- ST-8055K	
	CABINET and CHASSIS PARTS		
1	SGWT8055D	SGWT8055KD	Panel, Front Ass'y
2	SUS185	Deletion	---------------
4	SBC197-2	SBC197-3	Button, Power, Selector and FM AM Muting/FM Mode Switch
19	SKCT8055D	SKCT8055KD	Cabinet, Ass'y
23	SGPT8055E	SGP1710-1B [E]	Chassis
	SGP1710-1A [E] only	SGPT8055KD [EG, XGH]	Chassis, SGP 1710-1B with Name Plate (SGT20850)
	SGPT8055 X [XA] only	SGPT8055KX [XA]	Chassis, SGP1710-2A with Name Plate (SGT20850)
SCREWS and WASHERS			
(5)	XTB3+8BFN	Deletion	----------------
69	XTB4 +8 BFN	XTB4+8BFZ	Screw, Cabinet
PACKING PARTS			
P4	SPG2265	SPG2271	Carton Box
	SPG2267		

