Service Manual FM/AM Stereo Tuner **ST-C03** (E),(EG),(EB),(XGH), (XGF),(XE),(XA),(XAL) ST-C03K (EG) * The colors of this model include silver and black. The black type model is provided with (K) in the Service Manual. #### Arose - f [E] and [EG] are available in European and Scandinavia. - * [EB] is available in Belgium. - * (XGH) is available in Holland. - * [XGF] is available in France. - * [XE] is available in United Kingdom. - [XA] is available in Asia, Latin America, Middle East and Africa. - * [XAL] is available in Australia. **TECHNICAL SPECIFICATIONS** Specifications are subject to change without notice for further improvement. #### [DIN 45 500] FM TUNER SECTION | Frequency range | | 87.5 ~ 108.0 MHz | |-----------------------------|---------------|---| | Sensitivity | | 1.9µ∨ (IHF, usable) | | S/N 30 dB | 2. | $0\mu V (300\Omega), 1.3\mu V (75\Omega)$ | | S/N 26 dB | 1. | $8\mu V (300\Omega), 1.2\mu V (75\Omega)$ | | S/N 20 dB | 1. | $6\mu V (300\Omega), 0.9\mu V (75\Omega)$ | | IHF 46 dB stereo quietin | g sensitivity | 20μV/75Ω | | Total harmonic distortion | | 0.08% | | | STEREO | 0.15% | | S/N | MONO | 68 dB (77 dB, IHF) | | -, | STEREO | 65 dB (72 dB, IHF) | | Frequency response | | 5 kHz, +0.5 dB ~ -1.5 dB | | Alternate channel selective | | 75 d8 | | Capture ratio | , | 1.0 dB | | Image rejection at 98 MH | lz | 65 dB | | IF rejection at 98 MHz | - | 85 dB | | Spurious response rejection | on at 98 MHz | | | AM suppression | on at 50 mm | 52 dB | | Stereo separation | 1 kHz | 45 dE | | Stereo separation | 10 kHz | 35 dB | | Carrier leak | 10 kHz | -30 dB (-40 dB, IHF) | | Carrier reak | 38 kHz | -50 dB (-40 dB, IHF) | | Ohanna I halana /250 Ha | | | | Channel balance (250 Hz | : ~ 0,300 H2) | ±1.0 dB | | Power bandwidth | IF amplifier | 180 kHz | |-------------------|----------------|------------------------| | | FM demodulator | 1000 kHz | | Antenna terminals | | 300Ω (balanced) | | | | 75Ω (unbalanced) | # AM TUNER SECTION | Frequency range | 522 ~ 1611 kHz | |------------------------------|----------------| | Sensitivity (S/N 20 dB) | 30µV, 250µV/m | | Selectivity ±9 kHz | 30 dB | | Image rejection at 1,000 kHz | 50 dB | | IF rejection at 1,000 kHz | 40 dB | #### **GENERAL** | Output voltage | 0.3V | / | |----------------------|-------------------------------------|---| | , - | 0.6V (IHF) | | | Power consumption | 12W | | | Power supply | AC 50 Hz/60 Hz, 110V/120V/220V/240V | | | Batteries for memory | back-up (optional) | | | | three "AA" size batteries | | | | DC 4,5V | | | Dimensions (WxHxD) | 297 x 49 x 244mm | 1 | | Weight | 2 R kg | | Limiting point ## SI-CU3/K TECHNISCHE DATEN Spezifikationen können infolge von Verbesserungen ohne Ankündigung geändert werden. [DIN 45 500] UKW-TUNERTEIL Bandbreite 180 KHZ ZF-Verstärker 1000 kHz UKW-Demodulator Wellenbereich 87.5 ~108.0 MHz 30012 (symmetrisch) AntennenanschluB Eingangsempfindlichkeit 1.9µV (nutzbar nach IHF) 75Ω (unsymmetrisch) $2.0\mu \lor (300\Omega), 1.3\mu \lor (75\Omega) \\ 1.8\mu \lor (300\Omega), 1.2\mu \lor (75\Omega)$ S/R 30 dB S/R 26 dB AM-TUNERTEIL S/R 20 dB 1.6μ∨ (300Ω), 0.9μ∨ (75Ω) Stereoumschaltschwelle bei 46 dB nach IHF 20μV/75Ω Wellenbereiche 522 ~1611 kHz Gesamtklirrfaktor Mono 0,08% Eingangsempfindlichkeit (S/R 20 dB) 30µV, 250µV/m Stereo 0,15% Trennschärfe ±9 kHz 30 d8 68 dE (77 dB nach IHF) Geräuschabstand Mono Spiegelfrequenz-Dämpfung bei 1000 kHz 50 dB Stereo 65 dEl (72 dB nach IHF) ZF-Dämpfung bei 1000 kHz 40 dB Frequenzgang 20 Hz ~15 kHz (+0,5 dB ~1,5 dB) 75 dB ALLGEMEINE DATEN Trennschärfe bei Störsender Einfangverhältnis 1,0 dB Ausgangsspannung 0,37 Spiegelfrequenz-Dämpfung bei 98 MHz 65 dB 0.6V (IHF) ZF-Dämpfung bei 98 MHz 85 dB 12W Leistungsaufnahme Ansprechdämpfung auf Nebenfrequenzen bei 98 MHz 90 dB Netzspannung AM-Unterdrückung 52 dB Wechselstrom 50 Hz/60 Hz, 110V/120V/220V/240V Übersprechdämpfung 1 kHz 45 dB Batterien für den Speicher (Sonderzubehör) drei Batterien 10 kHz 35 dB "AA" (4,5V) Trägerrest 19 kHz -30 dB (-40 dB nach IHF) 297 x 49 x 244mm Abmessungen (B x H x T) 38 kHz -50 dB (-40 dB nach IHF) 2,8 kg Gewicht Kanalabweichung (250 Hz ~6300 Hz) ±1,0 dB Begrenzereinsatz 1,2µ∨ | DIN 45 500) | | | | | | |---|----------------|----------------------------------|------------------------|------------------------|---------------------| | ECTION SYNTONISAT | EUR FM | | Largeur de bande | Amplificateur Fi | 180 kH: | | Gamme de fréquence | | 87.5 ~ 108.0 MHz | | Démodulateur FM | 1000 kH: | | Sensibilité | | 1,9µV (1HF utilisable) | Bornes d'antenne | | 300s (symétrique) | | S/B 30 dB | 2.0uV | (300Ω), 1,3μV (75Ω) | | | 75Ω (asymétrique | | S/B 26 dB | | (300Ω), 1,2μV (75Ω) | | | | | S/B 20 dB | | (300Ω), 0.9 _± V (75Ω) | SECTION SYNTONI | SATEUR AM | | | Sensibilité stéréo au seuil o | te 46 dB, IHF | 20μV/75Ω | Gamme de fréquence | | 522 ~ 1611 kHz | | Distorsion harmonique to: | ale MONO | 0,08% | Sensibilité (S/B 20 d8 | 3) | 30µV, 250µV/m | | | STEREO | 0,15% | Sélectivité ±9 kHz | , | 30 dF | | Signal/Bruit | MONO | 68 dB (77 dB, IHF) | Réjection d'image à 1 | .000 kHz | 50 dB | | | STEREO | 65 dB (72 dB, IHF) | Réjection FI à 1,000 | kHz | 40 d E | | Réponse de fréquence | | 1z, +0,5 dB ~1,5 dB | | | | | Sélectivité alternée par car | ıal | 75 dB | DIVERS | | | | Taux de capture | | 1,0 d8 | Tension de sortie | | 0.3V | | Rejection d'image à 98 Mi | 12 | 65 dB | 1 0/13/01(de 30/11e | | (0.6V IHF) | | Rejection FI à 98 MHz | 2 - 2 00 MIL | 85 dG | Consommation | | 1214 | | Rejection de réponse paras | SITE 8 98 MIMZ | 90 dB | | CA 50 Hz/60 Hz, 110 | | | Suppression AM
Séparation stéréophonique | 1 kHz | 52 dB | | n des mémoires (en apt | | | Seberation stateobijouidae | 10 kHz | 45 dB
35 dB | and the second | | VP0 AA (C.C.: 4.5V) | | Fuite de porteuse | | -30 dB (-40 dB, IHF) | Dimensions (L x H x I | | 297 x 49 x 244mm | | i dite de baitease | | -50 dB (-40 dB, IHF) | Poids | • | 2,8 kg | #### **■ CONTENTS** | Page | Page | | |----------------------|---------------|---| | LOCATION OF CONTROLS | BLOCK DIAGRAM | 2 | | | | | #### ■ LOCATION OF CONTROLS # ST-C03/K #### ■ HOW TO REMOVE THE PRINTED CIRCUIT BOARD - Remove the 4 setscrews (①~④ in Fig. 1) used to fasten the buttom board. - 2. Remove the buttom board. - 3. Remove the 2 setscrews (⑤, ⑥ in Fig. 1) used to fasten the rear panel. - 4. Remove the 6 setscrews (⑦,⑨~①,⑩ in Fig. 2) used to fasten the printed circuit board. - 5. Remove the printed circuit board to backward. - Remove the 2 setscrews (®, (3) in Fig. 2) used to fasten the shield cover. - 7. Remove the shield cover. - 8. To reassemble, reverse the above procedure. #### **■** HOW TO REMOVE SWITCHES - Remove the 2 setscrews (1). (i) in Fig. 3) used to fasten the printed circuit board. - Remove the printed circuit board. - 3. Push the LED in the direction of arrows (in Fig. 3). - Remove the adhesion (in Fig. 4) used to fasten the LED holder. - 5. Unsolder the switch. - 6. Remove the switch. - To reassemble, reverse the above procedure and note the following. - (1) Fix the LED holder (17), (19) in Fig. 4) by adhesion. Fig. 4 # ■ HOW TO REPLACE CHIPS (RESISTOR, CAPACITOR, JUMPER) - 1. Remive solder from chip by using solder sucker. - Remove chip with tweezers by rotating it while removing solder as shown in fig. 5. - Solder circuit board first and then solder chip in the direction of the arrow as shown in fig. 6. Notes: - Do not use chip again which is removed from printed circuit board. - Use lead wire with insulator for replacement instead of chip jumper. #### ■ NOTE FOR REPLACING CHIPS - 1. Do not heat chips more than three (3) seconds. - 2. Be careful not to damage the electrode of chips. - Use soldering iron (less than 60 W) and tweezers for replacing chips. Fig. 2 Fig. 3 Fig. 5 Fig. 6 | Color | Original Parts Name | |-------|---------------------| | Black | Chip Resistor | | Brown | Chip Capacitor | | Black | Chip Jumper | ### ■ BLOCK DIAGRAM OF IC'S IC101 (RVIµPC1167C) FM IF AMP/DETECTOR (AN217PBB) FM-IF AMP, AM OSCILLATOR, AM-IF AMP 51-CU3/K IC301 (RVILA3350S) FM MPX (RVIMSM4017RS) DECADE COUNTER/DIVIDER (MN6045A) PLL CONTROLER RAM (RVIMSM4019RS) QUAD AND/OR SELECT GATE # ■ ALIGNMENT INSTRUCTIONS ■ ENGLISH ■ ENGLISH | | | | | AM ALIGNMENT | | | | | |---|---|--------------------------------------|---------------------------------|---|---|---|--|--| | | SIGNAL GENERA | TOR | FREQUENCY | INDICATOR | ADJUSTMENT | | | | | | CONNECTION | FREQUENCY | DISPLAY
SETTING | (VTVM or SCOPE)
(DISTORTION METER) | POINTS | REMARKS | | | | 1 | Fashion loop of several
turns of wire and radiate
signal into loop of receiver. | 450kHz
(30% Mod,
with 400Hz) | Point of non-
inter-ference. | Connect AC VTVM or scope to TP3, | T201 (AM 1st IFT)
T202 (AM 2nd IFT) | Adjust for maximum reading on VTVM. | | | | 2 | _ | no-signal | 522kHz | Connect DC VTVM between TP1 and earth. | L203 (AM OSC Coil) | Adjust for 1.5±0.05V reading on DC VTVM. | | | | 3 | - 1 | no-signal | 1611kHz | Connect DC VTVM between TP1 and earth. | CT202
(AM OSC Trimmer) | Adjust for 20±0.1V
reading on DC VTVM.
Repeat steps 3 and 4. | | | | 4 | Fashion loop of several turns of wire and radiate signal into loop of receiver. | 549kHz | 549kHz | Connect AC VTVM or scope to output terminals. | L201 (AM ANT Coil) | Adjust for maximum output, | | | | 5 | Fashion loop of several turns of wire and radiate signal into loop of receiver. | 1503kHz | 1503kHz | Connect AC VTVM or scope to output terminals. | CT201
(AM ANT Trimmer) | Adjust for maximum output. Repeat steps 4 and 5. | | | | | | | |
FM IF ALIGNMENT | | | | | | 6 | Connect to TP2 | 10,7MHz | Point of non-
inter-ference. | Connect scope to TP6. | T1 (FM IFT) | 1. Pull out the core of T101. 2. Adjust for maximum amplitude and proper linearity between ±100kHz markers. | | | | | | | F | M RF ALIGNMENT | | | | | | 7 | <u>14</u> 5 | no-signal | 87.50MHz | Connect DC VTVM between TP1 and earth. | L5 (FM OSC Coil) | Adjust for 2,6±0,05V reading on DC VTVM, | | | | 8 | =1 | no-signal | 108.00MHz | Connect DC VTVM between TP1 and earth. | CT4
(FM OSC Trimmer) | Adjust for 16±0.1V reading on DC VTVM, Repeat steps 7 and 8. | | | | 9 | Connect to FM 300Ω antenna terminal through FM dummy antenna. | 90.0MHz
(100% Mod.
with 1kHz) | 90.00MHz | Connect AC VTVM or scope to output terminals. | L3 (FM DET Coil)
L2 (FM ANT Coil)
L1 (FM ANT Coil) | Adjust for maximum output. | | | | 0 | Connect to FM 300Ω antenna terminal through FM dummy antenna. | 106,0MHz
(100% Mod.
with 1kHz) | 106.00MHz | Connect AC VTVM or scope to output terminals. | CT3(FM DET Trimmer)
CT2(FM ANT Trimmer)
CT1(FM ANT Trimmer) | Adjust for maximum output. | | | | Ì | | DC BA | LANCE AND | CE AND FM MONO DISTORTION ALIGNMENT | | | | | | 1 | Connect to FM 300Ω antenna terminal through FM dummy antenna (60dB) | 98.0MHz
(100% Mod.
with 1kHz) | 98.00MHz | Connect DC VTVM between TP4 and TP5 through resistors, (fig. 8) | T101 (FM IFT) | Adjust for OV reading on DC VTVM. | | | | 2 | Connect to FM 300Ω
antenna terminal through
FM dummy antenna (60dB) | 98,0MHz
(100% Mod,
with 1kHz) | 98.00MHz | Connect distortion meter to output terminal | T102 (FM IFT) | Adjust for minimum distortion of left output | | | | | -322 | | FM I | MPX VCO ALIGNMENT | | | | | | 3 | - | no-signal | Paint of non-
inter-ference | Connect frequency counter to TP7 through resistor (100k Ω). | VR301 | 1. Set selector switch to "FM auto". 2. Adjust for 19kHz ±30Hz reading on frequency counter. | | | | ĺ | | | TUNII | NG METER ALIGNMENT | | | | | | 4 | Connect to FM 300Ω
antenna terminal through
FM dummy antenna (60dB) | 98.1MHz
(100% Mod.
with 1kHz) | 98.10MHz | 1.874 | VR101 | Adjust VR101 so that the 5th LED illuminate. | | | | Notes: 1. Stereo modulator | | | | | | | | | | |----------------------------|---|--|--|---------------------|--|--|--|--|--| | | FM SIGNAL
GENERATOR
CONNECTION | STEREO MODULATOR
MODE & MODE RATE | INDICATOR
(AC VTVM) | ADJUSTMENT
POINT | REMARKS | | | | | | Ī | FM STEREO SEPARATION ALIGNMENT | | | | | | | | | | 5 | FM 300 Ω antenna terminals through FM dumrny antenna. | (1kHz 30% Modulation)
MODE L (and R) Pilot
signal to "ON". | Connect VTVM to output
terminal through low pass
filter. (Refer to fig. 9) | VR302 | Frequency display at 98.0MHz. Make adjustment so that when the antenna input is subjected to L modulation (or R modulation). R channel output (or L channel output) becomes minimum. | | | | | | - | FM STEREO DISTORTION ALIGNMENT | | | | | | | | | | 6 | Connect to FM 3000
antenna terminal through
FM dummy antenna.
98.0MHz 60dB | (1 kHz 100% Modulation)
MODE R | Connect distortion meter to output terminal of receiver, | T1 (FM IFT) | Adjust for minimum distortion of right output. | | | | | # # ABGLEICHANWEISUNGEN DEUTSCH (Für Deutschland) | | Anmerkungen: 1. Netzschalter 2. Tondämpfung/UKW-Mor | no-Schafter | eingeschaltet
ausgeschaltet/mo | 3. Wahlschafter | entenne | MW/UKW
Siehe Abbildung 7 | |---|---|---|-----------------------------------|--|---|--| | | | | | | | | | | SIGNALGENERATOR (M | IESSENDER) | FREQUENZ- | MEGGERÄT | EINSTELLUNGS- | | | | ANSCHLUSS | FREQUENZ | STELLUNG | (VTVM oder OSZILLOSKOP)
(VERZERRUNGSMESSER) | PUNKTE | BEMERKUNGEN | | | Testschleife aus mehreren
Windungen eines Drahtes
fertigen, und Signal in die
Empfangsschleife des
Gerätes senden, | 450kHz
(30%
moduliert
bei 400Hz) | Störungsfreie
Stelle | Das Röhrenvoltmeter (VTVM)
oder Oszilloskop mit TP3
(Testpunkt) verbinden, | T2011MW erster ZFT)
T2021MW zweiter ZFT) | Auf maximalen Anzeige-
wert des Röhrenvoltmeter
(VTVM) einstellen. | | | _ | Kein
Signal | 522kHz | Das Gleichströmröhren-
voltmeter zwischen TP1
(Testpunkt) und Erde
verbinden. | L203
(MW-Schwingspule) | Auf 1.5V±0.05 auf dem
Gleichstromrohrenvolt-
meter einstellen. | | | 2 | Kein
Signat | 1611kHz | Das Gleichstromröhrenvolt-
meter zwischen TP1 und Erde
verbinden. | CT 202 (MW-
Schwingertrimmer) | Auf 20V±0.1 auf dem
Gleichstromröhrenvolt-
meter einstellen. Die
Schritte 3 und 4
wiederhalen. | | | Testschleife aus mehreren
windungen eines Drahtes
fertigen und Signal in die
Eingangsschleife des
Gerates senden, | 549kHz | 549kHz | Das Wechselstromröhrenvolt-
meter oder Oszillosköp mit
den Ausgangsklemmen
verbinden | L201 (MW-
Schwingertrimmer) | Auf maximalen Ausgang einstellen. | | | Testschielfe aus mehreren
Windungen eines Drahtes
fertigen, und Signal in die
Eingangsschleife des
Gerites sienden. | 1503kHz | 1503kHz | Das Wechselstromröhrenvolt-
meter oder Öszülloskop mit
den Ausgangsklerrimen
verbinden. | CT201 (MW-
Amenneturimmet) | Auf maximaten Ausgang
einstellen. Die Schritte
4 und 5 wiederholen | | į | | W | | UKW-ZF-ABGLEICH | | | | 3 | Mit TP2 (Testpunkt)
verbinden | 10.7MHz | Snärungsfreie
Stielle | Oszi lloskop mit TP6
verbinden | T‡ (UKW-ZFT) | (1) Elen Kern Spule) von
T101 hermonziehen
(2) Auf maximale Ampli-
tude und richtiger
Linnar ität zwischen
den 100k hiz Markley.
Wa einstellen | | - | SIGNALGENERATOR (ME | FREQUENZ | ANZEIGEEIN- | | EINSTELLUNGS-
PUNKTE | BEMERKUNGEN | | |---|--|---|------------------------------|--|--|--|--| | | ANSCHLUSS | FREQUENZ | STELLUNG | (VERZERRUNGSMESSER) UKW-HF-ABGLEICH | | | | | - | | _ | | OKW-HF-ABGLETCH | | | | | | | Kein Signal | 87,50MHz | Das Gleichstromröhrenvolt-
meter zwischen TP1 und
Erde verbinden, | L5 (UKW-
Schwingspule) | Auf 26V±0.05 auf dem
Gleichstromröhrenvolt-
meter einstellen. | | | | = | Kein Signal | 108,00MHz | Das Gleichstromröhrenvolt-
meter zwischen TP1 und
Erde verbinden. | CT4 (UKW-
Schwingertrimmer) | Auf 16V±0,1 auf dem
Gleichstromröhrenvolt-
meter einstellen. Die
Schritte 7 und 8
wiederholen. | | | | Die UKW-Kunstantenne
über den 300 Ohm UKW-
Antenneanschluss
verbinden. | 90,0MHz
(100%
moduliert
bei 1kHz) | 90.00MHz | Das Wechselstromröhrenvolt-
meter oder Oszilloskop mit
den Ausgangsklemmen
verbinden. | L3IUKW-Detektor-
spule
L2(UKW-Antennen-
spule
L1IUKW-Antennen-
spule | Auf maximalen Ausgang einstellen. | | | | Die UKW-Kunstantenne
über den 300 Ohm UKW-
Antennenanschluss
verbinden, | 106,0MHz
(100%
moduliert
bei 1kHz) | 106,00MHz | Das Wechselstromröhrenvolt-
meter oder Oszilloskop mit
den Ausgangsklemmen
verbinden, | CT3(UKW-
Detektortrimmer)
CT2(UKW-
Antennentrimmer)
CT1(UKW-
Antennentrimmer) | Auf maximalen Ausgang
einstellen. | | | Ī | C | RRUNGSABGLEICH | | | | | | | | Die UKW-Kunstantenne über
den 300 Ohm UKW-
Antennenanschluss
verbinden, | 98.0MHz
(100%
moduliert
bei 1kHz) | 98.00MHz | Das Gleichstromröhrenvolt-
meter über Widerstände mit
den Testpunkten TP4 und
TP5 verbinden (Siehe Abb.8) | T101 (UKW-ZFT) | Auf OV auf dem Gleich-
stromröhrenvoltmeter
einstellen. | | | | Die UKW-Kunstantenne
(60dB) über den 300 Ohm
UKW-Antennenanschluss
verbinden, | 98.0MHz
(100%
moduliert
bei 1kHz) | 98.00MHz | Verzerrungsmesser mit den
Ausgangsklemmen verbinden. | T102 (UKW-ZFT) | Auf minimalste Verzer-
rung des (inken Ausgang
einstellen, | | | ľ | | | UKV | V-MPX VCO-ABGLEICH | | | | | | - | Kein Signal | Störungsfreie
Stelle | Den Frequenzzähler über
Widerstand (100 kOhm) mit
TP7 (Testpunkt) verbinden | VR301 | (1) Den Wahlschalter au
"FM auto" stellen.
(2) Auf 19kHz±30Hz au
dem Frequenzzähler
einstellen. | | | - | | ABSTIMMANZEIGEABGLEICH | | | | pri | | | | Die UKW-Kunstantenne
(60dB) über den 300 Ohm
UKW-Antennenanschluss
verbinden. | 98,1MHz
(100%
moduliert
bei 1kHz) | 98,10MHz | - | VR101 | Den einstellbaren Wider
stand VR101 so einstelle
daß die fünfte Leucht-
diode (LED) auf leucht- | | | | | | Pilotsignalmo • Frequenzwer | Modulatorausgang mit den EXT M
odulation auf 10% bringen.
t ungefähr 100MHz/Ausgangspeg
ert auf FM (UKW) | |
enerators verbinden. | | | | UKW-SIGNAL-
GENERATORVERBINDUNG | MODULATOR | REO-
BETRIEBSART
RATEN | MEßGERÄT
(WECHSELSTROMRÖHREN-
VOLTMETER) | STELLUNGSPUNKTE | BEMERKUNGEN | | | | | LEICH | | | | | | | | Die UKW-Kunstantenne
über den 300 Ohm UKW-
Antennenanschluss
verbinden. | (fkHz:30% m
Betriebsart 1
Pilotsignagnal
eingeschaltet | (und R) | Das Voltmeter über den
"Tow pass" Filter mit den
Ausgangsklemmen verbinden
(Siehe Abb, 9) | VR302 | Frequenzanzeige auf 98 NMHz Den Abgleich so vornehmen, daß bei Eingabe von Modullation den linken Kanal, der rechte Kanal minimal Ausgang anzeigt. Und entsprechender Weise im Umgekehrten Falt. | | | | | | UKW-STER | EO-VERZERRUNGSABGLI | EICH | | | | | Die UKW-Kunstantenne
über den 300 Ohm UKW-
Antennenanschluss
verbinden.
98.0MHz 60dB | FikHz 100% r
Betriebs art F | | Den Verzerrungsmesser mit
den Ausgangsklemmen des
Gerätes verbinden, | T1 (UKW ZFT) | Fuf minimalste Verzer-
ning des rechten Ausgan
einstellen | | ■ INSTRUCTIONS D'ALIGNMENT FRANÇAIS | | | | | Arrêt/mono 5. Maintenir la lig | | | |---|--|--|--------------------------------|---|--|---| | | | | REGLAGE DE | | | | | | CONNEXION | FREQUENCE | L'AFFICHAGE
DE
FREQUENCE | TEMOIN (VTVM or
OSCILLOSCOPE) (COM-
PTEUR DE DISTORSTION) | POINTS DE REGLAGE | REMARQUES | | 1 | Effectuer des boucles de
plusieurs tours de fil et
passer le signai dans la
boucle du récepteur | 450kHz
(30% de
mod. avec
400Hz) | Points de non-
interférence | Brancher le VTVM CA ou
l'oscilloscope à TP3 | T201(AM 1er IFT)
T202(AM 2eme IFT) | Régler sur la lecture
maximale du VTVM | | 2 | - | Non-signal | 522kHz | Brancher le VTVM CC entre
TP1 et la terre | . L203(bobine AM OSC) | Régler la lecture du VTVN
CC sur 1,5±0,05V | | 3 | - | Non-signal | 1611kHz | Brancher le VTVM CC entre
TP1 et la terre | CT202
(Trimmer AM OSC) | Régler la lecture du VTVN
CC pur 20±0,1V. Refaire
les étapes 3 et 4 | | 4 | Effectuer des boucles de
plusieurs tours de fil et
passer le signal dans la
boucle du récepteur. | 549kHz | 549kHz | Brancher le VTVM CA ou l'oscilloscope aux bornes de sortie. | L201
(bobine AM ANT) | Régler sur la sortie
maximale. | | 5 | Effectuer des boucles de
plusieurs tours de fils et
passer le signal dans la
boucle du récepteur. | 1503kHz | 1503kHz | Brancher le VTVM CA ou
l'oscilloscope aux bornes de
sortie. | CT201
(Trimmer AM ANT) | Régler sur la sortie
maximale, Refaire les
étapes 4 et 5. | | | | 27-2- | ALI | GNEMENT DE FM IF | | | | 6 | Brancher à TP2 | 10,7MH2 | Point de non-
interférence | Brancher l'oscilloscope à TP6 | T1 (FM IET) | 1. Extraire le noyau de
TP101. 2. Régler sur l'amplitude
maximale et la linéarité
appropriée entre les
marqueurs de ±100kHz | | | | | ALI | GNEMENT DE FM RF | | <u> </u> | | 7 | - | Non-signal | 87,50MHz | Brancher le VTVM CC entre
TP1 et la terre | L5 (bobine FM OSC) | Régler la lecture du VTVN
CC sur 26±0,05V | | 8 | | Non-signal | 108,00MHz | Brancher la VTVM CC antre
TP1 et la terre | CT4
(Trimmer FM OSC) | Régler la lecture du VTVN
CC sur 26±0,05V. Refaire
les étapes 7 et 8 | | 9 | Brancher la borne de l'antenne de 300Ω FM par l'antenne fictive FM. | 90,0MHz
1100% de
mod. avec
1kHz) | 90.00MHz | Brancher le VTVM CA ou l'oscilloscope aux bornes de sortie. | L3(Bobine FM DET)
L2(Bobine FM ANT)
L1(Bobine FM ANT) | Régler sur la sortie | | 0 | Brancher Ia borne de
l'antenne FM de 300Ω
par l'antenne fictive
FM, | 106,0MHz
(100% de
mod. avec
1kHz) | 106,00MHz | Brancher le VTVM CA ou l'oscilloscope aux bornes de sortie. | CT3(Trimmer FM DET)
CT2(Trimmer FM ANT)
CT1 (Trimmer FM ANT) | Réglet sur la sortie
maximale. | | | ALI | GNEMENT DE | L'EQUILIBR | A GE DE CCET DELA D | ISTORSION DE FM | MONO | | 1 | Brancher Ia borne de
l'antenne FM de 300Ω
par l'antenne fictive FM
(60dB) | 98,0MHz
(100% de
mod. avec
1kHz) | 98,00MHz | Brancher le VTVM CC entre
TP4 et TP5 par les résistances
(Fig. 8) | T101 (FM IFT) | Régier la lecture du
VTVM CC sur OV. | | 2 | Brancher la borne de
l'antenne FM de 300 Ω
par l'antenne fictive FM
(60dB) | 98,0MHz
(100% de
rnod, avec
1kHz) | 98,00MHz | Brancher le compteur de
distorsion à la borne de
sortie | T102 (FM IFT) | Régler sur la distorsion
ni nimale de la sortie
gauche | | | | · <u> </u> | ALIGNE | MENT DU FM MPX VCC | | | | 3 | _ | Non-signal | Point de non-
interférence | Brancher le fréquencemètre
à TP7 par la résistance
1100kΩ) | VR301 | 1. Place* le commutateur de sélection sur "FM au to" 2. Régler la lecture du fréquencemètre sur 19kHz±30Hz | | | | | ALIGNEMEN | T DU COMPTEUR D'ACC | ORD | | | 4 | Brancher la borne de l'antenne F vide 300Ω par l'antenne fictive FM (60dB) | 98,1MHz
(100% de
mod. avec
1kHz) | 98,10MHz | - | VB101 | Fligier la VR 101 de telle
sorte que la 5ème LED
s'allume. | # ST-CO3/K ST-CO3/K 11 # **■ EXPLODED VIEW** # ■ REPLACEMENT PARTS LIST ····· Cabinet & Chassis Parts NOTES: 1. Part numbers are indicated on most mechanical parts Please use this part number for parts orders 2. \(\Delta\) indicates that only parts specified by the manufacturer be used for safety. | Ref. No. | | Part No. | Part Name & Description | |---------------------------------------|-----|--|--| | | | CABINET | and CHASSIS | | 1 | |
FIYMTOD3N | Cabinet Assembly | | 2 | | RYUTC03E | Bottom Board Assembly | | 2-1 | | SGX803 | Ring, Hear Side Feet | | 2-2 | | SHG1487 | Foot, Rear Side | | 3 | | BYNTC03N | Battery Cover Assembly | | 4 | | BJB3016Z | Battery Case | | 5 | | RJC314A | Terminal, Battery + Side | | 5 | | BJC730Z | Terminal, Battery + , = Side | | 7 | | HJC322Z | Spring, Battery — Side | | 8 except XE, XAI | M | RJA23Z | AC Cord. Power Source | | 8 [XE] | Δ | RJA45Z | AC Cord. Power Source | | 8 [KAL] | Δ | RJA44Z | AC Cord, Power Source | | O [ACE] | 43 | EN PHATE | AC CONG. YOME SOURCE | | q | Δ | RJR29Z | Terminal | | 10 | - | FJS217Y | Socket, Core Antenna | | 11 | | BJT462Z | Terminal, Socket | | 12 | | R IP1162 | Plug, Socket | | 13 | | SJF4419-3 | Terminal, Antenna | | 14 | | SJF3225A-1 | Terminal, Antenna
Terminal, Output | | 15 | U. | 8DS3052Z | Soring, Preset & Tuning Busson | | 16 | | RDS5132Z | Spring, Power Source Button | | 17 | | SUS123-1 | Spring, Fower Source Button
Spring, Switch Button | | 18 decent XA, XA | 1.1 | SGP1430-2C | Rear Panel | | 18[XA] | -, | SGP1430-2E | Rear Panel | | 18[XAL] | | SGP1430-2F | Rear Panel | | | | 3131 3400 | The state of s | | 19 | | SBC205-1 | Button, Selector | | 20 | | RBC212Z | Button, Tuning | | 21 | | RBC213Z | Button, Preset | | 22 | | RBC220Z | Button, Power Source | | 23 | | RHB141Z | Bushing, AC Cord | | 24 | | RUS397Z | Spring, Q702 | | 25 | | FIMP125Z | Holder, LED | | 26 | | RMP126Z | Holder, LED | | 27 | | RMC171Y | Shield Cover, IC1 | | 28 | | RMY62YS | Heat Sink, Q702 | | 500 | | III TO THE TO THE TOTAL TOTAL TO THE TOTAL TO THE T | | | 29 | | RUV387Z | Cover, Voltage Selector | | 30 | | SQXA4029-2 | Caution Label | | 31 | Δ | BHR3252 | Cover, Capacitor | | 32 | | SHM117Z | Spacer, Transformer | | | | | The same of sa | | | | SCREWS ar | nd WASHERS | | 0 | | XUC2FT | E Ring, Button M'tg | | 0 | | XSN3+6S | Screw, Switch M'tg | | © | | XTN3+6B | Screw, Terminal M'19 | | Ø | | XTB3+8BFN | Screw, Bostom Board Mitg | | Q | | XTN3+6B | Screw, Chassis M'1g | | 0 000000 | | XSN3+8BNS | Screw, Circuit Board M'tg | | V | ' | XSN3+8BNS | Screw, Connit Board M'tg | | | | ACCES | SORIES | | | | SSA267 | Cord, FM Indoor Antenna | | A1 | | SJP2241 | Connection Cord | | A1
A2 | | RJP16ZS | Plug, AC Corts | | | Δ | | - Maria di | | A2 | Δ | PACKIN | G PARTS | | A2 | Δ | PACKIN | | | A2
A3 [XA] | ۵ | | Polyethylene Bag | | A2
A3 [XA] | Δ | XZB36X40A04
XZB10X20A04 | Polyethylene Bag
Polyethylene Bag | | A2
A3 XA]
P1
P2
P3 | Δ | XZB36X40A04 | Polyethylene Bag
Polyethylene Bag
Pad, Bottom | | A2
A3 [XA]
P1
P2
P3
P4 | Δ | XZH36X40A04
XZH10X20A04
SPS1770-1
SPS1771-2 | Polyethylene Bag
Polyethylene Bag
Pad, Bottom
Pad, Under | | A2
A3 XA]
P1
P2
P3 | Δ | XZB36X40A04
XZB10X20A04
SPS1769-1 | Polyethylene Bag
Polyethylene Bag
Pad, Bottom | # ■ REPLACEMENT PARTS LIST ······Electric Parts NOTES: 1. Part numbers are indicated on most mechanical parts Please use this part number for parts orders 2. \(\Delta \) indicates that only parts specified by the | | | Part No. | Part Name & Description | |------------|-----|---|---| | | لبب | INTEGRATE | ED CIRCUITS | | | | SVIUPC1167C | IC, FM IF Amplifier & Detector | | | | RVILB1416 | IC, LED Driver | | | | AN217P-88 | IC, FM/AM IF Amplifier & AM Oscillator | | | | RV1LA3350S
AN6135 | IC, FM Multiplex | | 902 | | HVITA57 | IC, Muting IC, Digit Driver | | ,,, | | MN6045E | IC, PLL CONTROLER RAM | | | | AN6821 | IC, FM Pre-Scaler | | 906 | | RVIMSM4019RS | IC, Quad And/Or Select Gate: | | | | RVIMSM4069RS | IC, Hex Invertor | | | | RVIMSM4017RS | IC, Decade Counter/Divider | | | | F-8 | SISTORS | | 201, 907 | , 1 | 3SK74-L1
2SC2295B | Transistor, FM RF Amplifier Transistor, FM Mixer, Oscillator, | | . 201, 501 | | 23022300 | Buffer & AM Buffer | | 03, 911, | | 2SD601 | Transistor, Switching, LED Driver | | 24 | | 2/20/2028 | | | 02,901 | | 2SB709 | Transistor, AM Amplifier, Digit Amplifier | | 04 | | 2SC945-P2
2SC1847-R | Transistor, Ripple Filter, Regulator
Transistor, Regulator | | 112 | | 2SB709R | Transistor, Regulator Transistor, Regulator | | 150 | | 2SD601 | Transistor, Switching | | 21 | | 130-2952-3 | | | 910 | Ш | 25C2405-S | Transistor, Low Pass Amplifier | | | | DIC | DDES | | | | RVDMV104 | Diode, Variable Capacitance | | 03, 110, | | MA162A | Diode, Switching | | 12,202, | | | | | 05, 908, | | | | | 119 | 1 1 | | | | | | RVDKB265E | Diode, Operation Compensator | | 07~109 | 1 | LN2178P=3 | Light Emitting Diode, Turring, Signal & | | ne | | 14101200 0 | Stereo | | 06 | | LN317GP-2
RVDKV1221 | Light Emitting Diode, Signal
Diode, Variable Capacitance | | 205, 902 | | 20A90 | Diode, AM AGC, AM Detector & Switching | | | 1 1 | RVDRD13EB | Diode, Regulator | | | | RVDRD33EB1 | Diode, Regulator | | 04 | Δ | SM112 | Diode, Flectifier | | 06, 707 | Δ | SM112 | Diode, Hentifier | | 60 | | RVDVD6R8EB1 | Diode, Regulator | | 918 | 1 1 | MA151WK
RVDGL9PR42 | Diode, Switching
Light Emitting Diode, Preset | | | _ | | ANSFORMERS | | | | 5LA4N2-0 | Coil, FM RF | | | | RL04N128-0 | Coil, FM RF | | | | RLQY15G5G-0 | Cdil, JF Trap | | | | RL04N126-0
RLQX2701-K | Coil, FM Ospitator Coil, Phase Shitt | | | 1 ! | RLF2D127 | Coll, AM Antenna | | | | RLQX1014-Y | Coil, Choke | | 01, 903 | | | | | 01,903 | | RLO2M25-K | Cail, AM Oscillator | | 01,903 | | RLO2M25-K | Coil, AM Oscillator | | 01.903 | | RL02M25-K
RLQZ4701-D | Coil, AM Oscillator Coil, Choke | | 01.903 | | RLO2M25-K | Coil, AM Oscillator Coil, Choke Coil, Choke | | 01,903 | | RL02M25-K
RLQZ4701-D
RLQZ1003-Y | Coil, AM Oscillator Coil, Choke | | 01,903 | | RL02M25-K
RLQZ4701-D
RLQZ1093-Y
SLI4C109 | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF | | 01,903 | | RL02M25-K
RL0Z4701-D
RL0Z1003-Y
SL14C109
SL14C511-K
SL14C513-K
RL12M213-K | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, FM IF | | 01,903 | | RL02M25-K
RL024701-D
RL021003-Y
SL14C109
SL14C511-K
SL14C513-K
RL12M213-K
RL12M201-M | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF | | 01,903 | Δ | RL02M25-K
RL0Z4701-D
RL0Z1003-Y
SL14C109
SL14C511-K
SL14C513-K
RL12M213-K
RL12M401-M
RLT5J265-W | Coil, AM Oscillator Coil, Choke Coii, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source | | 01,903 | Δ | RL02M25-K
RL0Z4701-D
RL0Z1003-Y
SL14C109
SL14C511-K
SL14C513-K
RL12M213-K
RL12M401-M
RLT5J265-W | Coil, AM Oscillator Coil, Choke Coii, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS | | | Δ | RL02M25-K RL024701-D RL021003-Y SL14C109 SL14C511-K SL14C513-K RL12M401-M RLT5J265-W CERAMIO SVFF107MC1-A | Coil, AM Oscillator Coil, Choke Coii, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10.7MHz | | 103 | Δ | RL02M25-K RL024701-D RL021003-Y SL14C109 SL14C511-K SL14C513-K RL12M213-K RL12M401-M RLT5J265-W CERAMIC SVFF107MC1-A RVFSFE107LKA | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 10,7MHz | | | Δ | RL02M25-K RL024701-D RL021003-Y SL14C109 SL14C511-K SL14C513-K RL12M213-K RL12M213-K RL12M205-W CERAMIO SVFF107MC1-A RVFSFE107LKA RVFSFZ45067 | Coil, AM Oscillator Coil, Choke Coii, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10.7MHz Ceramic Filter, 450kHz | | 103 | Δ | RL02M25-K RL024701-D RL021003-Y SL14C109 SL14C511-K SL14C513-K RL12M213-K RL12M213-K RL12M205-W CERAMIO SVFF107MC1-A RVFSFE107LKA RVFSFZ45067 VARIABLE | Coil, AM Oscillator Coil, Choke Coii, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 450kHz RESISTORS | | | Δ | RL02M25-K RL024701-D RL021003-Y SL14C109 SL14C511-K SL14C513-K RL12M213-K RL12M213-K RL12M205-W CERAMIO SVFF107MC1-A RVFSFE107LKA RVFSFZ45067 | Coil, AM Oscillator Coil, Choke Coii, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 450kHz | | 103 | Δ | RL02M25-K RL024701-D RL021003-Y \$L14C109 \$L14C511-K \$L14C513-K RL12M213-K RL12M213-K RL12M401-M RUT5J265-W CERAMIC SVEF107MC1-A RVFSFE107MC1-A RVFSFE107MC3 VARIABLE EVNK4AA00813 EVNMAA00853 | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 10,7MHz Ceramic Filter, 450kHz RESISTORS Meter, Separation Adjustment | | 103
 Δ | RL02M25-K RL024701-D RL021003-Y \$L14C109 \$L14C511-K \$L14C513-K RL12M213-K RL12M213-K RL12M201-M RLTDJ265-W CERAMIC SVFF107MC1-A RVFSF245067 VARIABLE EVNK4AA00813 EVNMAA00853 VARIABLE RCV1PX10AGS | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 10,7MHz Ceramic Filter, 450kHz RESISTORS Meter, Separation Adjustment PLL VCO 19kHz Adjustment CAPACITORS Trustoner | | 103 | Δ | RL02M25-K RL024701-D RL021003-Y \$L14C109 \$L14C101-K \$L14C511-K \$L12M213-K RL12M213-K RL12M213-K RL12M201-M RLT5J265-W CERAMIC SVFF107MC1-A RVFSF245067 VARIABLE EVNK4AA00813 EVNMAA00853 VARIABLE RCV1PX10AGS RCV1PX20AGS | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 10,7MHz Ceramic Filter, 450kHz RESISTORS Meter, Separation Adjustment PLL VCO 19kHz Adjustment CAPACITORS Transmer | | 103 | Δ | RL02M25-K RL024701-D RL021003-Y \$L14C109 \$L14C101-K \$L14C511-K \$L12M213-K RL12M213-K RL12M213-K RL12M213-K RL12M213-K RL12M201-M RLT5J265-W CERAMIC SVFF107MC1-A RVFSF245067 VARIABLE EVNK4AA00813 EVNK4AA00853 VARIABLE RCV1PX10AGS RCV1PX20AGS SWIT | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 10,7MHz Ceramic Filter, 450kHz RESISTORS Meter, Separation Adjustment PLL VCO 19kHz Adjustment CAPACITORS Trinsper | | 103 | Δ | RL02M25-K RL024701-D RL021003-Y SL14C109 SL14C511-K SL14C513-K RL12M213-K RL12M213-K RL12M201-M RLT5J265-W CERAMIC SVFF107MC1-A RVFSFE107LAA RVFSFE107LAA RVFSFE245067 VARIABLE EVNK4AA00813 EVNM4A00853 VARIABLE RCV1PX10AGS RCV1PX20AGS SWIT RSHX013Z | Coil, AM Oscillator Coil, Choke Coii, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 10,7MHz Ceramic Filter, 450kHz RESISTORS Meter, Separation Adjustment PLL VCO 19kHz Adjustment CAPACITORS Trimmer Trimmer TCHES Switch, Memory Lock & Selector | | 103 | Δ | RL02M25-K RL024701-D RL021003-Y \$L14C109 \$L14C101-K \$L14C511-K \$L12M213-K RL12M213-K RL12M213-K RL12M213-K RL12M213-K RL12M201-M RLT5J265-W CERAMIC SVFF107MC1-A RVFSF245067 VARIABLE EVNK4AA00813 EVNK4AA00853 VARIABLE RCV1PX10AGS RCV1PX20AGS SWIT | Coil, AM Oscillator Coil, Choke Coil, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, Power Source FILTERS Ceramic Filter, 10,7MHz Ceramic Filter, 10,7MHz Ceramic Filter, 450kHz RESISTORS Meter, Separation Adjustment PLL VCO 19kHz Adjustment CAPACITORS Trinsper | | 103 | | RL02M25-K RL024701-D RL021003-Y SL14C109 SL14C511-K SL14C513-K RL12M401-M RLT5J265-W CERAMIC SVFF107MC1-A RVFSFE107LKA RVFSFE45067 VARIABLE EVNK4AA00813 EVNMAA00853 VARIABLE RCV1PX20AGS RCV1PX20AGS SWIT RSHX013Z RSH2811Z | Coil, AM Oscillator Coil, Choke Coii, Choke Transformer, FM IF Transformer, FM IF Transformer, FM IF Transformer, AM IF Transformer, AM IF Transformer, AM IF Transformer, AM IF Transformer, To | | Ref. Na. | Part No. | | Part Nam | ne & Desc | ription | |------------------------|--------------------------|--------------------|----------------------------|----------------|--------------| | | DISPL | AY TUBE | | | | | | RAD78To1S | Display, | Frequency | | | | | CRY | YSTAL | | | | | (901 | RVCA11520NZN | Crystal | | | | | | RES | ISTORS | | | | | RI | RRD18XK104 | Chip. | 100kΩ. | 1/84. | ±10% | | R2 | RRD18XK333 | Chip. | $33k\Omega$. | 1/8W. | | | R3
R4 | 88D18XK153 | Chip, | 15kΩ.
100kΩ. | 178W. | ±10% | | R5 | BBD18XK100 | Chip | 10Ω. | | ±10% | | R6 | BBD18XK221 | Chip. | 220Ω . | | ±10% | | R7, 8 | RRD18XK104 | | 100kΩ. | | | | R9
R10 | RRD18XK153
RRD18XK823 | Chip. | 15kΩ,
82kΩ, | 178W. | ±10% | | R11 | BHD18XK102 | Chip. | 1kΩ, | 1/8 | | | R12: | RBD18XK221 | Chip. | 220Ω, | 1/8W. | ±10% | | R13, 14, 15 | ARD18XK102 | Citio. | 1kΩ. | 1/8VV. | | | R16, 17 | PRD18XK104 | Chip, | 100kΩ. | 1/8W. | ±10% | | R18 | RRD18XK224 | Chip, | 220kΩ. | | | | R19
R20 | BBD18XK102
BBD18XK221 | Chip. | 1kΩ.
220Ω | 1/8W_
1/8W_ | | | R21 | FFD18XK273 | Chip. | 27ks2. | 1/8 V. | | | R23 | ABD18XK150 | Chip, | 15Ω. | 1/894 | ±10 | | R101 | RHD18XK330 | Chip. | 33Ω. | 1/BW | | | R102 | RRD18XK221 | Chip. | 22012. | 1/8//, | ±10 × | | R103 | RHD18XX331 | Chip. | 330Ω. | 1/8W | | | R 104
R 106 | RHD18XK152 | Chip. | 1.5kΩ. | | | | R106 | ERD25TJ104 | Chip,
Carbon | 330Ω.
100kΩ. | 1/8W. | | | R109 | RHD18XK102 | Chip, | 1452 | | ±10% | | R110 | BBD18XK271 | Onip, | 270Ω . | /BVV. | ±10 | | R111 | RAD1BXK470 | Chip. | 47Ω. | | ±10% | | R112
R113 | ERD25FJ103
ERD25TJ183 | Carbon,
Carbon, | | 1./4W. | ± 5% | | B114 | HRD18XK473 | Chip. | 47×Ω. | 1.0 | ±10% | | B115 | FRD18XK562 | Chip, | 5 6kΩ | 1/84 | 110% | | H116 | ERD25FJ392 | Carbon, | 39kΩ | 1,4414 | ± 5% | | R117 | BRD18XK103 | Chip. | 10).Ω. | V8V | | | R118 | FRD18XK222 | Chip, | 22kΩ, | 1/8W. | ±173% | | R119
R120 | RRD18XK103
RRD18XK104 | Chip, | 10kΩ. | /BW. | | | R120 | ABD18XK104 | Chip. | 100kΩ,
10kΩ | 1/8W, | | | R122 | FRD18XK823 | Chip, | BZkΩ. | 1/8W. | | | R123 | RBD18XK153 | Chip. | 15kΩ | I/BW. | ±10% | | R124, 125
R126, 127 | RRD18XK220
RRD18XK151 | Chip, | 22Ω . 150Ω . | | 210% | | 10.7 (50) | 2000 300 3700 | | | Life 9 | | | R128 -
R129 | RRD18XK151
RRD18XK152 | Chip, | 150Ω,
1.6kΩ | 178W. | ±10% | | R130 | RAD18XK333 | Chip, | 33kΩ. | VARVI | ±10% | | R131 | FRD18XK104 | Chip. | 100kΩ | 178W, | ±10% | | B132 | ARD18XK473 | Dhip, | 47kΩ. | 1/8W, | ±10% | | R201
R202 | 89D18XK104
89D18XK222 | Chip. | 100kΩ.
≥ 2kΩ. | 1/8W | ±10%
±10% | | F203 | RHO18XK105 | Chip, | | 1/84 | ±10% | | R204 | RRD18XK102 | Chip, | 1kΩ. | 1/8W. | | | R205 | ERD25FJ102 | Carbon | | 1.14% | | | R206 | RHD18XK562 | Chip) | 5 6k 52 | 1./8W. | ±10% | | R207 | BBD18XK152 | Chip. | 1.5kΩ. | 1/8/4 | | | R208 | FRD18XK392 | Chip, | .52#EE | L/BW. | | | R209 | RRD18XK333 | Chip. | 33112. | L/EW. | 210% | | R210 | RRD18XK102 | Chip. | īkΩ, | 17800 | ±10% | | R211 | BBD18XK101 | Chip, | 100Ω, | 1/8W. | ±10% | | R212 | BBD18XK274 | Chip. | 270kΩ, | 178W | ±10% | | R213
R214 | RRD18XK182
RRD18XK332 | Chip, | 1.8kΩ,
3.3kΩ, | 1/8W.
1/8W. | ±10% | | R215 | BR018XK102 | Chip, | 1kΩ, | | ±10% | | R216 | RRD18XK223 | Chip. | 22kΩ, | 178W. | ±10% | | R218 | RRD18XK104 | Chip, | 100kΩ, | 1/8W. | ±10% | | H219
H221 | BRD18XK333
BBD18XK471 | Chip, | 33kΩ,
470Ω, | 1/8W. | ±10% | | 97535 | DOUIGANS/ | Chip, | 470/52, | 1/8W. | ±10% | | R301 | RRD18XK104 | Chip. | 100k Ω | 1/8W. | | | H302
R303 | ERD25FJ103 | Caroon, | | 1/4W. | | | R304 | RRD18XK101
RRD18XK682 | Chip. | 100Ω,
6.8kΩ, | 1/8W,
1/8W, | ±10% | | R305 | ARD18XK332 | Chip, | 3.3k D | 1/8W. | ±10% | | R306 | RRD18XK103 | Chip, | 10k 12 | | ±10% | 19 | Ref. No. | Part No. | | Part Name & Description | | | | |----------------------|---|----------------|-------------------------|----------------|--------------|--| | 307, 308 | ERD25FJ332 | Carbon, | 3.3kΩ. | 1/4W. | ± 5% | | | 309,310 | RRD18XK103 | Chip. | 10kΩ, | 1/8W. | #10% | | | 311, 312 | HRD18XK103 | Chip. | 10kΩ, | 1/BW. | ±10% | | | 313, 314 | ERD25FJ681 | Carbon, | 680Ω, | 1/4W. | ± 5% | | | 0+6 0+3 | EDDAET 1999 | Post of | 2210 | 1/4W. | 4, 5% | | | 316, 317
318, 319 | ERD25FJ332
BRD18XK104 | Chip. | 3.3kΩ,
100kΩ, | 1/8W. | ±10% | | | 320 | RRD18XK152 | Chip, | 1.5k \$1 | 1/8W. | ±10% | | | 321, 322 | RRD18XK334 | Chip. | 330kΩ, | 1/BW. | ±10% | | | 401 | RRD18XK474 | Chip. | 470kΩ, | 1/8W, | #10% | | | 402 | RRD18XK103 | Chip. | 10kΩ | 1/8W. | ±10% | | | 403 | RRD18XK104 | Chip. | 100kΩ | 1/8W. | ±10% | | | 406 | RRD18XK104 | Chip. | 100kΩ. | 1/8W. | ±10% | | | 107 | RRD18XK333 | Chip, | 33kΩ. | 1/8W | ±10% | | | 808 | RRD18XK103 | Chip. | 10kΩ. | 1/BW, | ±10% | | | 701 | RRD18XK221 | Chip. | 22017, | 1/8W, | ±10% | | | 702 | RRD18XK103 | Chip. | i0kΩ, | 1/8W | ±10% | | | 703 | RRD18XK152 | Chip. | 1.5kΩ, | 1/8W. | ±10% | | | 704, 705 | RRD18XK222 | Chip. | 2.2kΩ. | 1/8W. | ±109 | | | 304 | ERD25FJ102 | Carbon, | 1kΩ. | 1/4W. | ± 5% | | | 805, 806 | RRD18XK102 | Chip, | 1kΩ. | 1/8W. | ±10% | | | 07, 808 | ERD25FJ102 | Carbon, | 1kΩ, | 1/4W. | ± 5% | | | 9,810 | RRD18XK102 | Chip. | 1kΩ, | 1/8W. | ±10% | | | 11 | ERD25FJ102 | Carbon, | 1kΩ, | 1/4W. | ± 5% | | | 12, 813 | RRD18XK102 | Chip. | 1812 | 1/8W. | ±10% | | | 314 | RRD18XK102 | Chip, | 1k 17 | 1/8W, | ±10% | | | 01,902 | RRD18XK473 | Chip, | 47kΩ. | 1/BW, | ±10% | | | 03,904 | RRD18XK473 | Chip, | 47kΩ, | 1/8W. | ±10% | | | 05, 906 | RRD18XK473 | Chip, | 47kΩ, | 1/8W | #10% | | | 07, 908 | RRD18XK473 | Chip, | 47kΩ, | 1/BW | ±10% | | | 909,910 | RRD18XK473 | Chip, | 47kΩ | 1/8W | ±10% | | | 11 | BBD1BXK473 | Chip, | 47kΩ | 1/8W. | ±10% | | | 12 | RRD18XK682 | Chip. | 6.8kΩ, | 1/8W. | ±10% | | | 13,914 | RRD18XK103 | Chip. | 10k Ω | 1/8W, | ±10% | | | 15,916 | RRD18XK104 | Chip, | 100k Ω | 1/8W. | ±10% | | | 18 | RRD18XK222 | Chip. | 2.2k Ω, | 1/8W. | ±10% | | | 19 | RRD18XK104 | Chip, | 100kΩ, | 1/BW, | ±10% | | | 20 | RRD18XK471 | Chip, | 470Ω, | 1/8W. | ±10% | | | 1 | RRD18XK470 | Chip. | 47Ω, | 1/8W. | ±109 | | | 22 | RRD18XK472 | Chip, | 4.7kΩ, | 1/8W, | #10% | | | 23 | RRD18XK222 | Chip, | 2.2kΩ. | 1/8W. | ±10% | | | 24 | RRD18XK684 | Chip, | 680kΩ, | 1/8W. | ±10% | | | 25 | BRD18XK561 | Chip, | 560(2, | 1/8W, | #10% | | | 26 | FRD18XK393 | Chip, | .19kΩ_ | 1/844, | #10% | | | 27, 928 | RRD18XK153 | Chip, | 15kΩ. | 1/8W, | ±10% | | | 29,930 | BBD18XK153 | Chip, | 15kΩ. | 1/8W | ±10% | | | 31,932 | RRD18XK153 | Chip, |
15kΩ. | 1/8W, | ±10% | | | 33, 934
35, 936 | RRD18XK153
RRD18XK153 | Chip,
Chip, | 15kΩ.
15kΩ. | 1/8W,
1/8W, | ±10%
±10% | | | 65 17 | 0.0000000000000000000000000000000000000 | 1000 | | | | | | 7 | RRD18XK153 | Chip, | 15kΩ. | 1/8W, | 210% | | | 38 | RRD18XK332 | Chip. | 3.3kΩ. | 1/8W. | ±10% | | | 10 | HRD18XK153 | Chip, | 15kΩ. | 1/8W, | *10% | | | 12 | RRD18XK223 | Chip, | 22⊾Ω. | 1/8W. | #10% | | | 13 | RRD18XK563 | Chip, | 56kΩ. | 1./8W, | ±10% | | | 14 | RRD18XK153 | Chip, | 15kΩ. | 1/8W,
1/4W, | ±10%
+ 5% | | | 15 | ERD25FJ682
BRD18XK472 | Chip, | 33kΩ.
4.7kΩ. | 1/8W. | ± 5%
±10% | | | 7,948 | RRD18XK333 | Chip, | 33kΩ. | 1/8W. | ±10% | | | 9,950 | RRD18XK333 | Chip. | 33kΩ. | 1/8W, | ±10% | | | | HRD18XK334 | Chip. | 330kΩ | 1/8W. | ±10% | | | 12, 963 | RRD18XK104 | Chip. | 100kΩ | 1/8W. | ±10% | | | 4 | HBD18XK224 | Chip. | 330kΩ. | 1/8W. | ±10% | | | 5 | RRD18XK104 | Chip. | 100kΩ. | 1/8W. | ±10% | | | 6 | RRD18XK334 | Chip, | 220kΩ. | 1/8W. | ±10% | | | 7,958 | RRD18XK224 | Chip. | 220kΩ. | 1/8W. | ±10% | | | 9 | RRD18XK223 | Chip. | 22kΩ. | 1/8W. | ±10% | | | 0 | RRD18XK104 | Chip. | 100kΩ. | 1/8W. | ±10% | | | 11 | HRD18XK472 | Chip, | 4.7kΩ. | 1/8W. | ±109 | | | , | RRD18XK333 | Chic | 33kΩ. | 1/8W. | ±109 | | | 2 | RRD18XK333 | Chip, | 47kΩ | 1/8W, | ±10% | | | 33
34, 965 | RRD18XK104 | Chip. | 100kD | 1/8W. | ±10% | | | 96, 967 | ARD18XK333 | Chip. | 33kΩ. | 1/8W. | ±10% | | | 88, 969 | RRD18XK333 | Chip. | 33kΩ | 1/8W. | ±10% | | | 0,971 | RRD18XK333 | Chip, | 33kΩ. | 1/8W. | ±10% | | | 72,973 | RRD18XK333 | Chip, | 33kΩ. | 1/8W | ±10% | | | 14 | RRD18XK333 | Chip, | 33kΩ. | 1/8W. | 110% | | | 5,976 | RRD18XK681 | Chip, | 680Ω. | 1/8W. | ±1096 | | | 77,978 | ARD18XK681 | Chip, | 680Ω. | 1/8W. | ±10% | | | 9,980 | RRD18XK681 | Chip. | 680 € | 1/8W. | #10% | | | 31, 982 | RRD18XK681 | Chip, | 6BOΩ. | 1/8W, | ±10% | | | 33 | RRD18XK103 | Chip, | 10kΩ | 1/8W. | ±10% | | | 8-4 | RRD18XK471 | Chip, | 470 12. | 1/8W. | ±10% | | | 85, 986 | RRD18XK472 | Chip. | 4.7kΩ, | 1/8W. | ±10% | | | 87,988 | RRD18XK153 | Chip. | 15kΩ. | 1/8W. | ±10% | | | 89 | RRD18XK333 | Chip. | 33kΩ. | 1/8W, | =10% | | | 90 | RRD18XK102 | Chip. | 1kΩ, | 1/8W, | ±10% | | | 20 | | | | | | | | 91 | RRD18XK103
RRD18XK102 | Chip. | 10kΩ,
1kΩ, | 1/8W.
1/8W. | ±10% | | | Ref. No. | Part No. | Part Name & Description | | | | | |------------------------|----------------------------|---|-----|-----------------|-------------|----------------------------| | R993
R994 | FRD18XK682
ERD25TJ104 | Chip, 6.8kΩ, 1/8W, ±10%
Carbon, 100kΩ, 1/4W, ±5% | | | | | | | | | | 7000 | | - | | CI | ECUX1H150KC | Chip. | _ | 15pF, | 50V. | ±10% | | C2 | ECUXIH185CC | Chip, | | 1.5pF, | 50V. | ±0.25p | | C3 | ECUX1H150KC | Chip. | | 15pF, | 50V. | ±10% | | C4. 5 | ECUX1H181KC | Chip. | | 80pF, | 50V. | ±10% | | C6
C7.8 | ECUX1H223ZF
ECKD1H102MD | Chip,
Ceramic, | | 22μF.
01μF. | 50V. | ±20% | | C10 | ECUX1H100KC | Chip. | | 10pF. | 50V. | ±0.5pF | | C11 | ECUX1H150KC | Chip, | | 15pF. | 50V. | ±10% | | C12
C13 | ECUX1H181K
ECCD1H010C | Chip,
Ceramic, | . 1 | 80pF. | 50V. | ±10%
±0.25p | | C14, 15 | ECUX1H223ZF | Chip. | 0.0 | 22µF. | 50V. | ±80 %
±80 % | | C16 | ECUX1H102MD | Chip, | | | | ±20% | | C17
C18 | ECUXIHI00KC | Chip. | | 10pF. | 50V. | ±10% | | C19 | ECUX1H220KC
ECUX1H150KC | Chip,
Chip, | | 22pF,
15pF, | 50V. | ±10%
±10% | | C20 | ECUX1H150KC | Chip, | | 150F. | 50V. | ±10% | | C22 | ECUX1H010CC | Chip, | | 1pF, | 50 V. | ±0.25p | | C23
C24 | ECEA1CS330 | Electrolytic | | 33µF, | 16V, | _90 m | | C27 | ECUX1H223ZF
ECUX1H223ZF | Chip. | | 22μF,
22μF, | 50V. | ± 90 %
± 80 %
± 20 % | | C28 | ECUX1H100KC | Chip, | | 10pF. | 50V. | ±10% | | C30
C34 | ECUX1H102MD
ECUX1H102MD | Chip. | | 01μF,
01μF, | 50V. | ±20%
±20% | | C36, 37 | ECUX1H102MD | Chip, | | 15pF, | 50V. | ±10% | | C38, 39 | ECUX1H181KC | Chip, | | 18pF, | 50V, | | | C40, 41 | ECCD1H331K | Ceramic, | | 30pF. | 50V. | ±10% | | C42
C101_102 | ECUX1H223ZF
ECUX1H223ZF | Chip,
Chip, | | 22μF.
22μF. | 50V. | 250 % | | C103 | ECEA1HS100 | Electrolytic | | 10μF, | 50V, | ±30 % | | C104 | ECUX1H223ZF | Chip. | 0.0 | 22µF. | 50V, | ± 90 %
± 90 %
± 80 % | | C105 | ECKD1H223ZF | Ceramic, | | 22µF. | 50V. | 230 % | | C106
C107, 108 | ECEA25Z4R7 | Chip,
Electrolytic | | 00pF,
1.7μF, | 50V,
25V | 110% | | C109 | ECUX1H223ZF | Chip, | | 22µF | | $\pm^{80}_{20}\%$ | | C111 | ECUX1H223ZF | Chip, | | | | 2.80 % | | C112
C113 | ECEA1HS100
ECUX1H223ZF | Chip. | | 10μF,
22μF, | 50V
50V | , 90 oc | | C114 | ECUX1H103ZF | Chip. | | 01µF. | 50V. | 200 %
200 %
200 % | | C115 | ECEA1HS100 | Electrolytic | 2 | 10µF. | 50V | 20 | | C116, 117 | ECEA50Z1 | Electrolytic | | 1μF. | 50 V | W | | C118
C119 | ECUX1H223ZF
ECEA1HS100 | Chip,
Electrolytic | | 22µF,
10µF, | 50V. | 2 30 % | | C122 | ECKD1H223ZF | Ceramic, | | 22µF. | 50V. | ± 80 % | | C123 | ECUX1H103MD | Chip. | 0. | 01μF. | 50V. | ±20% | | C201 | ECUX1H030DC | Chip. | | 3pF, | 50V. | | | C202 | ECUX1H223ZF
ECUX1H220KC | Chip. | | 22µF, | 50V. | | | C203
C204 | ECUX1H223MD | Chip. | | 22pF,
22µF, | 50V | ±10%
±20% | | C206 | ECQS05561JZ | Styrol. | | 60pF, | 50V. | ± 5% | | C207 | ECUX1H010CC | Chip. | | 1pF, | 50V, | ±0.25p | | C208
C209 | ECUX1H100KC
ECUX1H103MD | Chip. | | 10pF,
01μF, | 50V. | | | C210, 211 | ECUX1H223ZF | Chip. | | 22µF. | 50V. | ± 80 % | | C212 | ECUX1H223ZF | Chip. | | 22µF. | | ± 80 % | | C213 | ECEA1HS100 | Chin | | 10μF, | 50V | 4 80 Au | | C214
C215 | ECUX1H223ZF
ECUX1H560KC | Chip,
Chip, | | 22µF,
56pF, | 50V. | | | C216 | ECEA25Z4R7 | Electrolytic | | 1.7µF. | 25V | 12000 | | C217 | ECUX1H330KC | Chip. | | 33pF, | 50 V | 110% | | C218
C219, 220 | ECUX1H223ZF
ECUX1H103MD | Chip,
Chip, | | 22μF,
01μF, | 50V | ±20% | | C221 | ECEA25Z4R7 | Electrolytic | | 1.7µF | 25V | 100 | | C222 | ECEA50ZR1 | Electrolytic | . (|),1µF, | 50V | | | C224
C301 | ECEA50Z1
ECEA1HS100 | Electrolytic
Electrolytic | | 1μF.
10μF. | 50V | | | C302 | ECQM1H473MZ | Polyester, | | 47μF. | | ±20% | | 0303 | ECQ905152JZ | Styral, | | 00pF, | 50V. | ± 5% | | C304
C305 | ECEA50ZR22
ECEA1CS221 | Electrolytic | | 22μF.
20μF. | 50V
16V | | | C306 | ECEA50ZR47 | Electrolytic | | 47µF. | 50V | | | C307 | ECEA50Z1 | Electrolytic | | 1 µF. | 50V | 12000 | | C308, 309 | ECQM1H153KZ | Polyester . | | 15µF. | 50V | ±10% | | C310, 311
C312, 313 | ECQM1H272KZ
ECKD1H471KB | Polyester
Ceramic, | | 00pF.
70pF. | 50V | ±10%
±10% | | C315, 316 | ECQM1H222KZ | Polyester, | 22 | 00pF. | 50V. | ±10% | | C317, 318
C319, 320 | ECEA50ZR33
ECEA50Z1 | Electrolytic
Electrolytic | | 33μF.
1μF. | 50V
50V | | | C401 | ECEA1H\$100 | Electrolytic | | 10µF. | 50V | | | | | | | | | | | C701 | ECEA1CS221 | Electrolytic | . 2 | 20μF, | 16V | | | Ref. No. | | Part No. | Part | Name & Des | cription | | |--|---|---|--|--|---|---| | C704
C705
C706, 707
C708
C709
C710 | | ECEA1VS471
ECEA1HS470
ECKD2H103PE
ECEA1JS100
ECEA1HS470
ECKDKC103PE | Electrolytic,
Electrolytic,
Ceramic,
Electrolytic,
Electrolytic,
Ceramic, | 470µF,
47µF,
0.01µF,
10µF,
47µF,
0.01µF, | 50V
500V
63V | ±100% | | C711, 712
C713
C714, 715
C716
C717
C720
C901
C903
C904
C905 | Δ | ECKD2H103PE
ECKD2H103PE
ECUX1H223ZF
ECUX1H103MD
ECUX1H101K
ECKDKC103PF
ECEA50Z1
ECEA50Z1
ECEA1CS330
ECEA50Z3R3 | Ceramic,
Ceramic,
Chip,
Chip,
Chip,
Ceramic,
Electrolytic,
Electrolytic,
Electrolytic, | 0.01µF
0.022µF
0.01µF
100pF
0.01µF
1µF
1µF
33µF | 500V
50V,
50V,
50V,
50V
50V
16V | ±20%
±20%
±10% | | C906
C907 | | ECUX1H223ZF
ECEA1ES101 | Chip,
Electrosytic, | 0.022μF
100μF | | ±20 % | | C908
C909 | | ECEA1HS100 | Chip,
Electrolytic, | 330pF
10µF | 50V,
50V | ±10% | | C910
C911
C913 | | ECUX1H102ZF
ECUX1H103ZF
ECUX1H103ZF | Chip,
Chip,
Chip, | 0.001µF
0.01µF
0.01µF | 50V. | ±10 %
±10 %
±10 %
±10 %
±20 % | | C914
C915 | | ECUX1H102ZF
ECUX1H101K | Chip,
Chip, | 0.001µF
100pF | | ±10% | | C916
C917 | | ECKD1H223ZF
ECUX1H331KD | Ceramic,
Chip, | 0.022μF,
330σF. | | ±80 %
±10% | | Ref. No. | Part No. | Part Name & Description | | | | |-----------|--------------|-------------------------|-------------|------|--------| | C920 | ECUX1H102ZF | Chip. | 0.001µF | 50V. | 280 % | | C921 | ECUX1H102MD | Chip. | 0.001µF | 50V. | | | C922 | ECUX1H102ZF | Chip. | 0.001µF, | 50V. | ± 80 % | | C930 | ECUX1H680KC | Chip. | 68pF, | 50V. | ±10% | | C931 | ECUX1H470KC | Chip | 47pF. | 50V. | ±10% | | C932 | ECUX1H6B1K | Chip. | 680pF. | 50V, | | | C935 | ECUX1H102ZF | Chip. | 0.001µF. | 50V | 120 % | | C936 | ECEA50Z1 | Electrolytic. | 1 pF | 50'V | | | C937 | ECGE1105KZ | Polyester, | 1.µF. | 50V | ±10% | | C938 | ECKD1H223ZF | Ceramic, | 0.022 µF_ | 501 | ±20% | | C939 | ECUX1H223ZF | Chip, | 0.022µF, | 50V | ±30 % | | C940 | ECEA50ZR1 | Electrolyt. | 0.1µF | 50V | | | C941 | ECEA50Z1 | Electrolytic, | 1 μF, | 50V | | | C942 | ECUX1H331KD | Chip. | 330pF, | 50V | ±10% | | C943 | ECUX 1H102MD | Chip. | 0.001µF. | 50V | ±20% | | C944 | ECEA1HS100 | Electrolytic. | 10µF. | 50V | | | C946 | ECUX1H223ZF |
Chip. | 0.022µF. | 50V | ±20 % | | C947 | ECUX1H101K | Chip. | 100PF. | 50V | ±10% | | C948 | ECUX1H103MD | Chip. | 0.01µF. | 50V. | ±20% | | C949 | ECUX1H102MD | Chip. | 0.001µF. | 50V | 120% | | C950 | ECUX1H103MD | Chip. | 0.01µF | 50V | ±20% | | C951, 952 | ECUX1H102MD | Chip. | 0.001µF. | 50V | :20% | | C953 | ECEA50Z1 | Electrolytic, | 1µF. | 50V | | | C954 | ECCD1H331K | Ceramic, | 330pF, | 50V. | ±10% | | C955 | ECFVD104MD | Semi-Conduct | or, 0.1µF, | 25V. | ±20% | | C956 | ECKD1H102MD | Ceramic, | | 50V. | ±20% | | C957 | ECFVD103MD | Semi-Conduct | or, 0.01µF. | 25V. | 120% | | C958 | ECKD1H102MD | Ceramic. | | 50V. | ±20% | # ■ CHANGE OF PARTS LIST ST-CO3K (EG) Note: This parts list included only the changes of the model ST-C03 parts list. | 5-1-N- | | Change | of Part No. | | | | |----------|---|------------|--------------|--------------------------|--|--| | Ref. No. | | ST-C03 = | ⇒ ST-C03K | Part Name & Description | | | | | | | CABINET | | | | | 1 | | RYMTC03N | RYMTC03KEG | Cabinet Assembly | | | | 2 | | RYUTC03E | RYUTC03KEG1 | Bottom Board Assembly | | | | 2-1 | | SGX803 | SGX803-1 | Ring, Rear Side Feet | | | | 3 | | RYNTC03N | RYNTC03KEG | Battery Cover Assembly | | | | 8 | Δ | | RJA23Z | AC Cord | | | | 18 | | SGP1430-2C | SGP1430-2D | Rear Panel | | | | 19 | | SBC205-1 | SBC205-2 | Button, Selector | | | | 20 | | RBC212Z | RBC212Z1 | Button, Tuning | | | | 21 | | RBC213Z | RBC213Z1 | Button, Preset | | | | 22 | | RBC220Z | RBC220Z1 | Button, Power Source | | | | | | | SCREWS | | | | | @ | | XTB3+8BFN | XTB3+8BFZ | Screw, Bottom Board M'tg | | | | 226 | | P | ACKING PARTS | 8 | | | | | | | RPK919Z | Gift Box | | | | | | | | | | | # ■ ACCESSORIES